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\S 0. Introduction.

In their suggestive paper [3], Gleason and Palais studied some funda-
mental properties of homeomorphism group $H(M)$ of a manifold $M$ and then
proposed a problem: Does the closure of a homomorphic image of any con-
nected Lie group in $H(M)$ necessarily become a Lie group ? The topology for
$H(M)$ is of course the compact open topology, which is known to give an
important example of non locally compact group. This problem, however,
seems to be still far from the final answer.

Another open problem related to this is the one, raised by Montgomery
and Zippin [6], that states: Does a locally compact subgroup of $H(M)$ neces-
sarily become a Lie group $\rho$

Being suggested by these two problems, we are led to consider the follow-
ing similar to but weaker than that of Gleason-Palais’ :

(1) Is the closure of homomorphic image of any connected Lie group in
$H(M)$ necessarily locally compact ?

Our main concern in this paper is to investigate this problem from several
points of view and solve it in the case of one dimensional manifolds.

First we are interested in knowing to what extent the problem (1) reflects
the characteristic properties of the homeomorphism group $H(M)$ instead of
general topological groups, which primarily implies the following:

(2) Are there a topological group $H$ and a connected Lie group $G$ such
that the closure of a homomorphic image of $G$ in $H$ is not locally compact ?

An answer to this problem is seen in [7], namely we have shown the
existence of such a topological group by giving an extraordinary topology to
a real line.

Now the problem (1) naturally has two versions: (a) one is to characterize
the class $\mathfrak{A}$ of Lie groups whose monomorphic images in $H(M)$ have locally
compact closures, and (b) the other is to characterize the class $\mathfrak{B}$ of topological
groups in which any homomorphic images of any connected Lie groups have
the locally compact closures.

*He would like to acknowledge the financial support given by Sakko-kai Foundation.
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In \S 1, the problem (a) will be mainly treated. First, we see easily, a Lie
group $G$ belongs to the class $\mathfrak{A}$ whenever it enjoys the property that any
monomorphism $f$ of $G$ into any topological group is necessarily an open map
of $G$ onto $f(G)$ . This property is refered to as absolute closedness of a Lie
group $G$ in this paper. Obviously any compact Lie group falls under this
category. In this section, the fundamental properties of absolute closedness
of Lie groups will be studied. Though a necessary and sufficient condition
for a Lie group to be absolutely closed is not known yet, it will be proved
that Lie groups of a certain type that is called $(CA)-$ groups with finite center
are absolutely closed (Theorem 1.1). This is a generalization of a theorem of
Est [2]. As a corollary of the above result, we see that any connected semi-
simple Lie group with finite center and solvable Lie groups of some special
types are absolutely closed.

In \S 2, the problem (b) will be treated mainly. Though the problem (1)

is still open in general case, the following reduction is possible: a topological
group with the first countability axiom comes within the class $\mathfrak{B}$ if and only if
any homomorphic images of any vector groups (instead of any connected Lie
groups in the original form) have the locally compact closures (Theorem 2.1).
This will be proved by induction on the length of the series of derived groups
of a solvable group. As a starting point of the proof the Lie groups, which
have already been proved to be absolutely closed, will play an important role.

In \S 3, it will be shown that the homeomorphism groups of one dimen-
sional manifolds belong to the class $\mathfrak{B}$ , which amounts to the same that the
problem (1) is affirmatively solved in the case of one-dimensional manifolds.
Since the conjecture of Montgomery and Zippin is affirmative in this case [6],

it turns out that the original conjecture of Gleason and Palais is also affirma-
tive.

The author wishes to express his sincere thanks to Professors Morio Obata
.and K\^oji Shiga for their kind advice.

\S 1. Absolute closedness.

Let $(G, \mathfrak{T}_{0})$ be a connected Lie group, where $G$ is the underlying group
and $\mathfrak{T}_{0}$ be the topology for $G$ . For a fixed underlying group $G$ , by $T(G, \mathfrak{T}_{0})$

is meant the pairs of the abstract group $G$ and the topologies $\mathfrak{T}$ for $G$ such
that (1) $\mathfrak{T}$ is weaker than $\mathfrak{T}_{0}(2)(G, \mathfrak{T})$ is a topological group with Hausdorff’s
seperation axiom and the first countability axiom.

A basis of neighborhoods of the identity $e$ in $(G, \mathfrak{T})\in T(G, \mathfrak{T}_{0})$ is identified
with a family $\mathfrak{F}$ of open subsets in $(G,\underline{7})$ satisfying:

(a) $\cap\{V ; V\in \mathfrak{F}\}=\{e\}$ ,
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(b) if $U,$ $V\in \mathfrak{F}$ , there exists $W\in \mathfrak{F}$ such that $W\subset U_{\cap}V$ ,
(c) for any $U\in \mathfrak{F}$ , there exists $V\in \mathfrak{F}$ such that $VV^{-1}\subset U$,

(d) for any $U\in \mathfrak{F}$ and for any element $a\in U$, there exists $V\in \mathfrak{F}$ such
that $U\supset Va$ ,

(e) for any $U\in \mathfrak{F}$ and for any element $a\in G$ , there exists $V\in \mathfrak{F}$ such
that $a^{-1}$ $Va\subset U$.

Since $(G, \mathfrak{T})$ satisfies the first countability axom, we can find a base $\mathfrak{F}$ of
neighborhoods of the identity $e$ in $(G,\underline{\tau})$ such that $\mathfrak{F}$ consists of countably
many elements.

Conversely, if $\mathfrak{F}$ is a family of countably many open subsets of $(G, \mathfrak{T}_{0})$

satisfying $(a)\sim(e)$ then $\mathfrak{F}$ determines uniquely a topology $\mathfrak{T}$ for $G$ such that
$(G, \mathfrak{T})\in T(G, \mathfrak{T}_{0})$ .

