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Most of the studies on Finsler spaces seem to aim at the generalization
of the fruitful results on Riemannian spaces as are resumed in the book of
H. Rund [4]. Another approach to Finsler spaces is found in the book of
E. Cartan [2] and C. Caratheodory [I]. We treated in the previous paper
some results given in from a modern geometrical point of view, but
a further step was not taken. Here we develop along this way the theory
of Finsler spaces based upon a certain contact structure associated with the
spaces.

1. Contact structure on Finsler spaces

Finsler spaces can be defined as follows. Let M be an n-dimensional
differentiable manifold and the local coordinates of a point x on M be !, ---, 1™
In the tangent space T(x) at x we take a natural frame and denote the com-
ponents of a vector y in T(x) by 3!, ---,y" and those of a vector p in the
dual tangent space °T(x) by py, -+, p.. We take a function F= F(x, y) on the
tangent bundle T(M) of M which has the following properties:

() F(x,y) is of class C* and is positively homogeneous of degree one

with respect to ¥, ---, 3",

(I) the rank of the matrix (02F/dy* 0y") (i,j =1, ---, n) is n—1.

The manifold M with such a function F(x, y) is called a Finsler space. The

length of a curve x=x(f) on the Finsler space is defined by _fF(x, x)dt, where
x=dx/dt.
A mapping ¢ : T(M)—°TM) is defined by (x, y)—(x, p) with
_ OF -
pi - ayz . (1 - ]-’ s n’) . (].1)

Then N=¢(T(M)) is a submanifold of °T(M) by virtue of (I) and (I1I) (cf. [3].
We call N a p-manifold of A and denote its local equation by

Glx, p)=0, 1.2
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where (Gypy, ++, Gp,)# (0, ---,0). We denote 0G/dp; by Gp, and 02F/0y*6y’ by
F, ;etc. In a certain neighborhood of each point of T(M) we can assume

yiy
det(F,o,)#0  (a,b=1,-,n=1) 1.3

‘without loss of generality. Then the local equation (1.2) of N can be writ-
ten as

pn: __H(xl’ Tty xn’ plv T pn-—l) . (1'4)

Throughout our discussion we use indices as
i’jxkyh:]-y"';n a,b,c,e:]., "',n—‘]_.

As satisfies we get by differentiation with respect to 3/ G,,0p;/0y’
=0, namely Gp,F,;,;=0. On the other hand we have by (I) »'F,,;=0.
Hence we get

¥ =2Gp;, 1.5
and so

F=y'"F=0,5"=20:Gp; . 1.6)

For a point (x, p) € °T(M) corresponding to (x, X) & T(M) along a curve x= x(t)
we have

J'Ci = ZGI’i . (1.7)
We consider a 1-form

w=pdx’ (1.8
on N. We can show that o A (dw)*~*+0 at the point (x, p) corresponding to
(x, ) such that F(x, y)# 0, which means that w defines a contact structure

on N with the exception of the case F(x, y)=0 (cf. [3)). We can assume Gp,#0
without loss of generality. Then we have

dpn = G;L(Gpadpa‘l_ zedxz)
and get
a=dw=dp, \ dx“——G;;(Gpudpa—%Gmdxi) Adx™.

Hence by taking interior products with 0/0p,, 0/0x% 0/0x™ we get

0% =i(3/dp)a = dx*—G31Gpada® (19)
00 =1(0/31%) 0 = —dpo—Gy1G padx™ (1.10)
0, =10/0xMa = —dp, = GG ,a0*—Gpapa) . (1.11)

‘We get by
@ = pidx’ = po(0*+ Gyl Gpad x™) + prdx™
= Pa0°+ G5! Goypidx”
= peb%+ G2 Fdx™ (1.12)
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Hence w, 0°, p, are independent 1-forms on N. For (x, p) corresponding to (x, %)
along a curve x=x(f) on M we have by KL.9)

6*=0. (1.13)
The solution curves of differential equations
0%=0, 0a=0 (a=1, -, n-1 1.19

are curves on N which we call e-curves. The projections of e-curves of M
are extremals of the Finsler space M (cf. [3).

