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Introduction

Let $M$ be a sufficiently smooth real compact differentiable manifold. In
an earlier paper [2, Lemma (2.2)], we have computed elements of $KO(M)$ deter-
$r_{1}^{\vee}\iota$ined by higher order tangent bundles of $M$ and applied them to find bounds
for dimensions of odd order non-singular immersions of real projective spaces
to real affine spaces. Purposes of the present paper are to express, in a similar
manner, a pth order real tangent bundle of a complex projective space by
means of symmetric ith power operations in KO-theory, and to compute charac-
teristic classes of the bundle for $p=2,3$ . For some small $p$ and complex pro-
jective spaces of small dimension, the $pth$ order tangent bundle is completely
determined in the KO-ring of the space. We compute it for $p=2$ and the
space of complex dimension 4. As applications, we find bounds for dimensions
of some higher order non-singular immersions of complex projective spaces to
real affine spaces. One can see several properties of higher order non-singular
immersion, in Feldman’s work [3, II, Theorem 3.2].

Tileorem (1.1) represents $pth$ order real tangent bundles of the complex
projective space by the operations in KO-theory. Theorems (1.3), (1.4) are
computations of their Stiefel-Whitney classes for $p=2,3$ ard their Pontrjagin
classes for $p=2$ . These results are used in Theorem (1.5), Corollary (1.6) and
we obtain necessary and sufficient conditions of second, third order non-singular
immersions of complex projective spaces of certain dimensions to real affine
spaces. Corollary (1.6) includes Feldman’s example for the complex projective
plane $[$3, $I$ , Theorem 6.1, $(b)]^{1)}$ .

We compute characteristic classes ot powers and symmetric powers of
certain real vector space bundles in Section 2, which are used, together with
Theorem (1.1) concerning with KO-theory, to prove Theorems (1.3), (1.4) in
Section 3. Theorem (1.5), Corollary (1.6) and other similar results are proved
in the last section.

1) Details of [3, I] is stated in [6],



Characteristic classes 387

1. Statement of results

Let $X$ be a finite CW-complex, and let $\mathcal{O}^{\iota}$ ; $KO(X)\rightarrow KO(X)$ . $(i=0,1, 2, )$

be the symmetric ith power operation in $KO(X)$ . See [2] about it. We denote
by $CP^{n}$ the complex projective space of complex dimension $n$ . Let $\tau_{p}(CP^{n})$

be the bundle of pth order real tangent vectors on $CP^{n}$ and also the element
of $KO(CP^{n})$ determined by the bundle. Let $\eta$ denote the real plane bundlc
defined by the Hopf bundle which is the complex line bundle associated to the
natural map $S^{2n+1}\rightarrow CP^{n}$ . $\eta$ denote also the element of $KO(CP^{n})$ determined
by the plane bundle.

THEOREM (1.1). We have

(1) $\tau_{p}(CP^{n})=G^{1)}((n+1)\eta)-O^{p-I}((n+1)\eta)-1$

in $KO(X)$ .
We can determine $\tau_{p}(CP^{n})$ completely for small $p$ and $n$ by Theorem (1.1)

and arguments of Pontrjagin classes. For instance, we have the following
result. By Sanderson [4], $KO(CP^{4})$ is the truncated polynomial ring over the
integers with one generator $y=\eta-2\in KO(CP^{4})$ and the relation $y^{3}=0$

COROLLARY (1.2). We have

$\tau_{2}(CP^{4})=L5y^{2}+55y+44$ .

Again by Theorem (1.1), Stiefel-Whitney classes of $\tau_{2}(CP^{n}),$ $\tau_{8}(CP^{n})$ and
Pontrjagin classes of $\tau_{2}(CP^{n})$ are computed as follows. Let $W(\tau_{p}(CP^{n}))$ ,

$P(\tau_{p}(CP^{n}))$ be the total Stiefel-Whitney class and the total Pontrjagin class of
the bundle $\tau_{p}(CP^{n})$ respectively, and let $g$ be the natural generator of $H^{2}(CP^{n} ; Z)$ .
We set $\overline{g}=gmod 2$ . $\overline{g}$ is the generator of $H^{2}(CP^{n} ; Z_{2})$ .

