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1. Introduction and notations.

The purpose of this paper is to define a natural derivational mapping
(called the complete lift?) of the algebra I(M) of tensor fields of a manifold
M into the algebra I(T(M)) of tensor fields of the tangent bundle T(M) of
M, to associate with each affine connection p of M an affine connection p°¢
(called the complete lift of ) of T(M) in a natural way and to derive basic
formulas and properties of the complete lift. To define the notion of com-
plete lift, we introduce also that of vertical lift and transvection as well as
a more familiar notion of Lie derivation. The notions of complete lift and
vertical lift have been already defined for tensor fields of special kinds by
several authors, [5], [7], [81 [31 [14] [15]

Using the notion of complete lift we shall show that such familiar G-
structures as a pseudo-Riemannian structure, an almost complex structure
and a symplectic structure on M induce similar structures on the tangent
bundle T(M). An unexpected but perhaps more interesting result is that
each pseudo-Riemannian (resp. affine) symmetric space structure on M induces
a pseudo-Riemannian (resp. affine) symmetric space structure on T(M). This
suggests us a method of producing a large class of affine symmetric spaces.
Let A be a local algebra of the form A= R+ where R is the field of real
numbers and [ is the maximal ideal of A such that dim /< oo and I*=0 for
some k. Weil has shown that such an algebra A defines a fibre bundle
A(M) over M, generalizing the construction of the tangent bundle T(M). (If
dim /=1 and /2=0, then A(M) is nothing but the tangent bundle T(M) of
M) A successful generalization of our theory to A(M) would furnish a use-
ful tool for the differential geometry of higher order contact and yield a
large number of affine symmetric spaces.

*) Supported by NSF Grant GP-3990.

*+) Sloan Fellow, partially supported by NSF Grant GP-3982.

1) Perhaps, “natural lift” is more appropriate. But in conformity with other
authors, we use the term “complete lift».
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Notations

We shall generally follow notations and terminologies of ; in parti-
cular, components of curvature tensors are written in the same as in [3]
including signs. We list below notations used often in this paper.

1. TM)= yMTx(M) is the tangent bundle over a manifold M with pro-

jection n. Similarly, T*(M) denotes the cotangent bundle over M.

2. g7(M) is the space of tensor fields of type (r,s), i.e., contravariant
degree r and covariant degree s, on M. An element of I M) is a function
and is denoted often by f. An element of (M) is a vector field and is often
denoted by X or Y. An element of 9%AM) is a 1-form and is often denoted
by w.

3. aM)= ZEEK(M) =T¥M)R T (M), where T*(M) = ;ETS(M) and 9,.(M)

= SUM).

4. An affine connection is often denoted by its covariant differentiation
symbol p.

5. Given a local coordinate system x!,---,x" we denote by xi,---, x%,
i, .-+, ¥* the local coordinate system in 7T(A/) induced as follows:

If x=>b%0/0x") e T,(M) and x is a point with coordinates al, ---, " with
respect to x!, ---, 2™, then % has coordinates da!, ---, a®, b3, ---, b™ with respect
to xl, -, X%, Y, e, Y

6. The so-called Einstein’s summation convention is used.

2. Lie derivations and transvections.

Let X be a vector field on M. The Lie derivation Ly with respect to X
is a linear endomorphism of (M) characterized by the following properties:

(L1 Ly SKRT)=(LSRQT+SRLLT) for S, TegM);
(L2 Lyf=Xf for  fediM);

(-L£.3) Lydf=d.Lyf for fegi(My;

(L4 LyY=[X Y] for YeqiM).

It follows that £, possesses also the following properties:

(.L.5) Ly is type preserving, i.e., L (M) I5(M);

(.L.6) Ly commutes with every contraction of a tensor field.

For the preceding and other properties of L4, see and [11]
The skew symmetric transvection ¢y by X is a linear endomorphism of

I(M) characterized by the following properties:
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(e.1) tx(SOT)=(xHQT+H(—1)SRxT)

for Seg2(M) and TegM);
.2 txf=0 for feagyM);
.3) txdf =Lxf=Xf for feagyM):
4 txY =0 for Yeglid).
It follows that ¢y possesses also the following properties:
(.5 e (T (M) g (M), in particular, ¢x(T5(M)=0:
(¢.6) txotx=0.