As w, 0%, p, are linearly independent forms on N, they can be taken as
local base of differential forms on N. We have by virtue of [(1.9) [1.10) [(1.11)

dw =dp, N\ dx*+dp, N dx"
= —(0a+GprG1adx™) A 0%+ GprGpadx™) —G5i(G a0~ Gpapa) N dx™

=0%N pg.

Thus we get
THEOREM 1. Forms w, 0% p, defined by (1.8) (1.9) (1.10) are linearly inde-
pendent and
do=0%N\ p,. (1.15)

(x, p) along a curve x=x(t) on M is characterized by (1.13) and (x, p) along an
extremal by (1.14).
In the case we have G(x, p)=p,+H and so

® = Dodx*—Hdx", 0°%=dx"—Hp,dx", p,=—dp,—H,.dx". 1.16)
We calculate d6%, dp, and get
d0% = —(Hp o, dps+Hp,oi dx") N dx™ = (Hp,p, 00— Hpyar 0°) A dx™
dpa= —(Hyapdx"+Hyap,dpo) A dx" = — H(ya000°— Hyap,00) A dx™.
We have by virtue of [1.12)
dx" = —(H—p.Hpe) (@—P.0°)
Hence
d0® = —(H—pcHpe) ™ (Hpars0o— Hp 00 6°) A\ (0 —p.0%)
o= —(H—eHp)(— Hy 0"+ Hoa,06) A (@—De6°) (1.18)
Here we calculate the relations between the derivatives of H and F. By

we have F, = —H(x', ---, x", F1, -, F,u-1). As F is of homogeneous
degree one we get

Foy*—y'H=F. 1.19)

Differentiating with respect to j° we get F,oo(¥*—y"Hp,)=0. As in our case
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det (Fq,5) # 0, we get

Y =y"Hp, . (1.20)
Differentiating with respect to y° we get 04c=3"Hp p,F 5,0
Hence
(Hporp) = 1/3"(Fyayn)™ (1.21)
By we get
—y"(H—pHp)=F 1.22)
and so
—(H—=pHp,) (Hpopy) = F(Fya,)7" . (1.23)

2. Adapted orthogonal coframe

Here we consider a coframe w, 0% p, which is more general than that in
Theorem 1. We assume that

(A) w=p.dx® is the fundamental 1-form

(B) 6%a=1,---,n—1)are forms which are linear combinations of dx!, ---, dx"

© o, 0,0, p, -, pp—y are independent

D) do=0*A p,.
We call the coframe with these properties an adapted coframe of the p-
manifold N. The transformation between two adapted coframes w, 6% p,
and o, 6% p, is given by

00 =540,  po=1pyt7a0". 2.1)
where
1 (a=¢)
Sgtg: 5? - 3 S§¥ac = Se¥ap « (22)
0(a#0)

This can be verified by the relations
0% = s§0'+5%w, Po= 200+ 700+ 71ew, do=0°A p,= N

By virtue of we can conclude
THEOREM 2. The assertion tn Theorem 1 holds good for adapted coframes.
We can put

d6° =3 k0" A O+ Igw A O+ m®p, A O+ hpy AN, 2.3)

dpe= %u?fpb A PeAHVE0 N Pyt Warw A 0°+35.0° N pb+~%ﬁzabﬂ” NG, 24

where

— — b —
k%c——k(csz ul&c__ua’ Zave ™= —Zacd +

On account of the relation df® A p,—0% Adp,=d(dw)=0 we get
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Rie=Yie—Yan I§=—v§, m¥—mpP=ug,
ab__ L — —_—
h _ h a' Weap = Wpa, Zabc+zbca+zcah—0 .

Now we consider the effect of the transformation [2.1] We denote the co-
efficients in the structure equations for 0%, 5, corresponding to (2.3) (2.4) by

ke, lg ..., etc. We substitute into
dG% = 5 BB NG+l N G+ 2B, A F4-F, A o @2.5)
and get
dsg A 0°+53d0° = - +58h%0, Aw = -+ +h(t50,+1.09 Ao .
We compare the coefficients of p, Aw and we get
R = sesthee . (2.6)

We denote the matrices inversive to (h%), (h%) by (has), (ha,) respectively and
get fg,=tt5h,. Hence
A= h,0%"°, Q.7D

B=w*+hq,0%0° 2.8

are quadratic differential forms on N which are independent with the choice
of adapted coframes. We can show that these are forms which are funda-
mental in the theory of Finsler spaces hitherto studied, namely

0 F

g 1 OF .

