An exponential formula for one-parameter semi-groups of nonlinear transformations

By J. W. NEUBERGER

(Received Oct. 26, 1965)

For a complete normed linear space S consider a function T from $[0, \infty)$ to the set of continuous transformations from S to S which satisfies:

- (1) T(x)T(y) = T(x+y) if x, y > 0,
- (2) $||T(x)p-T(x)q|| \le ||p-q||$ if $x \ge 0$, p, q are in S,
- (3) if p is in S and $g_p(x) = T(x)p$ for all x in $[0, \infty)$ then g_p is continuous and $\lim_{x \to 0} g_p(x) = p$.

If it is also specified that T(x) is linear for all $x \ge 0$, then one has a semi-group about which the following is known ([1] chapters 10, 11 and [3] sections 142, 143):

For all p in some dense subset of S, $g_p'(0)$ exists and if $Ap = g_p'(0)$ for all p for which $g_p'(0)$ exists, then $(I - xA)^{-1}$ exists, has domain S and is continuous for all $x \ge 0$. Moreover, if p is in S and $x \ge 0$,

(*)
$$\lim_{n \to \infty} \| (I - (x/n)A)^{-n} p - T(x)p \| = 0.$$

It is the purpose of this note to add to assumptions (1)-(3) a differentiability condition (which, it turns out, holds in the linear special case) which implies an "exponential formula" suggested by (*). The results of this note give a nonlinear version of the linear strong case of [1] (section 11.5); previous work [2] (section 3) of this author gave a nonlinear version of the linear uniform case of [1] (section 11.2).

The differentiability condition mentioned above is:

(4) there is a dense subset D of S such that if p is in D, then g'_p is continuous with domain $[0, \infty)$.

If $\delta > 0$, denote $(1/\delta)[T(\delta) - I]$ by A_{δ} . The main result of this note follows. Theorem. If (1)-(4) hold, p is in S and $x \ge 0$, then

$$\lim_{n \to \infty} \limsup_{n \to \infty} \| (I - (x/n)A_{\delta})^{-n} p - T(x)p \| = 0.$$

Consider first some lemmas.

LEMMA 1. Under conditions (1)-(3), if δ , x > 0, then $(I - xA_{\delta})^{-1}$ exists and has domain S.

PROOF. Suppose w is in S. A unique point y of S is sought so that $(I-xA_{\delta})y=w$, that is, $y-(x/\delta)T(\delta)y+(x/\delta)y=w$, that is, $y=\lceil \delta/(\delta+x)\rceil w+\lceil x/(\delta+x)\rceil T(\delta)y$. Define $Kz=\lceil \delta/(\delta+x)\rceil w+\lceil x/(\delta+x)\rceil T(\delta)z$ for all z in S. It is easily seen that K is a contraction mapping. Hence there is a unique y in S so that y=Ky. This proves the lemma.

LEMMA 2. Under conditions (1)-(3), if δ , x > 0, then

$$||(I - xA_{\delta})^{-1}u - (I - xA_{\delta})^{-1}v|| \le ||u - v||$$

for all u, v in S.

PROOF. Suppose that $(I-xA_{\delta})^{-1}u=y$ and $(I-xA_{\delta})^{-1}v=z$. Then $y=\lfloor \delta/(\delta+x)\rfloor u+\lfloor x/(\delta+x)\rfloor T(\delta)y$ and $z=\lfloor \delta/(\delta+x)\rfloor v+\lfloor x/(\delta+x)\rfloor T(\delta)z$ and hence, $\|y-z\|\le \lfloor \delta/(\delta+x)\rfloor \|u-v\|+\lfloor x/(\delta+x)\rfloor \|T(\delta)y-T(\delta)z\|\le \lfloor \delta/(\delta+x)\rfloor \|u-v\|+\lfloor x/(\delta+x)\rfloor \|y-z\|$. But this gives that $\|y-z\|\le \|u-v\|$ and hence the lemma is established.

LEMMA 3. Under conditions (1)-(3), if δ , x > 0, then $\|(I - xA_{\delta})^{-1}p - T(x)p\|$ $\leq x \|A_x p - A_{\delta}T(x)p\|$ for each p in S.

PROOF.

$$\| (I - xA_{\delta})^{-1} p - T(x) p \| \leq \| p - (I - xA_{\delta}) T(x) p \|$$

$$= \| \lceil T(x) - I \rceil p - xA_{\delta} T(x) p \| = x \| A_x p - A_{\delta} T(x) p \|.$$

LEMMA 4. Suppose that each of L and M is a continuous transformation from S to S such that if u and v are in S, $||Lu-Lv|| \le ||u-v||$. Then for each positive integer n, $||L^np-M^np|| \le \sum_{i=1}^n ||LM^{i-1}p-M^ip||$ for all p in S.