THEOREM (1.3). It follows that

\langle 2) $W(\tau_{2}(CP^{n}))=(1+\overline{g})^{-(n+1y}$

and

\langle 3) $W(T_{3}(CP^{n}))=(1+\overline{g}^{4})sn+1$

in $H^{*}(CP^{n} ; Z_{2})$ .
THEOREM (1.4). It follows that

(4) $P(\tau_{2}(CP^{n}))=(1+4g^{2})^{()}2(1+g^{2})^{-(n+1)}n+2$

in $H^{*}(CP^{n} ; Z)$ .
We define integers $s_{W}(n),$ $s_{P}(n),$ $d_{W}(n)$ and $d_{P}(n)$ by

$s_{W}(n)=\left\{\begin{array}{l}\max\{i|0<i\leqq n,( )\not\equiv 0mod2\}\\0\end{array}\right.$

if there is no such integer $\iota$ ,
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$s_{P}(n)=\max\{i|0<i\leqq n,\sum_{j=0}^{t}(-1)^{j}4^{(i-j)}\left(\begin{array}{ll}n & +j\\ & j\end{array}\right)((in2-+2j^{)})\neq 0\}$ ,

$d_{W}(n)=\left\{\begin{array}{l}\max\{i|0<i\leqq n,( )\not\equiv 0mod2\}\\0 ifthereisnosuchintegeri\end{array}\right.$

and

$d_{P}(n)=\max\{i|0<i\leqq n,\sum_{j=0}^{i}(-1)^{j}4^{j}(2j)\left(\begin{array}{l}n+1\\i-j\end{array}\right)\neq 0\}$ .

Applying Theorem (1.3) (2) and Theorem (1.4) to second order non-singular
immersions of complex projective spaces to real affine spaces, we obtain fol-
lowing results by arguments of Stiefel-Whitney classes (cf. [6], [2]) and by
similar arguments of Pontrjagin classes.

THEOREM (1.5). If $k$ is an integer such that

$-2\max\{s_{P}(n), s_{W}(n)\}<k<2\max\{d_{P}(n), d_{W}(n)\}$ ,

then $CP^{n}$ can not be immersed in $R^{(^{2n_{2}+2})+k-1}$ without affine singularities of
order 2.

Putting together Theorem (1.5) and $p$th order non-singular immersion theo-
rem by Feldman $[3, 1]$ , we obtain:

COROLLARY (1.6). Suppose $n$ is a positive even integer and le is a non-
negative integer. $CP^{n}$ can be immersed in the real affine space $R^{(^{2n_{2}+2})+k-1}$ with-
out ajfine singularities of order 2 if and only if $k\geqq 2n$ .

This is a more detailed form of Feldman’s example [3, 1, Theorem 6, $(b)$]

or [6, Theorem 10.3 $(b)$].

For third order non-singular immersions of $CP^{n}$ , we prove, by Theorem
(1.3), (3):

THEOREM (1.7). Suppose $n=2^{r}$ ($r$, integers $\geqq 1$) and le is a non-negative

integer. $CP^{n}$ can be immersed in the real affine space $R^{(^{2n_{3}+3})-k-1}$ without affine
singularities of order 3 if and only if $k\geqq 2n,$ $4n-1\leqq\left(\begin{array}{l}2n+3\\3\end{array}\right)-k-1$ .