Denote by $\rho$ a left invariant metric on $(G, \mathfrak{T}_{0})$ such that $(G, \mathfrak{T}_{0})$ is complete
with respect to this metric. Then, putting

$D(r)=\{x;\rho(x, e)\leqq r, 0\leqq r<\infty\}$ ,

$D(r)$ is a compact subset of $(G, \mathfrak{T}_{0})$ .
LEMMA 1.1. Notations being as above, if $(G, \mathfrak{T})\neq(G, \mathfrak{T}_{0})$ and $(G, \mathfrak{T})\in T(G$ ,

$\mathfrak{T}_{0})$ , then $ V\cap(G-D(r))\neq\emptyset$ for any $V\in \mathfrak{F}$ and for any $r\geqq 0$ .
PROOF. Since $(G, \mathfrak{T})\neq(G, \mathfrak{T}_{0}),$ $(G, \mathfrak{T}_{0})$ is not a compact group.
If there exist $V\in \mathfrak{F}$ and $r$ such that $V\subset D(r)$ , then $Cl_{0}(V)$ is compact,

where $Cl_{0}(A)$ is the closure of $A$ in $(G, \mathfrak{T}_{0})$ . Since the identity mapping from
$(G, \mathfrak{T}_{0})$ onto $(G, \mathfrak{T})$ is continuous, $Cl_{0}(V)$ is closed in $(G, \mathfrak{T})$ . It follows that
$Cl(V)$ is compact, where $Cl(A)$ is the closure of $A$ in $(G, \mathfrak{T})$ . Thus, $(G, \mathfrak{T})$ is
locally compact. Since a connected Lie group satisfies the second countability
axiom, the identity mapping from $(G, \mathfrak{T}_{0})$ onto $(G, \mathfrak{T})$ is bi-continuous and then
$(G, \mathfrak{T})=(G, \mathfrak{T}_{0})$ contradicting the assumption.

LEMMA 1.2. Notations and assumptions being as above, for any $\epsilon>0$ , there
exists $V\in \mathfrak{F}$ such that the diameter of any connected component of $V$ is smaller
than $\epsilon$ .

PROOF. Since $(G, \mathfrak{T})$ is a regular space and satisfies the first countability
axiom, there is a family $\mathfrak{F}$

‘ of open subsets of $(G, \mathfrak{T}_{0})$ such that (1) $\mathfrak{F}^{\prime}$ is
cofinal to $\mathfrak{F}(2)\mathfrak{F}^{\prime}=$ { $V_{i}$ ; $i\in I$ (the integers)}, (3) $V_{i}=V_{i}^{-1}$ and $Cl_{0}(V_{i}^{2})\subset V_{i-1}$ .

Assume that there is $\epsilon>0$ such that any $V_{i}$ has a connected component
$V_{i}^{\prime}$ with the diameter not less than $\epsilon$ . Since $(G, \mathfrak{T}_{0})$ is locally arcwise connected,
$V_{i}^{\prime}$ can be assumed arcwise connected. Let $a,$

$b$ be points in $V_{i}^{\prime}$ with $\rho(a, b)\geqq\epsilon$

and $C$ be an arc joining $a$ and $b$ in $V_{i}^{\prime}$ . Since the metric $\rho$ is left invariant,

$\rho(a, b)=\rho(e, a^{-1}b)\geqq\epsilon$

and $a^{-1}C$ is an arc in $V_{i^{-1}}^{\prime}V_{i}^{\prime}$ joining $e$ and $a^{-1}b$ .
Thus, on putting
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$S(\epsilon)=\{x\in G;\rho(x, e)=\epsilon\}$ ,
we have

$ S(\epsilon)\cap Cl_{0}(V_{i-1})\supset S(\epsilon)\cap Cl_{0}(V_{i}^{2})\neq\phi$

for all $i$ . Since $S(\epsilon)$ is compact and

$\bigcap_{i}(Cl_{0}(V_{i-1})\cap S(\epsilon))\subset(\bigcap_{i}V_{:-2})\cap S(\epsilon)=\{e\}\cap S(\epsilon)=\phi$ ,

there is $i_{0}\in I$ such that $ Cl_{0}(V_{i_{0}})\cap S(\epsilon)=\phi$ , contradicting the fact that $S(\epsilon)$ is
compact.

A Lie group $(G, \mathfrak{T}_{0})$ is called to be absolutely closed, if $T(G, \mathfrak{T}_{0})$ consists
of only one element $(G, \mathfrak{T}_{0})$ . Obviously, compact Lie groups are absolutely
closed.

If $(G, \mathfrak{T}_{0})$ is absolutely closed, then Proposition 10 in [4] shows that $(G, \mathfrak{T}_{0})$

has the compact center.
A connected Lie group $(G, \mathfrak{T}_{0})$ is calied a $(CA)$-group, if the image of the

adjoint representation $Ad(G)$ of $G$ on the Lie algebra $\mathfrak{g}$ is a closed subgroup
of $GL(\mathfrak{g})$ . Since the kernel of the adjoint representation is the center $Z$,
absolute closedness of $G/Z$ implies that $(G, \mathfrak{T}_{0})$ is a $(CA)$-group.

THEOREM 1.1. A connected $(CA)$-group with the compact center is abso-
lutely closed.

PROOF. Let $\mathfrak{g}$ be the Lie algebra of $(G, \mathfrak{T}_{0})$ and $\Vert\Vert$ be an ordinary norm
on $\mathfrak{g}$ . On putting

$D(s)=\{X\in \mathfrak{g};\Vert X\Vert\leqq s\}$ ,

there is $r>0$ such that the mapping

$exp$ ; $D(2r)\rightarrow(G, \mathfrak{T}_{0})$

is a homeomorphism into. We fix such an $r$ and denote $D^{\prime}=\exp D(2r)$ .
A metric $d$ on $GL(\mathfrak{g})$ is defined by

$d(A, A^{\prime})=\sup\{\Vert(A-A^{\prime})X\Vert ; \Vert X\Vert\leqq r\}$ .
For any sufficiently small $\epsilon>0$ , the $\epsilon$ -neighborhood $V(I, \epsilon)$ of the identity

$I$ in $GL(g)$ has the compact closure. Since $Ad(G)$ is closed in $GL(\mathfrak{g}),$ $U=Ad(G)$
$\cap V(I, \epsilon)$ has the compact closure in $Ad(G)$ . By the assumption that the center
of $G$ is a compact subgroup of $(G, \mathfrak{T}_{0})$ , we see that the full inverse $Ad^{-1}(U)$

has the compact closure in $(G, \mathfrak{T}_{0})$ . Denote $K=Cl_{0}(Ad^{-1}(U))$ .
Since $D$ ‘ is compact, the mapping

$\exp^{-1}$ ; $D^{\prime}\rightarrow D(2r)$

is uniformly continuous. Thus, for the above $\epsilon$ , there is $\delta_{1}>0$ such that (i)
the $\delta_{1}$ -neighborhood of $\exp D(r)$ is contained in $D^{\gamma}$ (ii) for $X,$ $Y\in D(X)$ if
$\rho(\exp X, \exp Y)<\delta_{1}$ , then $\Vert X-Y\Vert<\epsilon$ , where $\rho$ is a left invariant metric with
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respect to which $(G, \mathfrak{T}_{0})$ is complete.
Since $D^{\prime}$ is compact, for the above $\delta_{1}$ , there is $\delta_{2}$ such that