When applied to differential forms, ¢y is often called the interior product,
[3] From (c.1) we obtain also

.7 txK=0 if Keg)M) is a symmetric covariant tensor field.

The symmetric transvection oy by X is a linear endomorphism of (M)
characterized by the following properties:

(a.1) 0x(SRT)=(0xS)RT+SR(cxT) for S, TeaM):

(0.2) oxf=0 for feayM):

(0.3 oxdf=Lyf=Xf for [feayM);

(c4) oY =0 for YegiM).

It follows that oy possesses also the following properties:

(¢.5) ox (T (M) g7 (M), in particular, ox(a5(M))=0;

(0.6) 0x00y=0y00x.
In contrast to (¢.7), we have

(a.7) oxK=0 if KegYM) is a skew-symmetric covariant tensor field.

We now fix a positive integer k. Then, for s=£k, every vector field X
defines a linear mapping 7x:97(M)— g7 (M) such that

78R @ Q@ Qu) =SQu; Q) QX)X - Quw,,

where S 3§(M) and o, € IYM) for i=1, ---, s.

In terms of a local coordinate system x%, ---, x" of M, let K% be the
components of a tensor field K= g7(M) and & the components of X. Then
7xK is the tensor field of type (r, s—1) with components K% ; £k,

If s=1 so that £=1 necessarily, then 7y coincides with ¢y and o. Con-
sidering 7y for all £, 1<k <s, it is easy to express both ¢x and o; by means
of rx. Since ¢y, 0x and 7y behave in a similar manner, they will be denoted
by ay when the distinction is not necessary.

ProposiTION 2.1. For X, Y e S{M) we have
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) [Ly Lyl=Lixvis
2 [Lx av]=arx,y;
3 Lyw=dotywt+tyodw for any differential form w.

Proor. Since 9(M) is generated by fe IYM), df € TY(M) and Z « M),
it is sufficient to prove (1) and (2) when the both sides are applied to f, df
and Z. The verification in the three special cases are straightforward and
are left to the reader. Similarly, it is sufficient to verify (3) in the cases
where w=Ff and w=df. For (1) and (3) we refer the reader also to [3; p. 32
and p. 35]. Q.E.D.

3. Vertical lifts.

Let xe T, (M). The projection z:T(M)— M induces a surjective linear
mapping 7wy : Tz T(M))— T (M), called the differential of = at %. Its dual
mapping 7*: T¥M)—TE(T(M)) is injective. Clearly, 7* can be extended to
a unique isomorphism of the covariant tensor algebra g.(x) at x into the
covariant tensor algebra g, (X) at X. This gives rise to an isomorphism,
called the wertical lift, of the algebra T,(M) of covariant tensor fields of M
into the algebra I, (T(M)) of covariant tensor fields of T(M). For a covariant
tensor field K = 9,(M), its vertical lift will be denoted by KV. The following
is immediate from the definition.

PropPOSITION 3.1. (1) fV=fom for feI¥M);

(2) For K= IXM) considered as a multilinear mapping T (M) X -+ XT (M)
— R", its vertical lift K¥ :T7(T(M)) X -+ X T7(T(M))— R" satisfies

KV(X,, -, X =KX, -, 75 X,) for X, eT=TWM));

(3) The vertical lift maps the algebra DM) of differential forms of M
isomorphically into the algebra D(T(M)) of diffevential forms of T(M).

The vertical lift 9(M)—D(T(M)) is usually denoted by =*.

To introduce the notion of vertical lift to the algebra of contravariant
tensor fields, we define two linear mappings ¢ and ¢ of 9, (M) into L. (T(M))
which are similar to ¢y and oy. The mapping ¢: T (M)— T (T(M)) is a linear
mapping characterized by

(e.1) (SRT)=0S)RQT"+(—1)SV Q(cT)

for Segy(M) and Teg (M);
(¢.2) f =0 for fegIyM)y;
(¢.3) c(df)y=df for fegyM),

where df on the right hand side is considered as a function on T(M).
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The mapping o :T(M)— T(T(M)) is a linear mapping characterized by
(a.1) o SRT)=(0S)RXT"+S"R®(eT) for S, TeTWM);

(c.2) of =0 for feaqi(My;

(0.3 o(df)y=df for fedYM),

where df on the right hand side is considered as a function on T(M).
Later these mappings ¢ and ¢ will be extended to linear mappings of
a(M) into G(T(M)). We note that if