PROOF.

$$\begin{split} \|L^{n}p - M^{n}p\| &= \|\sum_{i=1}^{n} (L^{n-i+1}M^{i-1}p - L^{n-i}M^{i}p)\| \\ &\leq \sum_{i=1}^{n} \|L^{n-i+1}M^{i-1}p - L^{n-i}M^{i}p\| \leq \sum_{i=1}^{n} \|LM^{i-1}p - M^{i}p\| . \end{split}$$

LEMMA 5. Under condition (4), suppose that p is in D, R is a bounded subinterval of $[0, \infty)$ and $\varepsilon > 0$. There is a $\delta > 0$ such that if x, y are in R and $0 < |x-y| < \delta$, then $\max_{w \text{ in } [x,y]} \|(x-y)^{-1}[g_p(x)-g_p(y)]-g_p'(w)\| < \varepsilon$.

PROOF. For x and y in R, $x \neq y$ and w in [x, y], $g_p(x) - g_p(y) = \int_y^x g_p'$ and hence

$$\|(x-y)^{-1}[g_p(x)-g_p(y)]-g_p'(w)\| = \|(x-y)^{-1}$$

$$\int_y^x (g_p'-g_p'(w))\| \le \max_{c \text{ in } [x,y]} \|g_p'(c)-g_p'(w)\|.$$

The uniform continuity of g_p' on bounded intervals then gives the lemma.

PROOF OF THE THEOREM. The conclusion is obvious if x=0. Suppose x>0. Assume first that r is in D. If $\delta>0$ and n is a positive integer, then

$$\begin{split} &\| (I - (x/n)A_{\delta})^{-n}r - T(x)r \| = \| [(I - (x/n)A_{\delta})^{-1}]^{n}r - [T(x/n)]^{n}r \| \\ &\leq \sum_{i=1}^{n} \| (I - (x/n)A_{\delta})^{-1}T(x(i-1)/n)r - T(x/n)T(x(i-1)/n)r \| \\ &\leq \sum_{i=1}^{n} (x/n) \| A_{x/n}T(x(i-1)/n)r - A_{\delta}T(xi/n)r \| \\ &= (x/n)\sum_{i=1}^{n} \| (n/x)[g_{r}(xi/n) - g_{r}(x(i-1)/n)] - (1/\delta)[g_{r}(\delta + xi/n) - g_{r}(xi/n)] \| \\ &\leq (x/n) \{ \sum_{i=1}^{n} \| (n/x)[g_{r}(xi/n) - g_{r}(x(i-1)/n)] - g'_{r}(xi/n) \| \\ &+ \sum_{i=1}^{n} \| (1/\delta)[g_{r}(\delta + ix/n) - g_{r}(xi/n)] - g'_{r}(xi/n) \| \} \,. \end{split}$$

Suppose now, in addition, that $\varepsilon>0$. Denote by δ' a positive number less than 1 so that if $0\leq v$, $u\leq x+1$ and $0<|u-v|<\delta'$, then $\max_{w\ in\ [u,v]}\|(u-v)^{-1}$ $[g_r(u)-g_r(v)]-g_r'(w)\|<\varepsilon/(4x)$. Denote by N an integer so that $x/N<\delta'$. If n is an integer greater than N and $0<\delta<\delta'$, $\|(I-(x/n)A_\delta)^{-n}r-T(x)r\|\leq (x/n)\sum_{i=1}^n(2\varepsilon)/(4x)=\varepsilon/2$. From this it follows that $\limsup_{\delta\to 0+}\|(I-(x/n)A_\delta)^{-n}r-T(x)r\|<\varepsilon$.

Suppose that p is in S and $\varepsilon>0$. Since D is dense in S, there is a point r of D such that $\|p-r\|<\varepsilon/6$. By the above argument, there is an integer N and a $\delta'>0$ such that if n is an integer greater than N and $0<\delta<\delta'$, $\|(I-(x/n)A_\delta)^{-n}r-T(x)r\|<\varepsilon/6$. For δ and n chosen in such a way, $\|T(x)r-T(x)p\|<\varepsilon/6$ and $\|(I-(x/n)A_\delta)^{-n}r-(I-(x/n)A_\delta)^{-n}p\|<\varepsilon/6$ (by repeated application of Lemma 2) which gives $\|(I-(x/n)A_\delta)^{-n}p-T(x)p\|<\varepsilon/2$. From this it follows that $\limsup_{\delta\to 0+} \|(I-(x/n)A_\delta)^{-n}p-T(x)p\|<\varepsilon$ for all integers n greater than N. This proves the theorem.

In closing it is noted that conditions (1)-(3) do not imply (4). This can be seen by considering the case in which S is E_1 and

$$T(x)p = \begin{cases} p - x & \text{if } p \ge 1 \text{ and } p - x \ge 1, x \ge 0 \\ 1 & \text{if } p \ge 1 \text{ and } p - x < 1, x \ge 0 \\ p & \text{if } p < 1, x \ge 0. \end{cases}$$

This author considers it likely that conditions (1)–(3) do imply interesting differentiability conditions and that the conclusion to the theorem (or perhaps a stronger conclusion) can be obtained using only conditions (1)–(3) together, perhaps, with some condition much weaker than (4). Investigations into these matters may well lead to a theory of semi-groups of nonlinear transformations which parallels rather completely the well developed linear case.

Emory University

References

- [1] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloquium Publications, vol. XXXI, 1957.
- [2] J.W. Neuberger, A generator for a set of functions, Illinois J. Math., 9 (1965), 31-39.
- [3] F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955.