$kV(\delta_{2})k^{-1}\subset V(\delta_{1})$ for all $k\in D^{\prime}$

where $V(\delta)$ denotes the $\delta$ -neighborhood of the identity $e$ in $(G, \mathfrak{T}_{0})$ .
Now assume that $(G, \mathfrak{T}_{0})$ is not absolutely closed and there is $(G, \mathfrak{T})$

$\in T(G, \mathfrak{T}_{0})$ such that $(G, \mathfrak{T})\neq(G, \mathfrak{T}_{0})$ . Let $\mathfrak{F}$ be a family of open subsets of
$(G, \mathfrak{T}_{0})$ satisfying $(a)\sim(e)$ , which is identified with a base of the neighborhoods
of $e$ in $(G, \mathfrak{T})$ . By Lemma 1.2, for the above $\delta_{2}$ , there is $U\in \mathfrak{F}$ such that the
diameter of any connected component of $U$ is smaller than $\delta_{2}$ . Since $D^{\prime}$ is
also compact in $(G,\underline{\tau})$ , there is $W\in \mathfrak{F}$ such that $kWk^{-1}\subset U$ for all $k\in D^{\prime}$ .
By Lemma 1.1, there is $g\in G$ such that $g,$ $g^{-1}\in W\cap(G-K)$ . We fix such an
element $g$.

Since $D^{\prime}$ is connected, $\{kg^{-1}k^{-1} ; k\in D^{\prime}\}$ is contained in the connected
component of $U$ containing $g^{-1}$ . Since any connected component of $U$ has the
diameter smaller than $\delta_{2}$ , we see

$\{kg^{-1}k^{-1} ; k\in D^{\prime}\}\subset g^{-1}V(\delta_{2})$ .
It follows that

$gkg^{-1}\in V(\delta_{2})k\subset kV(\delta_{1})$ , $k\in D^{\prime}$ .
Put $k=\exp X$, and we have

$\rho(\exp(-X)\exp Ad(g)X, e)<\delta_{1}$ .
Since the metric $\rho$ is left invariant,

$\rho(\exp Ad(g), \exp X)<\delta_{1}$ , $X\in D(2r)$ .
By our choice of $\delta_{1}$ , we see $\exp Ad(g)X\in D^{\prime}$ for $X\in D(r)$ . It follows that for
any $X\in D(r)$

$\rho(\exp Ad(g)X, \exp X)<\delta_{1}$ .
Then, $\Vert Ad(g)X-X\Vert<\epsilon$ for all $X\in D(r)$ and then $ d(Ad(g), I)<\epsilon$ . It follows
$g\in K$, contradicting the fact that $g\in G-K$.

COROLLARY 1.1. Connected semi-simple Lie group with finite center is
absolutely closed.

COROLLARY 1.2. Let $(G, \mathfrak{T}_{0})$ be a connected semi-simple Lie group with the
finite center and $\varphi$ a continuous homomorphism from $(G, \mathfrak{T}_{0})$ into a topological
group $\mathfrak{G}$ with the first countability axiom. Then, $\varphi(G)$ is locally compact with
respect to the relative topology for $\varphi(G)$ in $\mathfrak{G}$ .

PROOF. For convenience we denote $G$ instead of $(G, \mathfrak{T}_{0})$ . Let $\hat{G}$ be the
simply connected covering group of $G$ and $\pi$ be the natural projection from
$\hat{G}$ onto $G$ . The kernel $Z^{\prime}$ of $\pi$ is a subgroup of the center $Z$ of $\hat{G}$ . Since the
center of $G$ is finite, so also is $Z/Z^{\prime}$ . As is well-known, the kernel $N$ of $\varphi$ is
a closed normal subgroup of $G$ and so is $\hat{N}=\pi^{-1}(N)$ in $\hat{G}$ and then $G/N\cong\hat{G}/\hat{N}$.
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Clearly, $G/N$ is a connected semi-simple Lie group. Since the center of $\hat{G}/\hat{N}$

is $Z\hat{N}/\hat{N}\cong Z/Z\cap\hat{N}$ and $\hat{N}\supset Z^{\prime},$ $Z/Z_{\cap}\hat{N}$ is a homomorphic image of the finite
group $Z/Z^{\prime}$ . It follows that $G/N$ is a connected semi-simple Lie group with
finite center.

Let $\pi^{\prime}$ be the natural projection $G\rightarrow G/N$. Defining $\hat{\varphi}=\varphi\pi^{-1}$ , we see that
$\hat{\varphi}$ is a monomorphism from $G/N$ onto $\varphi(G)$ . Since $G/N$ is absolutely closed,
$\hat{\varphi}$ is an open mapping, where the topology for $\varphi(G)$ is of course the relative
topology. Thus, $\varphi(G)$ is locally compact and then a closed subgroup of $\mathfrak{G}$ .

For convenience, we denote $G$ instead of $(G, \mathfrak{T}_{0})$ . Let $G$ be a connected
solvable Lie group such that (i) the derived group $V$ of $G$ is a vector group
and (ii) there is a closed subgroup $H$ of $G$ such that $G=HV$ and $H_{\cap}V=\{e\}$ .
Since $V$ is a normal subgroup of $G$ , for any element $h$ of $H$

$A(h)$ ; $v\rightarrow hvh^{-1}$

is a linear transformation of $V$ .
THEOREM 1.2. Denote by $R$ and $S_{1}$ the real numbers and the real numbers

modulo 1 respectively. The following connected solvable Lie groups are abso-
lutely closed.

(a) $H=R,$ $V=R$ and $A(t)t^{\prime}=e^{at}t^{\prime},$ $a\neq 0$ . $t\in H,$ $t^{\prime}\in V$ .
(b) $H=S_{1},$ $V=R^{2}$ and

$A(t)=\left(\begin{array}{ll}cos2\pi mt, & -sin2\pi mt\\sin2\pi mt, & cos2\pi mf\end{array}\right)$ , $m=integer\neq 0$ .

(c) $H=R,$ $V=R^{2}$ and

$A(t)=\left(\begin{array}{ll}e^{at}cos2\pi bt, & -e^{at}sin2\pi bt\\e^{at}sin2\pi bt, & e^{at}cos2\pi bt\end{array}\right)$ ,

where $a,$
$b$ be real numbers with $ab\neq 0$ .