Cl):fidxl
in terms of a local coordinate system x?, ---, x" of M, then
(w) = o(w) =)'
in terms of the induced local coordinate system x%, ---, x®, %, -.-, y™ of T(M).
As a first step to extend the vertical lift to the algebra 9(M), we define

a wvertical lift XV of a vector fleld X of M. It is a vector field on T(M)
characterized by

(%) XY@ =Xy for fedyM).
In terms of a local coordinate system x!, ..., x™ of M, if
X= ELQT and df = fidx*
ox

then

XVv=2¢ vl
in terms of the induced local coordinate system x!, ..., x%, 3, ---, 3" of T(M).
This proves the uniqueness as well as the existence of XV satisfying (x).

By (%) the vertical lift TY(M)— TYT(M)) is clearly injective. It should be
warned however that it is not a Lie algebra homomorphism.

We extend the vertical lift g§(M)— TY(T(M)) to a unique algebra isomor-
phism of I*(M) into I*(T'(M)). By tensoring the two vertical lift T.(M)
—TJ(T(M)) and T¥M)—I*(T(M)) we obtain an algebra isomorphism of
a(M) into I(T(M)), which is called the vertical lift. In resumé we may say
that the vertical lift is a linear mapping of (M) into I(T(M)) characterized
by the following properties:

0
v

(v.1) SRXTY =S"QRTY for S, TegM);
0.2) fr=r for fedyM);
.3) @rH’=d(f" for feIYM);

(v4) X7((df) = (XF) for Xegy(M) and rfegyM).
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We are now in position to extend ¢ and ¢ to linear mappings of I(M)
into 9(T(M)). They can be characterized by the following properties:

(c.1)* (SRT)=(S)RTV+H(—=1)ISTQ(T)
for Seg?(M) and TeaM),;
(¢.2)* ef =0 for feayM);
(¢.3)* «df)=df for  fegiM),
where df on the right hand side is considered as a function on T(M);
(c.4)* e X=0 for Xea(M).
It follows that
(e.5)* (T3 (M) C T (TM))
Similarly,
(o.1)* o(SRT)=(S)RXRTV+S"Q(6T) for S, TegWM);
(o2)* of =0 for fegyM)y;
(0.3)* o(dfy=df  for fedyM),
where df on the right hand side is considered as a function on T(M);
(0.4)* cX=0 for XegM).
[t follows that
(0.5)* o(IT(M) T (TM)).
Evidently,

t=g0 on TUM)
and
t=0=0 on a*(M).

As an example we mention the canonical vector field on T(M); it is
defined to be ¢/=o0l, where I € Ji(M) is the field of identity endomorphisms.

In terms of the local coordinate system x, -, x", 3% ---, ¥" of T(M) induced
by a local coordinate system x!, -.-, x® of M,

tI=0l=y" ai»}-{— .

We now fix a positive integer 2. Then in a similar manner as we defined
rx in §2, we define a linear mapping y:97(M)— 97_(T(M)) for s=Fk by
78R - Q@ - Q) =S" Rl Q- Ruw) @ - Q)
where S e 9%3(M) and w, = TUM).

In terms of a local coordinate system x!,---,x" of M and the induced
local coordinate system x?, ---, x®, y!, ---, v® of T(M).
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If s=1 so that k=1 necessarily, then y coincides with ¢ and ¢. Consider-
ing y for all 2, 1< k<s, it is easy to express both ¢ and ¢ by means of 7.
Since ¢, ¢ and 7 behave in a similar manner, they will be denoted by a when
no distinction is necessary.

4. Formulas on vertical lifts.

Throughout this section, X is a vector field on M and K is a tensor field
on M. We recall that ay (resp. a) stands for any one of ¢y, ox and yy (resp.

¢, 0 and 7).
ProrosITION 4.1,
1) Lxw(KV)=0;
(2) axyw(KE")=0.

PrRooOr. Since the vertical lift is an algebra isomorphism of (M) into
I(T(M)) and since (M) is generated by f< IYM), df € TYM) and Y = TYM),
it suffices to verify the formulas above in the special cases where K=/,
K=df and K=Y. The verifications in these special cases are trivial if one
writes X =£%0/0x%) and XV =£%0/0y" in terms of the local coordinate system
xt -, x™ 9, --, 3" of T(M) induced by a local coordinate system x!,---, x"
of M. Q.E.D.