These can be verified by using (1.16) as follows. In this case
0% = dx*—Hp,dx", ®=p,dx*—Hdx"=F ;dx’ @211
and by comparing (1.17) (2.3) we get

h® = _(H"Pch)_IHpapb .
Hence we get by [(1.22)
hap= FFyay,, (2.12)
and so
F"’ha,ﬂa@b — Fya?/b(dxa—"Hpadx")(de_Hpbdxn)
= Fappdx*dx’—2F, o Hp,dx*dx"+F, o ,Hp Hp,(dx™) .
As F,=—H we get
F, nya — —Hp E,bl,a,’ F[/n';/'n - _HPaFyayn = HPGHPbeayb ’

v
and so



124 M. KuriTa

F~1h,,0%0"=F

yiyjdxidxj .

.10) can also be verified by remarking

22

azigy = aii (F gy’j ) =2F Fyiyt FyiFy ).
Here we make the third assumption on our Finsler space.
(II) The matrix (F02F/dy'0y7) is positive semidefinite.
This means that (h,;) is positive definite in the case det (Fyay0) # 0, which
we can assume without loss of generality. In fact (FF,,,;) is then positive
definite and so (h,,) with respect to special frame is positive definite.
This means the same holds good for the general frame.

Now we can take suitable §% 7, in such a way that
hay = 5ah (2-13)

hold good. The transformation between the coframes satisfying [2.13) is
given by [2.1) with orthogonal (s§). We take a special one among these
transformations, namely

0= 0% Po= ;Oa_}_rabeb . (Tap="sa) (2-14)
By (2.3) and [(2.14) we get
dF* = d0° = 3 10" A G+ l5w A 6"

+mN Gy —140%) N 0U+(pa—rabab) Nw.
By comparing the terms w A@°=w A 0° we get by (2.5)

§ = l%_i—rab .
So if we take 7, such that r,,= ——é—(l%+l¢’i), we get

=gy =12

Thus corresponding to any frame 6¢, p, we can take *=6% 5, uniquely so

as to and
lg=—pp (2.15)

hold good. We call an adapted coframe satisfying these conditions an adapted

orthogonal coframe. Then we can prove
THEOREM 3. The frame transformation between adapted orthogonal co-

frames w, 0% p, and o, 6%, B, s given by

6°=s0",  Pu=S5§ps, (2.16)
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where (s§) is an orthogonal matrix.
Proor. First we verify that ¢ p, given by (2.16) is an adapted ortho-
gonal coframe with » when 6% p, is so. We have

dB% = dsg N 6°+s3d0® = dsgsg N G°+s3(-++ 1w A s8G8+ -+).
The coefficient of w A 6° on the right side is skew symmetric with respect
to a, ¢ because dsgs;, s¢lts¢ are so. Thus 6% p, is an adapted orthogonal
coframe. As p, is uniquely determined by 6*, .-+, 6®! in an adapted orthogonal

coframe, our theorem is proved.
With respect to adapted orthogonal coframes

C=pep. (2.17)

is a quadratic differential form on N in addition to A= §%0* and B= w?+0°0°.
Next we prove the following fundamental theorem.
THEOREM 4. With respect to adapted orthogonal coframes the structure
equations can be uniquely represented in the following way.

dw=0°N p, (2.18)
0% = 0° A 25+ py A 2+ pa A @ (2.19)
dpa="0" N vo+ps N g—w30° N 0+D,,, (2.20)

where wg, are functions, 2§, p*, v, are l-forms and @, are 2-forms in
61, ..., 0™, each satisfying the following conditions

Wap=Wpq,  A=—4
p?=p"*=0 (mod?@*, -, 6"
Vapb = Ypa = O (mod 101, Tty pn—l) .

Proor. We consider (2.3) (2.4) with h,,=0d,, and [g=—[2. We put

8= 7»;7(135,‘6—}— kga+kga)00—zgw+%(u2°+u2“+u3“)pc

o0 = (et s g
) 2.21)
Vab — *2‘(kg’c+ kga+y(czb+yga)pc
Gy= L2000 NO°
a— ’72"Zabc A

Then all the relations in are satisfied. Uniqueness follows as is

shown in the next. When 'f%fk,‘}cﬁ”/\ﬁc is given, I'g satisfying the relations
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»%kgcﬁ” ANO =0 N6,  [o=—1I",

are uniquely given by gc:—é—(k%c-l—kia—l—kza) and similarly for %u,”fp,,/\pc.