(d) $H=R\times S_{1},$ $V=R^{2}$ and

$A(t, t^{\prime})=(_{e\sin 2\pi mt^{\prime}’}^{e_{at}^{at}\cos 2\pi mt},$ $-e_{at}\sin_{-}2\pi mt^{\prime},e^{at}\cos^{-}2\pi mt)$ , $am\neq 0$ ,

where $a,$ $m$ be a real number, an integer respectively.
PROOF. Let $\mathfrak{h},$

$\mathfrak{v}$ be Lie algebras of $H,$ $V$ respectively. With respect to
suitable bases $\{H_{i}\},$ $\{V_{i}\}$ of $\mathfrak{h},$ $\mathfrak{v}$ respectively, $[H_{i}V_{i}]$ take the following
forms:

(a) $[HV]=aV$ .
(b) $[HV_{1}]=-2\pi mV_{2},$ $[HV_{2}]=2\pi mV_{1}$ .
(c) $[HV_{1}]=aV_{1}-2\pi bV_{2},$ $[HV_{2}]=aV_{2}-2\pi bV_{1}$ .
(d) $[H_{1}V_{1}]=aV_{1},$ $[H_{1}V_{2}]=aV_{2},$ $[H_{2}V_{1}]=-2\pi mV_{2},$ $[H_{2}V_{2}]=2\pi mV_{1}$ .
By the fact $Ad(\exp X)=\exp adX$, we see easily that the adjoint groups

$Ad(G)$ are given as follows:
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(a) $\left(\begin{array}{ll}1, & 0\\* & A(H)\end{array}\right)$

(b), (c) $\left(\begin{array}{ll}1, & 0, 0\\** & A(G)\end{array}\right)$

where $*is$ an arbitrary real number.
As for the case (d), the following group $(d^{\prime})$ is the universal covering of

the group (d):
$(d^{\prime})$ $H=R^{2},$ $V=R^{2}$ and $A((t, t‘))$ is the same as in (d).

Since the adjoint group coincides in the cases of (d) and $(d^{\prime})$ , we consider
the case $(d^{\prime})$ .

Let $C$ be the complex number field. We can identify $H,$ $V$ with $C$ by the
mapping

$H\rightarrow C$ $V\rightarrow C$

$(t, t^{\prime})$ ’ , $(t, t^{\prime})\rightarrow t+\sqrt{-1}t^{\prime}$ .
Under this identification, the group $(d^{\gamma})$ turns out to be the group
$(d^{\prime/})$ $H=C,$ $V=C$ and $A(z)=e^{z}$ for $z\in H$

Thus the adjoint group $Ad(G)$ consists of the matrices of the form

$\left(\begin{array}{ll}1, & 0\\* & A(z)\end{array}\right)$ $*=an$ arbitrary complex number.

It follows that the ajoint groups in any cases are closed subgroup of $GL(g)$ .

Let $G$ , (SS be a connected Lie group, a topological group with the first
countability axiom and $f$ a continuous homomorphism from $G$ into G. A triple
$\{G, f, \mathfrak{G}\}$ is called a V-triple, if for any closed vector subgroup $V$ of G $Cl(f(V))$.
is a locally compact subgroup of G.

THEOREM 1.3. Let $G$ be one of the groups $(a)\sim(d)$ in Theorem 1.2. If
$\{G, f, \mathfrak{G}\}$ is a V-triple, then $f(G)$ has a locally compact closure.

PROOF. It is easy to see that $G$ has the finite center $Z$ and the group.
$G/Z$ is the same type as $G$ (i. e., if $G$ is the group of the type (b) in Theorem
1.2 for example, then so is $G/Z.$) In fact, we see that $Z\subset H$ and $G/Z=H^{\prime}V$ ,
$H^{\prime}\cap V=\{e\},$ $H^{\prime}\cong H/Z$. Thus, $G/Z$ is absolutely closed. Let $Z^{\prime}$ be a subgroup
of $Z$. By the same reason as above, we see that $G/Z^{\prime}$ is absolutely closed.

Assume first that the kernel $K$ of $f$ is discrete. Then, $K\subset Z$. Let $\pi$ be
the natural projection $G\rightarrow G/K$ and define the monomorphism $f;G/K\rightarrow \mathfrak{G}$ by
$\hat{f}=f\pi^{-1}$ . Since $G/K$ is absolutely closed, $\hat{f}(G/K)=f(G)$ is locally compact and
then closed in G.

Assume next that the kernel $K$ of $f$ is not discrete. Considering the
Lie algebra $\mathfrak{g}$ of $G$ case by case, we see that the connected component $K_{0}$ of
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$K$ containing $e$ also contains $V$ . It follows that $f(G)=f(H)$ . Since $H=R,$ $S_{1}$

or $R\times S_{1}$ and $\{G, f, \mathfrak{G}\}$ is a V-triple, $f(R)$ has the locally compact closure in
$\mathfrak{G}$ and then $f(H)$ has the locally compact closure, completing the proof.

Remark that if $H=S_{1}$ , we can prove this theorem without the assumption
that $\{G, f, \mathfrak{G}\}$ is a V-triple.

Now, Est [3] showed that connected nilpotent Lie groups (Lie groups
having nilpotent Lie algebras) are $(CA)$-groups. Thus, as a corollary of
Theorem 1.1 we have the following:

COROLLARY 1.3. Connected nilpotent Lie groups with compact center are
absolutely closed.

In the following part of this section we consider a nilpotent Lie group
whose derived group is contained in the center. This will be used in the
next section.

Let $G$ be a connected nilpotent Lie group and $G_{1}$ the derived group of $G$ .
LEMMA 1.3. If $G_{1}$ is contained in the center $Z$ of $G$ , then $Z$ is connected

and $G/Z$ is a vector group.
PROOF. Let $Z_{0}$ be the connected component of $Z$ containing $e$ . Assume

that there is an element $z\in Z-Z_{0}$ . There is a one parameter group $g_{t}$ such
that $g_{1}=z$ . In fact, denoting by $\pi^{\prime}$ the natural projection $G\rightarrow G/Z_{0},$ $\pi^{\prime}(z)$

$=\exp\hat{X}$, where $\hat{X}$ is an element of the Lie algebra of the abelian group $G/Z_{0}$ .
Let $\mathfrak{g}$ be the Lie algebra of $G$ . There is $X\in \mathfrak{g}$ such that $d\pi^{\prime}(X)=\hat{X}$. Thus,

we see that $z\in\exp X\cdot Z_{0}$ . It follows that $z=\exp X\exp Y$ for some $Y$ in the
Lie algebra of $Z_{0}$ . Since $[XY]=0$ , we have $z=\exp(X+Y)$ . Trerefore $G/Z$

contains a non-trivial circle subgroup. Since $G/Z$ is abelian, $G/Z=V\times T$ and
$T\neq\{0\}$ , where $V,$ $T$ are vector group, toroidal group respectively.