2. Lemmas on characteristic classes

We compute in this section Stiefel-Whitney classes, Pontrjagin classes of
(tensor) products and of second, third symmetric powers of the canonical plane
bundle $\eta$ over $CP^{n}$ . Let us begin with Stiefel-Whitney classes. It is clear
that

$W(\eta)=1+\overline{g}$

in $H^{*}(CP^{n} ; Z_{2})$ .
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LEMMA (2.1). Let $W$ denote the total Stiefel-Whitney class. We have

(5) $W(\eta^{2})=1$ ,

(6) $W(O^{2}\eta)=1$ ,

(F) $W(\eta^{3})=1+\overline{g}^{4}$ ,

(8) $W(O^{3}\eta)=1+\overline{g}^{2}$

and

(9) $W(\eta(o^{2}\eta))=1+\overline{g}+\overline{g}^{2}+\overline{g}^{\theta}$ ,

in $H^{*}(CP^{n} ; Z_{2})$ .
PROOF. Let

$W(\eta)=1+\overline{g}=(1+\gamma_{1})(1+\gamma_{2})$

be a formal factorization2). From the expression of $W(\eta)$ , it follows that8)

$W(\eta^{2})=(1+2\gamma_{1})(1+\gamma_{1}+\gamma_{2})^{2}(1+2\gamma_{2})=1$ ,

$W(o^{2}\eta)=(1+2\gamma_{1})(1+\gamma_{1}+\gamma_{2})(1+2\gamma_{2})=1$ .

In similar manners, the formulas (7), (8) follow from

$W(\eta^{3})=(1+3\gamma_{1})(1+2\gamma_{1}+\gamma_{2})^{3}(1+\gamma_{1}+2\gamma_{2})^{3}(1+3\gamma_{2})$ ,

$W(\mathcal{O}^{3}\eta)=(1+3\gamma_{1})(1+2\gamma_{1}+\gamma_{2})(1+\gamma_{1}+2\gamma_{2})(1+3\gamma_{2})$

respectively. By the formula (6), we have

$W(\eta(O^{2}\eta))=(1+\gamma_{1})^{3}(1+\gamma_{2})^{3}$ ,

and obtain the formula (9). Thus results of our lemma are completely proved.
Now we compute Pontrjagin classes. Let $\zeta_{1}-,$ $\xi_{2}$ be real vector space bundles

over a finite CW-complex $X$, which come from complex vector space bundles
of complex dimensions $n_{1},$ $n_{2}$ respectively. Let $P$ denote the total Pontrjagin

2) Let $\xi$ be a real vector space bundle with group $0(n)$ over a finite CW-complex
$X$ and $E(\xi)$ be the total space of the principal bundle associated to $\xi$ . Let
$S=Z_{2}\times\cdots\times Z_{2}\rightarrow 0(n)(Z_{2}=\{\pm 1\})$ be the natural inclusion as diagonal elements. We

$n$

denote by $\rho$ the natural projection $E(\xi)/S\rightarrow X$ and denote by $\gamma_{i}$ the first Stiefel-Whitney
class of a line bundle over $E(\xi)/S$ associated to the ith factor of $S$ . It follows that

$\rho_{2}^{*W(\xi)}=\prod_{i=1}^{n}(1+\gamma_{i})$ and $p_{2}^{*}$ : $H^{*}(X;Z_{2})\rightarrow H^{*}(E(\xi)/S;Z_{2})$ induced by $\rho$ is a monomor-
phism.

3) Cf. [7] and [8].
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class. $P(\xi_{i})i=1,2$ are elements of $H^{*}(X;Z)$ . We have formal factorizations4)

$P(\xi_{1})\equiv\prod_{i=1}^{n}(1+x_{i^{2}})$ ,

$P(\xi_{2})\equiv\prod_{j=1}^{n}(1+y_{j^{2}})$

modulo any odd prime number. Then the total Pontrjagin class of $\xi_{1}\cdot\xi_{2}$ is

(10) $P(\xi_{1}\cdot\xi_{2})\equiv II\prod_{ji=1=1}^{n_{2}}(1+(x_{i}+y_{j})^{2})(1+(x_{i}-y_{j})^{2})n_{1}$

modulo any odd prime number. See, for instance, $[5, 10.6 (f)]$ .
LEMMA (2.2). We have