PROPOSITION 4.2.

L oK)= (axK)" .

Proor. We shall prove the formula for the case «=¢. By (1) of Pro-
position 4.1 we have

Lxv(0(SQRT)) =(Lxv(0S)QT"+S" Q(L xv(cT)).
Since the vertical lift is an algebra homomorphism, we have

(0x(SQT) =(0xS) QT +S" Q@ (axT)" .

Hence it suffices to prove the formula in the special cases where K=/, K=df
and K=Y for the same reason as in the proof of Proposition 4.1. If K=f
or =17, then the both sides of the formula vanish. [If K=df, we write
X=£%0/0x% and df =f;dx*. Then o(df)=f;y* and XV =£%0/d»%). Hence both
the left and the right hand sides are equal to f;& Q.E.D.
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5. Complete lifts of tensor fields.

The complete lift is a linear mapping of (M) into I(T(M)) characterized
by the following properties. If we denote the complete lift of K= I(M) by
K¢, then

(c.1) SRTY=S°QTV+SvQRT* for S, TegM);

(c2) fe=ddf)y=o0(df) for fegTUM);

(¢3) (dff=d(f%  for fedyM);

(c4) XO(fO)=(Xf)Y for fegdM) and Xegi(M).

It follows that

(¢.9) if Keg;(M), then K°eI;(T(M)).

In terms of the local coordinate system x', ---, x%, y%, ---, 3" of T(M) in-
duced by a local coordinate system x!, ---, x™ of M, we obtain easily

fe=ny where f,=0df/ox*
(df)° = y*df;+f:dy* where [, =0f/0x"

e 0 08, 0
Xo=¢ 9xt T ox Y 0yt

0
oxt -’

The exisence and the uniqueness of the complete lift may be proved readily
from these formulas in local coordinate system.

REMARK. It is also clear from the formula above of X¢ that the set of
all X¢ where XedJ{(M), gives the whole tangent space at each point of
T(M) except at the zero points. The zero points of T(M), i.e., the zero tan-
gent vectors of M, may be identified with M in a natural manner. Since
T(M)—M is dense in T(M), a continuous mapping of T(T(M)) into a vector
space sends I(T(M)) into the zero element if it sends each X¢ into zero.
This remark is useful in simplifying later the proofs of certain formulas.

PROPOSITION 5.1. Let X M) and KeI(M). Let a (resp. ay) stand fer
any one of ¢, o and y (resp. tx, ox and rx). Then

where X =¢§¢

D Lxe(K9) = (LxK);
o) Lxe(KV)= (LK) ;
) Lxv(K) = (LK)
@) Lycoa=aoLy;
©) axo(K% = (ayK);
(6) axo(K7) = (axK)¥;

D axv(K%) = (axK)".
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It is sufficient to verify these formulas in the special cases where K=/,
K=df and K=Y. The verifications in the special cases are straightforward
and are left to the reader.

6. Complete lifts of special tensor fields.

Let K= 97(M) and consider it as a multilinear mapping of F¥M) X .-
X THM) (s times) into g5(M) under the natural identification I75(M)=9I5M)
R ITUM)=Hom (T3, g3). From (5) of Proposition 5.1 we obtain

PROPOSITION 6.1. If K€ 97(M), then

Ko(X¢, -, XO =KX, -, X))  for X,eTY(M).

From [Proposition 6.1] and from the remark made in §5, we may conclude
that if KeJ7(M) is a symmetric (resp. skew-symmetric) multilinear mapping
of TY(M) X -+ X THM) into I5(M), then K¢e I;(T(M)) is also a symmetric
(resp. skew-symmetric) multilinear mapping of F{(T(M)) X --- X TYT(M)) into
ay(T(M)). In particular, if ¢ is a p-form on M, then ¢° is a p-form on T(M).

PROPOSITION 6.2. For any differential forms ¢ and ¢ of M, we have

€Y (@ AP =0 NPT +¢" N7

@ (dp)° = d(¢°) .

Proor. From Proposition 6.1 it follows that the complete lift commutes
with skew-symmetrization. Hence (1) follows from (c.1). (2) follows from (1),
(c.3) and the fact that the vertical lift also commutes with d. Q.E.D.