Define the mapping $G\times G\rightarrow G_{1}$ by $\varphi(g, h)=ghg^{-1}h^{-1}$ . We see that

$\varphi(gg^{\prime}, h)=gg^{\prime}hg^{\prime-1}g^{-1}h^{-1}=gg^{\prime}hg^{\prime-1}h^{-1}hg^{-1}h^{-1}$ .
Since $g^{\prime}hg^{\prime-1}h^{-1}$ is in the center, we have

$\varphi(gg^{\prime}, h)=\varphi(g, h)\cdot\varphi(g^{\prime}, h)$ .
By the same argument we see that $\varphi(g, hh^{\prime})=\varphi(g, h)\cdot\varphi(g, h^{\prime})$ .

Putting $\varphi_{g}(g^{\prime})=\varphi(g, g^{\prime}),$
$\varphi_{g}$ is a homomorphism from $G$ into $G_{1}$ , whose

kernel contains $Z$ . Thus, denoting by $\pi$ the natural projection from $G$ onto
$G/Z,\hat{\varphi}_{g}=\varphi_{g}\cdot\pi^{-1}$ is a homomorphism from $G/Z$ into $G_{1}$ . Let $G_{1}=V^{\prime}\times T^{\prime}$ ,

where $V^{\prime},$ $T^{\prime}$ are vector group, toroidal group respectively. Since $\hat{\varphi}_{g}(T)\subset T^{\prime}$ ,
the restriction $\hat{\varphi}_{g}|T$ is a homomorphism from $T$ into $T^{\prime}$ . Let $Hom(T, T^{\prime})$ be
the space of the homomorphisms from $T$ into $T^{J}$ with the compact open

$-r-$topology. Let $\tau/=Sf(=S_{1}\times S_{1}\times\cdots\times S_{1})$ . Then, we see easily that
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$Hom(T, T^{\prime})=H_{om(T,S_{1})\times Hom(T,S)\times\cdots\times Hom(T,S_{1})}^{\ovalbox{\tt\small REJECT}_{1}^{r}}$ .
$Since_{\Delta}^{-}Hom(T_{y}S_{1})$ is discrete, so also is $Hom(T, T^{\prime})$ .

Since $\hat{\varphi}_{e}|T=0$ and $G$ is connected, we have $\hat{\varphi}_{g}T=0$ for any $g\in G$ . This
means that for any element $g^{\prime}\in\pi^{-1}(T)$ we have $\varphi_{g}(g^{\prime})=0$ . It follows that
$\pi^{-1}(T)\subset Z$, contradicting the fact that $\pi^{-1}(T)/Z=T\neq\{0\}$ .

Thus, we also see that $G/Z=V$ .

Define the mapping $\hat{\varphi}$ : $G/Z\times G/Z\rightarrow G_{1}$ by $\hat{\varphi}=\varphi(\pi^{-1}, \pi^{-1})$ and let $G_{1}=V^{\prime}$

$\chi T^{\prime}$ . Since $\hat{\varphi}$ is homomorphism with respect to each variable, $\hat{\varphi}$ can be con-
sidered as a bi-linear mapping from $V\times V$ into $V^{\prime}\times T^{\prime}$ . By $(y_{1}$

$y_{q},$ $y_{q+1}$

... $y_{q+r}$) we mean a point of $V^{\prime}\times T^{\prime}$ , where $y_{i}\in R$ for $1\leqq i\leqq q$ and $y_{q+j}\in S_{1}$

for $1\leqq j\leqq r$ . The bi-linear mapping $\hat{\varphi}$ is then

$\hat{\varphi}=(\hat{\varphi}_{1},\hat{\varphi}_{2}, \cdots \hat{\varphi}_{q},\hat{\varphi}_{q+1}, \cdots\acute{\varphi}_{q+r})$

$\hat{\varphi}_{i}(x, x^{\prime})=\Sigma a_{k,s}^{i}x_{k}x_{s}^{\prime}$ for $1\leqq i\leqq q$

$\hat{\varphi}_{j}(x, x^{\prime})\equiv\Sigma a^{j_{k,s}}x_{k}x_{s}^{\prime}$ $mod 1$ for $1\leqq j\leqq r$ ,

where $x=$ $(x_{1}, \cdots , x_{n}),$ $x^{\prime}=(x_{1^{\prime}}, \cdots , x_{n}^{\prime})$ respectively.
Now, since we need, in the following part, to discuss the topologies for

$G$ , we denote $(G, \mathfrak{T}_{0})$ instead of $G$ . Let $(G, \mathfrak{T}_{0})$ be a Lie group such that the
derived group of $(G, \mathfrak{T}_{0})iscontainedinthecenterZofG$ . Let $(G, \mathfrak{T})\in T(G, \mathfrak{T}_{0})$ .
By $(Z, \mathfrak{T})$ we mean the subgroup $Z$ with the relative topology with respect
to $(G, \mathfrak{T})$ . For any $(G, \mathfrak{T})\in T(G, \mathfrak{T}_{0})$ we have that $(Z, \mathfrak{T})$ is a closed subroup
of $(G, \mathfrak{T})$ because $Z$ is the center of $G$ . Thus, $(G,\underline{\tau})/(Z, \mathfrak{T})$ is a topological
group. For convenience we use the notation $(G/Z, \mathfrak{T})$ for $(G,\underline{(\tau})/(Z, \mathfrak{T})$ .

LEMMA 1.4. Notations and assumptions being as above, we have $(G/Z, \mathfrak{T})$

$=(G/Z, \mathfrak{T}_{0})$ for any $(G,\underline{\tau})\in T(G, \mathfrak{T}_{0})$ .
PROOF. We see easily that $(G/Z,\underline{\tau})\in T(G/Z, \mathfrak{T}_{0})$ . Let $\mathfrak{F}$ be a basis of

the neighborhoods of the identity $e$ in $(G, \mathfrak{T})$ and this family $\mathfrak{F}$ can naturally
be identified with a family of open subsets of $(G, \mathfrak{T}_{0})$ satisfying $(a)\sim(e)$ in the
first part of this section. Let $K$ be a compact connected subset of $(G, \mathfrak{T}_{0})$

containing $e$ as an interior point. By $\rho$ is meant a left invariant metric on
$(G, \mathfrak{T}_{0})$ such that $(G, \mathfrak{T}_{0})$ is complete with respect to this metric. By Lemma
1.2, for any $\epsilon>0$ there is $W\in \mathfrak{F}$ such that the diameter of any connected
component of $W$ is smaller than $\epsilon$ . Since $K$ is compact in $(G,\underline{\tau})$ , there is
$U\in \mathfrak{F}$ such that

$\varphi(k, U)\subset W\cap G_{1}$

for any $k\in K$. Since $K$ is connected, for every $g\in U$ we have
$\varphi(K, g)\subset V(\epsilon)$ ,
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where $V(\epsilon)$ is the $\epsilon$ -neighborhood of the identity $e$ of $(G_{1}, \mathfrak{T}_{0})$ .
Let $\pi$ be the natural projection from $G$ onto $G/Z=V$ . Since $\pi(K)$ contains

the identity $0$ as an interior point, denoting by $(x_{1}, \cdots , x_{n})$ a point of $G/Z$,
$\pi(K)$ contains a compact set $D(a)$ of the form