Thus A2 and hence wg, #%°, va,, @, are uniquely determined.
Next we examine how wg,, 4§, #®, va, @, are transformed by the frame
transformation [2.16). We have

dB% = dsg N 6°+s3d0° = dsg A 0P+ A\ R+p, A 2+ py A )
dp,=dsg N\ pp+s§dpy,=dsg N pp+5H0° A vep~+pe N\ B—w4p0° A w+D) .

We put §°= st and o, =sip. into these and by the comparison with (2.5)
we get

Af = sgshAi—dsgst, A% =sishu®,  Dap= SESWee,
- (2.22)
Wap=52We,, Do=58D,.

Hence wg,, 1, v @, are tensorial forms with respect to adapted orthogonal
coframes, while 12 are connection-like.
Here we resume the fundamental properties of adapted orthogonal co-
frames w, 0% p, on the p-manifold N of M.
(i) For a curve (x, p) in N induced by a curve x=x(¢) in M we have
0?=0. When x=x(t) is an extremal, we have §*=0 and p,=0.
(i) A=0%" B=w?+0%" C=p,.p, are quadratic forms on N.
(ili) The structure equations are given by [2.18) [2.19) [(2.20)
(iv) Transformations of wg, A%, ¢, v, @, induced by the transforma-
tion of adapted orthogonal coframes are given by (2.22).

3. Connections

We consider connections on the p-manifold N of the Finsler spaces.
Firstly we summerise fundamental concepts of an affine connection on an n-
dimensional differentiable manifold. An affine connection is given by a
matrix I'=(w{) of 1-forms w! (on the i-th row and on the j-th column) with
respect to fundamental coframe == (w?!, ---, »®). Torsion forms r={(z!, ---, ")
and curvature forms 2 =(£/) are given respectively by
t=dr—n AI', namely 7'=dw'—o’ Ao},
Q=dl'-I'"ANI', namely 2{=do! —of Ao}

and the relations
de+t A=z N8R, dQ+QANT—T'NQ2=0 (CR))

hold good. A covariant differential of a contravariant vector v=(?", ---, v"®)
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is given by Dv=dv+vl’. A covariant tensor field A=(a;,) is parallel with
respect to our connection when and only when

dA—AT'-T'A=0. (3.2)

We take on the p-manifold N of the n-dimensional Finsler space M
adapted orthogonal coframes w, 0%, p,. We put

T=(w, 0%, -, 0", py, -+, Pu-y) 3.3
A=@Q% (a,b=1, ---, n—1). 3.4)
By virtue of (2.22) we can define a connection on N by
0 0 0
I'=10 4 0 (3.5
0 0 4

with respect to adapted orthogonal coframes. We denote torsion forms by
c=(=dr—a ANI. (»=0,1, -, 2n—2)
Then we get by virtue of [2.18) [2.19) [(2.20)

'=dw=0"N\p,

T =dO*—0° NAF = p, A\ "+ ps A @
T =dp,— s AN A= 0° A vp—Wa0° A0+, .
As for curvature forms dI'—I' AI' we have essentially
Uy=dAd—ANA. (3.6)
We take up the tensors on N corresponding to the forms
w, A=0°" C=pup., do=0°Ap,.

These tensors have components

1 0 0 0 0 0 0 0 0 0
0, 0 E,, 0], 0o 0 0 |, 0 0 E_ |, &n
0 0 0 0 0 0 E,, 0 —E,, 0

where E,_, is a unit matrix of degree n—1.

We can easily verify the following result by

THEOREM 5. For an affine connection (3.5) the tensors given by (3.7) are
parallel.