We shall now study the complete lift K¢ of a tensor field of type (0,2) a
little in detail. If we write

K= Kijdxi ® dxj

in terms of a local coordinate system x?, ---, x” of M, then (c.1), (c.2) and (c.3)
imply that
o 0K bdx*Qdx!+ K, ,dy' Q@ dx?+ K, ,dx* Q dy?
K —*a;k“y ¥ Qdx'+ K ;dy' Qdx’ + K, ,dx* Q dy
in terms of the induced local coordinate system x!, ---, x"®, ', ---, y* of T(M).

If we express K by an (n X n) matrix (X;;), then K¢ may be expressed by a
(2n X 2n) matrix:
0K,
(‘a;k"y’“ Kw‘) |

Ki; 0

From this we may derive a number of properties of K°¢.
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ProrosITION 6.3. Let g be a pseudo-Riemannian metric on M. Then g€ is
a pseudo-Riemannian metric on T(M) (with n positive and n negative signs).

Proor. If we take a normal coordinate system, then at the origin dg;;/0x*
vanish. Our statement is now obvious from the matrix expression for K¢
given above. Q. E.D.

REMARK. If we write ds?=g;,dx'dx’ for g, then g¢ may be written
2g;,0y'dx?, where 0y'=dy'+ " dx? y*.

ProrosiTiON 64. If ¢ is a 2-form defining an (almost) sympleciic struc-
ture on M, then ¢° defines an (almost) symplectic structure on T(M).

Proor. From the expression above for K¢, it is clear that if ¢ is of
maximal rank, so is ¢¢ If ¢ is closed, so is ®° by Proposition 6.2.

We shall now study tensor fields of type (1, 1).

PROPOSITION 6.5. Let A, B€ 9 M) and consider them as fields of linear
endomorphisms of tangent spaces of M. Let I be the field of identity trans-
formations of tangent spaces of M. Then

(Ao B =A% B°,

I°=the field of identity automorphisms of tangent spaces of T(M). In
particular, if P is a polynomial of one variable, then

P(A%) = (P(A)°.

Proor. By [Proposition 6.1, we have
(Ao B)Y(X9 = (Ao B)(X))® = (A(B(X)))* = A%(B(X°)) = (A% B)}(XF).
By the remark made in §5 we may conclude that (Ao B)° = A% B°. Similarly,
19X =UI(X))’ =X,

and by the same remark we may conclude that [¢ is the field of identity auto-
morphisms of tangent spaces of T(M). Q.E.D.

Let A, Be 9(M). Then the torsion ?¢,4z(X,Y) of A and B is a tensor
field of type (1, 2) defined by (cf. [3])?

tas(X, Y)=[AX, BY ]+[BX, AY 1+ AB[X, Y ]+ BA[X, Y]
—A[X, BY1—A[BX, Y]—B[X, AY]—-B[AX, Y] for X, Yeg(M).

From the definition of the torsion, Propsitions 6.1 and 6.5 and (1) of Proposi-
tion 5.1, we obtain
PROPOSITION 6.6. Let A, Be 9i(M). Then

2) The notion of torsion t4,5(X, Y) is due to Nijenhuis although only the special
case 41;,5(X, Y) (where J is an almost complex structure) is widely known as the Ni-
jenhuis tensor. See, A. Nijenhuis, X,_,-forming sets of eigenvectors, Indag. Math., 13
(1951), 200-212.
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(tA,B)O:‘ tAG',BC .
From Propositions and we obtain
PROPOSITION 6.7. If J€ IYM) defines an almost complex structure on M,
so does J° on T(M). lfN_,:%tJ,J denotes the Nijenhuis tensor of J, (N;)° is

the Nijenhuis tensor of J¢: (N;)° = Nyc.
If we write A € TI(M)

A=A 3
in terms of a local coordinate system x!, ---, x® of M, then (c.1-4) imply that
0 0A;
C— At J J
A A,a Ep: yaz®dx+A]az®dy
in terms of the induced local coordinate system x?, ..., x%, 3%, ..., 3* of T(M).

If we express A by an (# X n) matrix (4%), then A° may be expressed by a
(2n X 2n) matrix :
A 0
( 0A;

o0x* Y 4

It is clear from this expression for A¢ that if A is of rank » at each point
of M, then A€ is of rank 27 at each point of T(M).