(11) $P(\eta^{z})=1+4g^{2}$

and

(12) $P(O^{2}\eta)=1+4g^{2}$

in $H^{*}(CP^{n} ; Z)$ .
PROOF. It is known that

$P(\eta)=1+g^{2}$ .
See, e. g., [1]. We apply the relation (10) to $\xi_{1}=\xi_{2}=\eta$ . Since $H^{*}(CP^{n} ; Z)$

has no torsions, the formula (11) is obtained. Let $\eta_{c},$
$(O^{2}\eta)_{c}$ be complexifications

of $\eta,$ $O^{2}\eta$ . We have the total Chern class of $\eta_{c}$ ,

$C(\eta_{c})=1-g^{2}$ .
See also [1]. Let

$C(\eta_{c})=(1+w_{1})(1+w_{2})$

be a formal factorization5). From the expression of $C(\eta_{c})$ , it follows that

4) Let $\xi$ be a real vector space bundle with group $SO(2n)$ over a finite CW-complex
$X$, which comes from a complex vector space bundle. We denote by $E(\xi)$ the total
space of the principal bundle associated to $\xi$ . Let $T$ be the standard maximal torus
of $SO(2n)$ and $\rho$ : $E(\xi)/T\rightarrow X$ be the natural projection. We denote by $x_{i}$ the first
Chern class of a complex line bundle associated to the ith factor of $T$ . It follows that

$p^{*P(\xi)}=I^{n_{I}}i=1(1+x_{i^{2}})$ in $H^{*}(E(\xi)/T;Z)$ and $p_{p^{*}}:$ $H*(X;Z_{p})\rightarrow H*(E(\xi)/T;Z_{p})$ induced by

$\rho$ is a monomorphism for any odd prime $p$ .
5) Let $\zeta$ be a complex vector space bundle with group $U(n)$ over a finite CW-

complex $X$ and $E(\zeta)$ be the total space of the principal bundle associated to $\zeta$ . Let $T$

be the standard maximal torus of $U(n)$ and $p:E(\zeta)/T\rightarrow X$ be the natural projection.
We denote by $w_{i}$ the first Chern class of a complex line bundle over $E(\zeta)/T$ associated

to the ith factor of $T$ . It follows that $p^{*}C(\zeta)=\prod_{i=1}^{n}(1+w_{i})$ in $H*(E(\zeta)/T;Z)$ and
$\rho^{*}:$ $H*(X;Z)\rightarrow H*(E(\zeta)/T;Z)$ is a monomorphism.
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$C((O^{2}\eta)_{c})=C(\mathcal{O}^{z}(\eta_{c}))^{6)}$

$=(1+2w_{1})(1+w_{1}+w_{2})(1+2w_{2})$

$=1-4g^{2}$

By the definition of the Pontrjagin class, one obtain immediately the formula
(12). Thus the proof of our lemma is completed.

3. Characteristic classes of $\tau_{2}(CP^{n})$ and $\tau_{3}(CP^{n})$

Let $M$ be a compact connected real differentiable $(C^{r}, r\geqq p)$ manifold. We
denote by $\tau_{p}(M)$ the bundle of pth order tangent vectors on $M$ and also the
element of $KO(M)$ defined by this bundle. Sometimes we use a notation $\tau(M)$

for $\tau_{1}(M)$ which is the tangent bundle of $M$.
PROOF OF THEOREM (1.1). By Lemma (2.2) of [2], we have

$\tau_{p}(M)=\mathcal{O}^{p}(\tau(M)+1)-1$

in $KO(M)$ . We apply this formula to $M=CP^{n}$ and obtain the required rela-
tion,

$\tau_{p}(CP^{n})=\mathcal{O}^{p}((n+1)\eta-1)-1$

$=\mathcal{O}^{p}((n+1)\eta)-\mathcal{O}^{p-1}((n+1)\eta)-1$ .
To prove Corollary (1.2), we need following lemma on the element defined

by $\mathcal{O}^{2}\eta$ in $KO(CP^{4})$ .
LEMMA (3.1). We have

(13) $G^{2}\eta=\eta^{2}-1$

in $KO(CP^{n})$ .
PROOF. We have noted that $KO(CP^{4})$ is the truncated polynomial ring

over the integers with one generator $y=\eta-2$ and the relation $y^{3}=0$ . It fol-
$1ow_{D}^{\sigma}$ that any element of $KO(CP^{4})$ has a unique form