Next we define a second connection by
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0 - 0
I''=ip 4 0}, (3.8)
o o0 A

where ‘p=(p,, =+, pp-1)- This is well defined by virtue of (2.22) and [(2.16).
The torsion components of the connection are

'=dw—0°N p,=0
T =d0*—0° N2t —o A (—pg)= pp N\ 1** (3.9)
Tl =dp,— 0y AN A =0° A vy,—We0° N o+0,.
When we denote curvature forms by

Q,=dl''—I' NIy,

we get
0 —d'o+'ond 0
Q,=\dp—ANp v 0],
0 0 v,
where
U=V 4+pANp=dAd—ANA+pN'p. (3.10)

We can easily verify
THEOREM 6. For an affine connection (3.8) tensors given by

0 O 0 0 0 0
E, 0
0 0 0o |, 0 0 E,...
0 0
0 0 E,. 0 —E,.. 0
are all parallel.
4. Riemannian space
In the case of Riemannian spaces
1 o0%F?
— 2 afo — _~ Tt byt
B=w?+6% 2 ayiay dx*dx
is represented by x!, ---, x" exclusively and does not contain auxiliary vari-
ables, which we denote here as u, ---,u,_,., When we take vector fields

X=¢%x) 0/0x", Y =14(u) 0/0u,, we have [X, Y]=0 and hence by virtue of
(2.18) we have

XY N =Y (@(X)=0%X)pY)—0(Y )pu(X).



Theory of Finsler spaces 129

As o(Y)=0, 6«Y)=0 in this case, we get
Y(o(X) = —pY)I4X).

Similarly we get by

Y(0(X) = —28(Y)0"( X )+ oY )P (X)+ po(V)o(X) .
Hence

Y(w(X)* 04 X)0%( X))

= 2(X)Y (@(XN+-0UX)Y (0UX))) = 20,(Y IO X)p**(X) . 41
A condition for our Finsler space to be Riemannian is that (4.1) vanishes for
every X and Y. The condition reduces to M%+M¥»=0 when we put p’®
=M%»6°. As we have M2 = M? moreover, we get M2 =0. Thus we get

THEOREM 7. A necessary and sufficient condition for a Finsler space to be
Riemannian is
p®=0 (4.2
for its p-manifold.
In this case the connection on N given by induces the Riemannian

connection
0 _t
I, = ( p) “4.3)
0 A

on M, which can be verified by and Af = —4%. The curvature forms of
our Riemannian space M are given by

0 —{dp—A N p)
Q,=dl'\~I,AT,= (
do—ANp v
with respect to orthogonal coframes w, 0, ---, "1. When we put

do—ANp=(2%), U=y,

2% and 2% are differential forms which are linear combinations of w A 6°
and 0% A 0° by the property of curvature forms. On the other hand we have

by
2 =dp,— N py=dpa—ps \ 28 =0 A vpy—wa0° A w+®, . 4.4

Hence we have v,, =0 on account of (2.21). Thus we get
THEOREM 8. For Riemannian spaces we have necessarily

l)ab:o

By (4.4) we have then

D= —waf Aot 0y @o= 5 2ac’ AO).
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Hence for the Riemannian space with constant curvature K we have

Wap = K04, (K const.), 0,=0. (4.5)

We assume that these are satisfied. Then we have

2°0=—K*Nw.
On the other hand we have by Bianchi’s identity dQs— 2 NQ23+2° A p,=0.
Here

A —DAD = —Kd@°* ANo)+ KA’ Aw
= —K(d0*—° N2 Ao+ KO0* Ndw = —Kp, ANo Aw+KO* NG° N\ p,, .
Hence
Oy N(QL+KO0* N6")=0.

As (2% does not contain p, we get

20 =—KO* NG,
Thus we have got

THEOREM 9. A necessary and sufficient condition for a Riemannian space
to be of constant curvature K is (4.5).

Any unit tangent vector on a Riemannian manifold has components
v=>"%0, -, " )=(,0,--,0) with respect to a suitably chosen coframe
w, 0%, ---, 8", and on account of the covariant derivative Dv=dv+vl,
is given by

Dy =0, D= —p,.
Hence the third form C is in this case

C = pops=DV*DV"*. (k=0,1, «--,n—1 (4.6)

This metric is of constant curvature 1, if we restrict to a fixed fiber of
*‘T(M) for a fixed point x on M.

As an analogy to the Riemannian space we take up a Finsler space on
which a volume element can be given by

g=wNO* N\ - NO**. “.7
This form contains auxiliary variables u,, ---, u,_, in general. If they do not
appear, a volume element can be defined. We put
puP=M®»0°. and Mg=M".