$D(a)=\{(x_{1}, \cdots , x_{n})\in G/Z;\sum_{i=1}^{n}x_{i}^{2}\leqq a\}$

for some $a>0$ .
By the argument above, for $\epsilon=\frac{1}{k}(k>2)$ there is $U_{k}\in \mathfrak{F}$ such that

$\hat{\varphi}(x, \pi(U_{k}))\subset V(\frac{1}{k})$

for any $x\in D(a)$ .
Assume that $(G/Z, \mathfrak{T})\neq(G/Z, \mathfrak{T}_{0})$ . Then, by Lemma 1.1, there is $g_{k}\in U_{k}$

such that denoting $\pi(g_{k})=(x_{1}^{(k)}, \cdots x_{n}^{(k)})$ ,

$\Vert\pi(g_{k})\Vert^{2}=\sum_{i=1}^{n}(x_{i}^{(k)})^{2}$

tends to $\infty$ if $ k\rightarrow\infty$ . Since
$\hat{\varphi}_{i}(b, \pi(g_{k}))=\Sigma a_{l,s}^{i}b_{\iota^{\chi_{s}^{(k)}}}$ , $1\leqq i\leqq q$

$\hat{\varphi}_{j}(b, \pi(g_{k}))=\Sigma a_{\iota^{j_{s}}},b_{\iota}x_{s}^{(k)}$ $mod 1$ , $q+1\leqq j\leqq q+r$ .

the fact that $\hat{\varphi}(b, \pi(g_{k}))\in V(\frac{1}{k})$ means that

$|\Sigma a_{l,s}^{i}b_{l}x_{s}^{(k)}|<k1$ $1\leqq i\leqq q+r$ ,

for any $b=$ $(b_{1}, \cdots , b_{n})\in D(a)$ . In fact, if

$|\sum a_{l,s}^{i}b_{\iota}x_{s}^{(k)}-m|<-k^{-}1,$ $m=non$ zero integer

for some $j,$ $q+1\leqq j\leqq q+r$ , then there is $\lambda\in[0,1]$ such that

$|\Sigma a_{l,s}^{i}\lambda b_{\iota}x_{s}^{(k)}|=\frac{1}{2}$ .
If $b\in D(a)$ , then $\lambda b\in D(a)$ for any $\lambda\in[0,1]$ . This contradicts the fact that

$\hat{\varphi}(b, \pi(g_{k}))\in V(\frac{1}{k})$

for any $b\in D(a)$ .
Let $t_{k}=\Vert\pi(g_{k})\Vert,$ $c_{k}=--\pi(g_{k})t^{1_{k}}$ and $y_{j}=(0, \cdots , \dot{y^{j}}, 0, \cdots , 0)\in D(a)$ . Then,

$\hat{\varphi}_{i}(y_{j}, \pi(g_{k}))=t_{k}y\sum_{s=1}^{n}a_{j^{i},s^{C_{S}^{(k)}}}$ ,

where $c_{k}=$ $(c_{1}^{(k)}$ , $\cdot$ .. , $c_{n}^{(k)})$ . By $a_{j^{i}}$ we mean the vector

$(a_{j,1}^{r}, a_{j,2}^{j}, \cdots a_{j,n}^{i})$
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and by $\langle x, y\rangle$ the ordinary inner product of $x,$ $y$ . Thus, we see that

$|\hat{\varphi}_{i}(y_{j}, \pi(g_{k}))|=|t_{k}\cdot y\cdot\langle a_{j}^{i}, c_{k}\rangle|=t_{k}|y|\cdot\Vert a_{j}^{i}\Vert\cdot|\cos(a_{j^{i^{\wedge}}}, c_{k})|<\frac{1}{k}$ .

Thus,

$\Vert a_{j^{i}}\Vert\cdot|\cos(a_{j}^{i_{C_{k})|<\frac{1}{k}\frac{1}{t_{k}|y|}}^{\wedge}}$, .

Since $ t_{k}\rightarrow\infty$ , we have that if $a_{j}^{i}\neq 0$ , then for any accumulate point $c_{0}$ of $c_{k}$,
$a_{j^{i}}\perp c_{0}$ . This means that $\varphi_{i}’(y_{j}, c_{0})=0$ for any $i$ and $j$ .

Let $V^{\prime}=\{\lambda c_{0} ; \lambda\in R\}$ . Then $V^{\prime}$ is a closed subgroup of $G/Z$. Let $G^{\prime}$

$=\pi^{-1}(V^{\prime})$ . Then, for any $g^{\prime}\in G^{\prime},\hat{\varphi}(b, \pi(g^{\prime}))\equiv 0,$ $b\in D(a)$ . It follows that $G^{\prime}$

is contained in the center of $G$ , contradicting the fact that $G^{\prime}/Z=V^{\prime}\neq\{0\}$ .
Remark that $\hat{\varphi}$ is skew-symmetric. In fact

$\varphi(h, g)=gg^{-1}hgh^{-1}g^{-1}=g\cdot\varphi(g^{-1}, h)\cdot g^{-1}=\varphi(g^{-1}, h)=(\varphi(g, h))^{-1}$ .

THEOREM 1.4. Let $(G, \mathfrak{T}_{0})$ be a connected Lie group such that the derived
group $(G_{1}, \mathfrak{T}_{0})$ of $(G, \mathfrak{T}_{0})$ is contained in the center $Z$ of G. Let $f$ be a continuous
monomorphism from $(G, \mathfrak{T}_{0})$ into a topological group $\mathfrak{G}$ with the first countability
axiom. Then $Cl(f(G))$ is locally compact, if and only if $Cl(f(Z))$ is locally
compact.

PROOF. Since $Cl(f(Z))$ is contained in the center of $Cl(f(G))$ , we see
$f^{-1}(Cl(f(Z))\cap f(G))=Z$. Let $\pi,$

$\pi^{\prime}$ be the natural projections $G\rightarrow G/Z,$ $Cl(f(G))$

$\rightarrow Cl(f(G))/Cl(f(Z))$ respectively. By defining $\hat{f}=\pi^{\prime}f\pi^{-1}$ , we see that

$\hat{f}:(G/Z, \mathfrak{T}_{0})\rightarrow Cl(f(G))/Cl(f(Z))$

is a continuous monomorphism because $f$ is a monomorphism and $f^{-1}(Cl(f(Z))$

$\cap f(G))=Z$.
Let $(f(G), \mathfrak{T})$ be the topological group with the relative topology for $f(G)$

in $Cl(f(G))$ . Since $f$ is monomorphism, $\mathfrak{T}$ determines uniquely the topology
for $G$ under which $f$ is a homeomorphism. This topology for $G$ is denoted
by the same notation $\mathfrak{T}$ . We see easily that $(G, \mathfrak{T})\in T(G, \mathfrak{T}_{0})$ . By the same
way, we determine the topology $\mathfrak{T}^{\prime}$ for $G/Z$ from the relative topology for
$f(G/Z)$ in $Cl(f(G))/Cl(f(Z))$ . It will be shown below that $(G/Z, ’\$)=(G/Z, \mathfrak{T}^{\prime})$ .