As another example we mention a tensor field Fe J{(M) satisfying F*+F
=0; such a structure has been studied in [1Z], [18] Then F¢ e IYT(M))
satisfies (FC)*+ ¢ =0.

From (1) and (3) of Proposition 5.1l we obtain

ProPOSITION 6.8. If K is a tensor field on M and X is a vector field on
M satisfying LxK=0, then

L xo(K% =0 and Lxv(K%=0.

In particular, we have

PRrROPOSITION 6.9. If X is a Killing vector field of a pseudo-Riemannian
manifold M with metric g, then both X¢ and XV are Killing vector fields of the
pseudo-Riemannian manifold T(M) with metric g°.

Going back to a general vector field X on M, we shall consider X¢ a
little more geometrically. Let exptX be a local 1-parameter group of trans-
formations of M generated by X. From the coordinate expression of X¢ it
is not hard to see that the induced local 1-parameter group (exp tX), of trans-
formations of T(AM) (where (exp tX), denotes the differential of exptX for
each fixed #) coincides with a local 1-parameter group exp tX°¢ of transforma-
tions of T(M). Hence we have
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ProposiTION 6.10. If a vector field X on M is complete in the sense that
it generates a global 1-barameter group of transformations of M, then XC is
also a complete vector field on T(M).

REMARK. From the coordinate expression for X" we see immediately that
XV is complete whether X is complete or not.

From Propositions 6.9 and 6.10 and the remark above we obtain

ProrosiTION 6.11. If M is a homogeneous pseudo-Riemannian manifold
with metric g, so is T(M) with metric g°.

Similarly we have

PROPOSITION 6.12. [f M is a homogeneous (almost) complex manifold with
(almost) complex structure ], so is T(M) with (almost) complex structure J°.

7. Complete lifts of affine connections.

Let  be the covariant differentiation defined by an affine connection of
M. Then there exists a unique affine connection of T(M) whose covariant
differentiation p¢ satisfies

PGe(YO) =Y )Y for X,Yeday(M).

Our assertion may be verified by a simple calculation using connection com-
ponents. Let I, be the connection components for y with respect to a local
coordinate system x,.--,x" With respect to the induced local coordinate
system x%, ---, x%, 91, ---, 3" of T(M), we set

ST o) e r re o
ij_pjk’ Fﬂ?_ ! F%k_ ’ F;'zz— ’
~e api ~ . - . o~
— JE_ At — — —_
§-k—-~*a3cl—~y s F;Tc_rzjk: F’jk—rﬁw FZJ-,;——O,

where the indices with bars refer to y!, -+, y*. Then the s are the connec-
tion components for p°.

PrRoOPOSITION 7.1. If T and R are the torsion and the curvature tensor
fields for p, then TC and RC are the torsion and the curvature tensor fields for
7.

Proor. Our proposition follows from the following formulas:

ToXC, YO=(TX, Y)Y =FxY—ps X—[X, Y)Y
= oY C—pfe XO—[ X4 Y 1.
ROXC, YNZ° =R, Y)Z) =V x, Fy1Z—V x,nZ)°
=[p%o, P¥c12°—pixc yo1Z° .
Q.E.D.

PROPOSITION 7.2. For any tensor field K on M and any vector field X on

M, we have

ey V(K%)= xK);
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@ PeE)=FK);
®3) VEc(K7) = xK)" ;
4) oK) =WK);
®) V(KO = xK)" ;
(6) ViKY = xK)" .

PROOF. As usual it suffices to verify these formulas in the special cases
where K=/ g9Y(M), K=df € 9Y{M) and K=Y € 9y(M).

M. If K=F, then ple(fO) =X = LycfC=(Lxf’=Wxf)F. If K=Y,
then the formula to be verified is nothing but the definition of p°¢. If K=df
or more generajly K=w < 9Y(M), then

W)Y ) = pse(@(Y 9)—a®(F e Y O) = p $e(o(Y )’ —w*(F x Y )°)
=W x(@(Y ) —(@F x¥))° =(Fxw)(Y))°

= zw)°(Y°).
Hence,
7 gco’ = z0)° .

(2). This follows from (1) and Proposition 5.1 as follows:

7x0(P°KO) = $o(KO) = xK)° =(rxP K)° = yxc(F K)°
and hence
PeKe=KY.