Then we have do=—M%, Aw AO* N\ --- NO™ by 2.19). Hence
THEOREM 10. A necessary and sufficient condition for a Finsler space to
have a volume element defined by (4.7) is the vanishing of (M®).
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5. Dilatation

A dilatation in the Euclidean space is to translate each plane element to
the direction orthogonal to it by a constant length, and it is proved that the
dilatation is a contact homogeneous transformation. The geodesic flow in
the Riemannian space is a generalization of the dilatation in the Euclidean
space. We can define the dilatation in the Finsler space as the translation
along an e-curve of a point (x, p) in the p-manifold N of M, which we proved
to be a contact homogeneous transformation in [3] This means that the
fundamental form w = p;dx' is preserved by the dilatation. As a result we
showed in that a volume element in N is invariant under a dilatation,
and in the special case of Riemannian space of constant curvature even a
certain Riemannian metric is invariant. Here we will prove a generalization
of the latter theorem.

THEOREM 11. When the tensor (wg,) satisfies the relation

Wep = K0g, (K const),

the Riemannian metric KB+C on N is invariant under any dilatation.

Proor. We take a dilatation ¢,, where s means an arc-length along an
extremal which is a projection of an ¢-curve. We consider the product space
N x|, where [ is a segment 0 <s=s,. We define a mapping ¢:N X [—N by
(x, p, )—ox, p). We denote the forms o¢*w, ¢*0% ¢*p, conventionally by
o, 0% p,. We take a vector fleld S=0/0s and a vector fleld X which is inde-
pendent with s. As ¢J(x, p) describes an e-curve for fixed x, p, we have

oS)=1, 04S)=0, p5)=0.
As [S, X]=0, we get by
S(@(X)—X(@(S)) = 0%S)pu(X)—0%X)pu(S)

and hence
S(w(X))=0.

Similarly by and
SO4X) = —25(SH0(X)—po(X)
S X)) = ~ po X)A3(S)+wae°(X) -
By these relations we get
SK(o(X )+ 0% X)0U X))+ 0l X)pa(XD)
= 2{K(o(X)S(@(X)+0*(X)SOUX M+ pa(X)S(0a(X N}
=2{—K0*(X)pa(X)+wapX)O(X)} .
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This vanishes by the assumption w,,= Kd,,, Hence K(w(X)*+0%(X)0*(X))
+0.(X)p.(X) does not contain s.

In the case of Riemannian space of constant curvature K the metric
KB+C is Kds*+DvkDv* by virtue of [(4.6), where ds? is the Riemannian metric
of the space.

6. Minkowskian space

A Minkowskian space is a one for which F(x, y) does not contain x when

the coordinates x=(x!, ---, x™) are suitably chosen. In these coordinates the
p-manifold N can be represented as G(p»)=0, and hence
pn - _—'H(ply Tty pn—l) (61)

when Gp, #0. Conversely, when holds good, we can represent p, by ¥*
by solving with respect to p, and so F(x, y) does not contain x?, -, x"
by virtue of [1.22). Thus the space in Minkowskian.

Here we will seek for the tensorial condition for a Finsler space M to
be Minkowskian. We assume and take a local coframe Then we
get

W= padx*—Hdx", 0% =dx*—Hp,dx" 0o=—dp, - (6.2)
Hence by (1.17)
d@® = h* o, A\ (w—p.0° , dp,=0, 6.3)
where
h* = —(H—pHp,) *Hp,p, . 6.4)

w, 0% p, is not an adapted orthogonal coframe in general and we can
transform it by

0°=s§0",  po=thp,  (s§ti=0%) ®.5)
into orthogonal 8%, p, as follows. We have
df® = dsg N\ 0°+s§d6” = dsgtt A 0+ sghsgp, N (@ —p.t50°) .
As h* do not contain x%,---, x", we get sgh*s¢= 0" for suitably chosen sg
which are functions of p,, ---, p.—;. Thus we get
d0% = dsgtt NG+ Nw—Duti0),  dp,=diis; AP (6.6)
Here dt’s; does not contain x!, ---, x” and is a linear combination of g,, -+, Pp—1.