Let $\{V_{k}\}$ be a basis of the neighborhoods of the identity $e$ in $Cl(G)$

satisfying $V_{k}^{-1}=V_{k}$ and $V_{k}^{2}\subset V_{k-1}$ . Then, $\pi f^{-1}(V_{k}),\hat{f}^{-1}\pi^{\prime}(V_{k})$ are bases of the
neighborhoods of the identity of $(G/Z, \mathfrak{T}),$ $(G/Z, \mathfrak{T}^{\prime})$ respectively. So we have
only to prove that

$f^{-1}(V_{k})Z\subset f^{-1}(V_{k}Cl(f(Z)))\subset f^{-1}(V_{k-1})Z$ .
It is clear that $f^{-1}(V_{k})Z\subset f^{-1}(V{}_{k}Cl(f(Z))$ . Let $a\in f^{-1}(V{}_{k}Cl(f(Z))$ . Then $f(a)$

$\in V{}_{k}Cl(f(Z))$ . Since $ff^{-1}(V_{k})$ is dense in $V_{k}$ , denoting $f(a)=vz$ , $v\in V_{k}$ ,
$z\in Cl(f(Z))$ there are sequences $\{v_{n}\}\subset f^{-1}(V_{k})$ and $\{z_{n}\}\subset Z$ such that
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$\lim f(v_{n})=v$ and $\lim f(z_{n})=z$ . It follows that $f(a)=\lim f(v.z.)$ and then
$\lim f(a^{-1}v_{n}z_{n})=e$ . Therefore for any sufficiently large $n,$ $f(a^{-1}v_{n}z_{n})$ is contained
in $V_{k}$ . Thus, we have $a^{-1}v_{n}z_{n}\in f^{-1}(V_{k})$ . It follows

$a\in f^{-1}(V_{k}^{-1})v_{n}z_{n}\subset f^{-1}(V_{k}^{2})Z\subset f^{-1}(V_{k-1})Z$ .
By the above result and Lemma 1.4, we see that $\hat{f}(G/Z, \mathfrak{T}_{0})$ is locally

compact and then
$\hat{f}(G/Z, \mathfrak{T}_{0})=Cl(f(G))/Cl(f(Z))$ .

Thus, $Cl(f(G))/Cl(f(Z))$ is locally compact. This fact, together with Theorem
2.2 in [6], implies that $Cl(f(G))$ is locally compact.

\S 2. A reduction of the problem (b).

A topological group $\mathfrak{G}$ with the first countability axiom is called a V-group
if any homomorphic image of any vector group into $\mathfrak{G}$ has the locally com-
pact closure. In this section, the following will be proved.

THEOREM 2.1. If a topological group $\mathfrak{G}$ is a V-group, then any mono-
morphic image of any connected Lie group into $\mathfrak{G}$ has the locally compact
closure.

The proof of the theorem will be given by a series of reductions and
lemmas below.

We devide the proof of this theorem as follows:
i) reduce the problem to the case of a connected solvable Lie group.

ii) reduce the problem to the case of a connected solvable Lie group with
discrete center.

iii) reduce the problem to the case of a connected solvable Lie group with
discrete center whose derived group is an abelian group.

iv) reduce the problem to the case of $S_{0}$-group.
v) prove Theorem 2.1 in the case of $S_{0}$-group.

i) Let $G$ be a connected Lie group with radical $N$. The group $G^{\prime}=G/N$

is a semi-simple Lie group. Let $Z$ be the center of $G^{\prime}$ , which is discrete.
Then $G^{\prime}/Z$ is isomorphic to the adjoint group of $G^{\prime}$ . Let $K^{\prime}$ be a maximal
compact subgroup of $G^{\prime}/Z$. There exists a subgroup $M$ in $G^{\prime}$ such that,
denoting by $K$ a maximal compact subgroup of $G^{\prime},$ $(i)M=K$ or $K\times V$ with
a vector group $V$ , (ii) $M$ contains $Z$ and $M/Z=K^{\prime}$ ($[5]$ Lemma 3.12).

For any $z\in Z$, we see that $z=(k, v),$ $k\in K,$ $v\in V$ . Since $gzg^{-1}=z$ means
$gkg^{-1}=k,$ $gvg^{-1}=v$ , we see that $k\in Z,$ $v\in Z$. It follows that

$Z=Z_{\cap}K\times Z_{\cap}V$ .
Denoting $Z^{\prime}=Z_{\cap}V,$ $G^{\prime}/Z^{\prime}$ has the finite center.
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Let $f$ be a continuous monomorphism from $G$ into a topological group $\mathfrak{G}$

with the first countability axiom. Denote by $\pi$ the natural projection from
$G$ onto $G/N$.

LEMMA 2.1. Notations and assumptions being as above, if $Cl(f(\pi^{-1}(V))$ is
locally compact, then so is $Cl(f(G))$ .

PROOF. Since $V\supset Z^{\prime}$ , we see that $Cl(f(\pi^{-1}(Z^{\prime})))$ is locally compact. Let
$\hat{f}$ be the homomorphism from $G/\pi^{-1}(Z^{\gamma})$ into $Cl(f(G))/Cl(f(\pi^{-1}(Z^{\prime})))$ defined by
$\hat{f}\pi=\pi^{\prime}f$, where $\pi^{\prime}$ is the natural projection $Cl(f(G))\rightarrow Cl(f(G))/Cl(f(\pi^{-1}(Z^{\prime})))$ .

Since $G/\pi^{-1}(Z^{\prime})=G^{\prime}/Z^{\prime}$ , we see by Corollary 1.2 that $\hat{f}(G/\pi^{-1}(Z^{\prime}))$ is a
closed subgroup of $Cl(f(G))/Cl(f(\pi^{-J}(Z^{J})))$ . In fact, since $Cl(f(G))$ satisfies the
first countability axiom, so does $Cl(f(G))/Cl(f(\pi^{-1}(Z^{\prime})))$ . Since $G/\pi^{-1}(Z^{\prime})$ has
the finite center, we see that the assumptions of Corollary 1.2 are satisfied.