$a\eta^{2}+b\eta+c$

where $a,$
$b$ and $c$ are integers. We set

(14) $G^{2}\eta=a\eta^{2}+b\eta+c$

and determine the coefficients. Computing Pontrjagin classes of both side of
(14) by Lemma (2.2), one obtains

$1+4g^{2}=(1+4g^{2})^{a}(1+g^{2})^{b}$ ,

6) The symmetric power operation $C^{2}$ in the right hand side is that for complex
vector space bundles, $i$ . $e$ . for K-theory. See [8].
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since $H^{*}(CP^{n} ; Z)$ has no torsions. It follows immediately that

(15) $4a+b=4$ ,

(16) $16(a2)+\left(\begin{array}{l}b\\2\end{array}\right)+4ab=0$ .

Thus one obtains
$a=1$ , $b=0$ .

Comparing dimensions of vector space bundles, we have

$c=-1$ ,

which completes the proof of our lemma.
PROOF OF COROLLARY (1.2). By Theorem (1.1) and the above lemma we

have
$\tau_{2}(CP^{4})=O^{2}(5\eta)-5\eta-1$

$=15\eta^{2}-5\eta-6$

$=15y^{2}+55y+44$ .

In the remainder of this section, one proves results on characteristic classes
of $\tau_{2}(CP^{n})$ and $\tau_{3}(CP^{n})$ .

PROOF OF THEOREM (1.3). The formula (2) follows immediately from
Theorem (1.1) and Lemma (2.1) (5), (6). The formula (3) follows also from
Theorem (1.1) and from Lemma (2.1) (7), (8), (9).

PROOF OF THEOREM (1.4). Applying the Whitney formulas for Pontrjagin
classes modulo any odd prime number, (cf. [1]) to the relation of Theorem
(1.1) for $p=2$ , we obtain

$P(\tau_{2}(CP^{n}))=P(\left(\begin{array}{l}n+1\\2\end{array}\right)\eta^{2})P((n+1)O^{2}\eta)P((n+1)\eta)^{-1}$ ,

since $H^{*}(CP^{n} ; Z)$ has no torsions. The result (4) of our theorem directly fol-
lows from Lemma (2.2).

4. Proofs of Theorems (1.5), (1.7)

One proves theorems on bounds for dimension of second and third order
non-singular immersions of $CP^{n}$ to the real affine spaces.

PROOF OF THEOREM (1.5). From Theorem (1.1) of [2] on Stiefel-Whitney
classes and from Theorem (1.3) (2), it follows that if $k$ is an integer such that
$2s_{W}(n)<k<2d_{W}(n)$ , then $CP^{n}$ can not be immersed in the affine space
$R^{(^{2n_{2}+2})+k-1}$ without affine singularities of order 2. From a similar argument
on Pontrjagin classes and Theorem (1.4), it also follows that if $2s_{P}(n)<k<2d_{P}(n)$
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then $CP^{n}$ can not be immersed in $R^{(^{2n_{2}+2})+k-1}$ without affine singularities of
order 2. Putting together these results, we obtain the proof of our theorem.

Since we have $d_{W}(n)=n$ , Corollary (1.6) is an easy consequence of Theo-
rem (1.5) and Feldman’s theorem [3, $I$ , Theorem 3.1] or [6, Theorem 6.2].

PROOF OF THEOREM (1.7). From Theorem (1.3) (3) and arguments on
Stiefel-Whitney classes, similar to Theorem (1.5), it follows that if we have
$n=2^{r}(r\geqq 1)$ and $0\leqq k<2n$ , then $CP^{n}$ can not be immersed in $R^{(^{2n_{3}+3})-k-1}$

without affine singularities of order 3. It is known that $CP^{n}$ is differentiably
embedded in $R^{4n-1}$ and this is the best possible immersion for $n=2^{r}$ , (cf. [9]).

By Feldman’s theorem mentioned in the proof of Corollary (1.6), the proof of
our theorem is completed.

Kyushu University
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