We denote 6% p, by 6% p, anew. Hence we get by the comparison of (6.6)
with (2.3) (2.4)

kg, =0, I5=0, Wep=0. ¥ =0, Zape=0.
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Thus we get by

Wap=0, v, =0, ?,=0, 6.7
and (6.6) can be written as
d®*=0" N2§+ps AN "+ po AN, dpo=ps N\ 2§ . 6.8)
As w and 0¢ are linear combinations of dx?, ---, dx" with coefficients which
are functions of p,, ---, p,—;, there exists a matrix P=(p}) such that
(w, O, -+, * ) P=(dx*, ---, dx™), 6.9
where p¢ are functions of p,, -, p,-;. We take an exterior differential of
and get
(dw, d6*, -, d0" HYP—(w, 64, --- , 0" YA dP=0. (6.10)
Hence

(dw, d6*, ---, d0" ) =(w, 0, -, O Y N(dPP™?).

We write this briefly as

(dw, d0)=(w, ) NI', where ['=dPP-'. 6.11)
When we put
#ab — Mg,bﬁc
and
oy =M3i*p,.,
we have

dO“=0" N 25+, AMPO +p, Ao =—o A pg+0° N (A§—M§p,)
=—w A p,+0° N (A§—0F).
By comparing this with we get

0 —'p
I'= ( ) , (6.12)
o A-2X
where we have put
A:(Z(bz)r 2:(02)’ tP:(Pp "'r[on—l)'
Since dPP*=1", we get
dI'—-I'A\NT' =0. (6.13)

Namely

0 —d'p+p' AN(A—-2) )
do—(A=Z)YNp  dA—Z)—~(UA—-ZYNA—=Z)+p A'p

The components of dp—(A—2) A p vanish by [6.8) and M¥=M%. As to the
components of —dfp+fp A(A—2)

_dpa+pb AN ('zg_'Mgapc) = _Mgapb A Pc
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and their vanishing means
Mg =M. (6.14)
Next we put
dY—ANY-INA+IZNE =T.

Then we get by the vanishing of d(A—23X)—(A—)YA(A—=2)+p A'p

=T, (6.15)
where ¥ is given by [(3.10)
As [6.7) [(6.14) [(6.15) are tensorial relations with respect to adapted ortho-
gonal coframes we get the following.
THEOREM 12. In the Minkowskian space we have the following relations
with respect to adapted orthogonal coframes.

wab:O, Dab:—:o, @a:O, Mza:M(b_a, W:T.

The converse is also true.

We will give the proof of the converse. From the first three conditions
we get

dpa=ps N\ 4%,
and as 1§ =—21% we see that p,p, can be represented by suitably chosen
variables u,, ---, #,-,. We can also find 7, =s¢p, such that (s§) is an ortho-
gonal matrix and p, are 1l-forms in u,, -+, #,—;. Then there exist uniquely
such g that
da=0y N2,  2§=—15.

We take #°=sg6®. Then 6% 7, is a new adapted orthogonal coframe and
holds good for this coframe. Then holds good by the last two
conditions in the Hence there exists P such that dPP—'=T,
where I’ is given by corresponding to the new frame. As 1% &¢ are
1-forms which are linear combination of g, ---, 7,—,, each component of the
matrix P can be taken as a function of u,, ---, u,.,. Hence we have
and there exist such x!, ---, x® that holds good. Hence w=p,;dx*, where
p:; are functions of u,, ---, u,_;, and our space is Minkowskian.

Mathematical Institute
Nagoya University

References

[1] C. Caratheodory, Geometrishe Optik, Verlag von Julius Springer, Berlin, 1937.
[2] E. Cartan, Legons sur les invariants intégraux, Hermann & Fils, Paris, 1922,
[3] M. Kurita, On the dilatation in Finsler spaces, Osaka Math. J., 15 (1963), 87-97.
{47 H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, 1959.



	Theory of Finsler spaces ...
	1. Contact structure on ...
	THEOREM 1. ...

	2. Adapted orthogonal ...
	THEOREM 2. ...
	THEOREM 3. ...
	THEOREM 4. ...

	3. Connections
	THEOREM 5. ...
	THEOREM 6. ...

	4. Riemannian space
	THEOREM 7. ...
	THEOREM 8. ...
	THEOREM 9. ...
	THEOREM 10. ...

	5. Dilatation
	THEOREM 11. ...

	6. Minkowskian space
	THEOREM 12. ...

	References