(3). If K=/, then by Proposition 5.1 we have
Vic(f)=Lx(fN)=(Lxf) =Wxf) .
If K=Y, then write X=£%0/0x" and Y =%%d/0x%). Then
S
oy*

o7’ ; 0

=WxY)".

Either by a similar calculation using a local coordinate system or by a cal-
culation similar to the one in the proof of (1), we obtain

Ce(Y") = on* j_l_fvi Gk
Pie(Y7)= ‘Wf %S

7 $c(@¥) = (F xw)¥ for every we IYM).

(4). The proof is similar to that for (2).
(5). This may be proved in the same way as (3). Or (7) of Proposition
5.1 and (2) may be used as follows:
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Piv(KO) =y oK) =yxv(FK)) = (1P K)Y =@ xK)" .

(6). The proof is similar to that of (5). Q.E.D.

PROPOSITION 7.3. Let M be a manifold with affine connection . Then a
Jacobi field along a geodesic of M, considered as a curve in T(M), is a geodesic
of T(M) with respect to the affine connection ¢, and vice versa.

Proor. From the coordinate expression for the equation of a geodesic,
we know that the geodesics of M (resp. (T(M)) are determined by the sym-
metric part of the connection components of [ (resp. p¢). We may therefore
assume without loss of generality that p (and hence also p°) is torsionfree.

Let x!, ---, x", 3%, ---, 3" be the local coordinate system in 7(M/) induced by a
local coordinate system x!,---,x" of M. Then a geodesic of T(M) is given
by the following set of equations.
241 J k
(1) d%x , dx! dx —0,

der T dt dt

_4,23!1 _aF TE_ayt d_x.,“_(y?_k_ . dy!  dx*
(2) dtz + ax y dt dt +2F]k dt dt ———0

From (1) we see that a geodesic of 7(M) projects upon a geodesic of M.
We transform (2) as follows.

d (dy | dX dx' [ dy" dx’ yt
® dt ( dt +% dr > )+F”” dt ( dt e dt 7
jgﬂcﬁ_warﬂ , dx? dx
+( oxt ox* WLl ) dt  dt

If we denote by 7‘2— the covariant differentiation in ¢, then (3) may be writ-

ten as follows.
240 j k

@ —%?;*'FR}:‘MJ’L 'd—c'ix;“_(f;;_ =0.
This shows that y%(#) is a Jacobi field along the geodesic x*(Y) of M. Q.E.D.

As an immediate consequence, we have

PROPOSITION 7.4. If M is complete with respect to an ajffine connection |,
then T(M) is complete with respect to pC, and vice versa.

The following result relates the complete lift of an affine connection with
Proposition 6.3.

PROPOSITION 7.5. If [ is the Riemannian connection of M with respect to
a pseudo-Riemannian metric g, then p° is the Riemannian connection of T(M)
with respect to the pseudo-Riemannian metric g€.

Proor. Since the Riemannian connection is a unique torsionfree connec-
tion for which the metric is parallel, our proposition follows from Proposition
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7.1 and (2) of |Proposition 7.2 applied to K=g. Q.E.D.
PROPOSITION 7.6. Let  be an affine connection on M. If X is an infini-
tesimal affine transformation of M, then both X¢ and XV ave infinitesimal
affine transformations of T(M) with respect to .
PrOOF. A necessary and sufficient condition for X to be an infinitesimal
affine transformation of M is that

’CXOVY'—VYO“EXZV[X,Y] fO]‘ every YEQI(I)(M)-
Making use of Propositions and 7.2 we verify easily

~oPL—pC ~=[C.
-CX VY VY © ﬂEX V[X.Y]

in the following special cases: X=X¢ or =X and Y=Y or =¥". From
the coordinate expressions for Y¢ and YV we see that the formula above is
valid for an arbitrary Y. This proves that both X¢ and XV are infinitesimal
affine transformations of p°. Q.E.D.

From Propositions and 7.6 we obtain

PROPOSITION 7.7. If the group of affine transformations of M with [ is
transitive on M, then the group of affine transformations of T(M) with respect
to p¢ is transitive on T(M).

From Propositions and 7.2 we ohtain

ProrosITION 7.8. Let T and R be the torsion and the curvalure tensor
fields of an affine connection f of M. According as T=0, pT=0, R=0 or
FR=0, we have T¢=0, p°T¢=0, R°=0 or p°R°=0. In particular, if M is
locally affine symmetric with respect to [, so is T(M) with respect to p°.

From Propositions [/.5 and we obtain

ProOPOSITION 7.9. If M is locally pseudo-Riemannian symmetric with respect
to g, so is T(M) with respect to g°.

REMARK. A pseudo-Riemannian manifold M with metric g is said to be
of constant curvature k if

RX, Y)YZ=k(gZ, IYX—g(Z, X)Y) for X,Y,Zeai(M)

If M is of constant curvature k, then the curvature R¢ of g¢ may be cal-
culated as follows.

RO(XC, YO Z°=(R(X,Y)Z)Y =k(g(Z, Y)Y X—g(Z, X)Y )

=k((&Z, Y )X "+((Z, V)" X —(g(Z, X))°Y " —(g(Z, X))'Y )

= k(g%(Z°, YO XV +g"(ZC, YO X —go(Z%, XY ¥ —g"(Z¢, XO)YC).
Define a tensor field £ of type (1,1) on T(M) by

_ 9 .
E= 2y Rdx
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in terms of the local coordinate system x!, ---, x*, ', --«, " induced by a local
coordinate system x!, -+, x™ of M. (E may be defined without local coordinate
systems.) Then EX¢= XV and gV(x, Ex)=g%x, #). Hence

RO(XC, YO)Z°=k(g%Z° YO)EXC+g%ZC, EY 9)X°
—go(Z°, XOEY °—g°(Z, EX®)Y ).

Using this formula it is not hard to prove that the complete lift g¢ of a
metric g of constant curvature % has constant curvature if and only if £=0.
Similarly, the complete lift g¢ of an Einstein metric g is again an Einstein
metric if and only if g has vanishing Ricci tensor.

The operations such as Ly, ay, a, vertical lift and complete lift are all
natural in the sense that they commute with any diffeomorphism of one
manifold onto another. In particular, if 2 is a transformation of M leaving
a connection J invariant, then its differential A, :T(M)—T(M) leaves the
connection p¢ invariant. Similarly, if 4 leaves a tensor field K on M invariant,
then h, leaves K¢ invariant. Applying this reasoning to a pseudo-Riemannian
(or affine) symmetric space M and its symmetries, we obtain

ProposiTiON 7.10. If M is a pseudo-Riemannian (resp. affine) symmetric
space with metric g (resp. connection ), then T(M) is also a pseudo-Riemannian
(resp. affine) symmelric space with metric g¢ (resp. connection p°C).

REMARK. This proposition is related to the following known result, [6].
If G/H is a reducible affine symmetric space with G simple, then it is a tan-
gent bundle over a compact Riemannian symmetric space. See also [17, [4]
for fibrations of affine symmetric spaces.

We shall make a concluding remark about generalizations of results in
this paper. One possible generalization is, as we have already pointed out in
the introduction, to lift tensor fields and connections to the bundle A(M)
defined by a local algebra A. Another generalization is to lift a wider class
of geometric structures of M to the tangent bundle T(M). For instance,
would it be possible to associate with each G-structure on M a naturally
induced G’-structure on T(M), where G’ is a certain subgroup of GL(2n; R)?
We have seen that a pseudo-Riemannian structure on M gives rise to a
pseudo-Riemannian structure on 7T(M). Moreover, T(M) carries an obvious
n-dimensional distribution. This means that for G=0(), a correct G’ may
not be SO(n, n) but a certain subgroup of SO(n, n). Similar comments may
apply to almost complex structures, symplectic structures, etc.. It seems that
a conformal structure on M does not immediately induce a conformal struc-
ture on T(M). The question of associating a correct G’-structure on T(M)
to a G-structure on M is probably related to the following question on holo-
nomy : how is the holonomy group of T(M) with p° related to the holonomy
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of M with . Another related question is this. In [2] it was shown that if
P is a principal fibre bundle over M with group G and if I" is a connection
in P, then there exists a naturally induced connection T(/") in the bundle
T(P) over T(M) with group T(G) and the restricted holonomy group @%T("))
of T(I") is isomorphic in a natural way with T(@°(")), where @°(I") is the
restricted holonomy group of I'. (The last statement is essentially the so-
called Holonomy Theorem of Ambrose-Singer.) If P is the bundle L(M) of
linear frames of M, then the connection 7(/") seems to be related to the
complete lift of 1.

Tokyo Institute of Technology
and
University of California, Berkeley
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