Since $\hat{f}(G/\pi^{-1}(Z^{\prime}))$ is dense in $Cl(f(G))/Cl(f(\pi^{-1}(Z^{\prime})))$ , we see
$\hat{f}(G/\pi^{-1}(Z^{\prime}))=Cl(f(G))/Cl(f(\pi^{-1}(Z^{\prime})))$ .

If follows $Cl(f(G))/Cl(f(\pi^{-1}(Z^{\prime})))$ is locally compact. Since $Cl(f(\pi^{-1}(Z^{\prime})))$ is
locally compact, so also is $Cl(f(G))$ .

It is easy to see, in the above lemma, that $\pi^{-1}(V)$ is a connected solvable
Lie group.

COROLLARY 2.1. Let $G$ be a connec $ted$ Lie group and $\mathfrak{G}$ a topological
group with the first countability axiom. Let $f$ be a continuous monomorphism
from $G$ into G. Then, $Cl(f(G))$ is locally compact if and only if for any closed
and connected solvable Lie subgroup $S,$ $Cl(f(S))$ is locally compact.

ii) When we consider a triple $\{G, f, \mathfrak{G}\}$ of a connected solvable Lie group,
a topological group with the first countability axoim and a continuous homo-
morphism from $G$ into $\mathfrak{G}$ , we can assume that the kernel of $f$ is discrete
because in Lemma 2.1, $f:\pi^{-1}(V)\rightarrow \mathfrak{G}$ is a monomorphism.

For convenience we introduce the following definition.
A triple $\{G, f, \mathfrak{G}\}$ of a connected Lie group $G$ , a topological group $\mathfrak{G}$ and

a continuous homomorphism $f$ from $G$ into $\mathfrak{G}$ is called a $V^{\prime}$ -triple if $\{G, f, \mathfrak{G}\}$

is a V-triple and $f$ has the discrete kernel.
Let $\{G, f, \mathfrak{G}\}$ be a $V^{\prime}$ -triple and let $Z,$ $Z_{0}$ be the center of $G$ and its

connected component containing the identity $e$ respectively. Define the homo-
morphism $\hat{f}$ from $G/Z_{0}$ into $Cl(f(G))/Cl(f(Z_{0}))$ by $\hat{f}=\pi^{\prime}f\pi^{-1}$ , where $\pi,$ $\pi$

‘ be
the natural projections $G\rightarrow G/Z_{0}$ , $Cl(f(G))\rightarrow Cl(f(G))/Cl(f(Z_{0}))$ respectively.
By the assumption we see that $Cl(f(Z_{0}))$ is locally compact. In fact, since
$Z_{0}=V\times T$ where $V,$ $T$ are a vector group, a toroidal group respectively, we
have that $Cl(f(V))$ is locally compact. Since $T$ is compact, $Cl(f(Z_{0}))$ is locally
compact.

LEMMA 2.2. Notations and assumptions being as above, $\{G/Z_{0},\hat{f},$ $Cl(f(G))$
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$/Cl(f(Z_{0}))\}$ is a $V^{\prime}$ -triple.
PROOF. Since $\mathfrak{G}$ satisfies the first countability axiom, so does $Cl(f(G))$

$/Cl(f(Z_{0}))$ .
Let $D$ be the discrete kernel of $f$ and $\pi^{\prime\prime}$ the natural projection $G\rightarrow G/D$ .

We have $D\subset Z$ . Let $Z^{\prime}$ be the center of $G/D$ . Since $Cl(f(Z_{0}))$ is contained
in the center of $Cl(f(G)),$ $f^{\prime-1}(Cl(f(Z_{0})))\subset Z^{\prime}$ where $f^{\gamma}$ is the monomorphism
from $G/D$ into $\mathfrak{G}$ defined by $f^{\prime}=f\pi^{\prime\prime-1}$ . Since $D$ is discrete and $G$ is con-
nected, we see that $\pi^{\prime\prime-1}(Z^{\prime})=Z$. This means $\pi^{\prime/-1}f^{\prime-1}(Cl(f(Z_{0})))\subset Z$ and then
$f^{-1}(Cl(f(Z_{0})))\subset Z$. It follows that $\hat{f}$ has the discrete kernel, which is contained
in $Z/Z_{0}$ .

Let $V$ be a closed vector subgroup of $G/Z_{0}$ . Then $G^{\prime}=\pi^{-1}(V)$ is a con-
nected and closed subgroup of $G$ . Since $Z_{0}$ is contained in the center $C^{\prime}$ of
$G^{\prime}$ and $G^{\prime}/C^{\prime}$ is abelian, we have that $G^{\prime}$ is a nilpotent Lie group such that
the derived group $G_{1}^{\prime}$ of $G^{\prime}$ is contained in $C^{\prime}$ . It follows from Lemma 1.3
that $C^{\prime}$ is connected. Since $D$ is discrete, $\pi^{\prime/}(G^{\prime})=G^{\prime/}$ is also a connected
nilpotent Lie group such that the derived group $G_{1^{\prime}}^{\prime}$ of $G^{\prime\prime}$ is contained in the
center $C^{\prime\prime}$ of $G^{\prime\prime}$ . It follows that $C^{\prime\prime}$ is connected and $\pi^{\prime/}(C^{\prime})=c//$ because $D$

is discrete.
Since $\{G, f, \mathfrak{G}\}$ is a V-triple, $Cl(f(C^{\prime}))=Cl(f^{\prime}(C^{\prime/}))$ is locally compact. By

Theorem 1.4, we obtain that $Cl(f(G^{\prime}))=Cl(f^{\prime}(G^{\prime/}))$ is locally compact. Since
$\hat{f}(V)\subset Cl(f(G^{\prime}))/Cl(f(Z_{0})),$ $Cl(\hat{f}(V))$ is locally compact. This means that

$\{G/Z_{0},\hat{f}, Cl(f(G))/Cl(f(Z_{0}))\}$

is a V-triple and then $V^{\prime}$ -triple.
Remark that if $Cl(f(G))/Cl(f(Z_{0}))$ is locally compact, then so is $Cl(f(G))$ .
COROLLARY 2.2. Let $\{G, f, \mathfrak{G}\}$ be a $V^{\prime}$ -triple. If $G$ is a connected nilpotent

Lie group, then $Cl(f(G))$ is locally compac $t$ .

iii) Now, to prove Theorem 2.1, on account of Lemmas 2.1 and 2.2, we
consider the following problem:
\langle $A$) Let $\{G, f, \mathfrak{G}\}$ be a $V^{\prime}$ -triple. Assume that $G$ is a connected solvable Lie
group with discrete center. Then, is $Cl(f(G))$ locally compact?

It is easy to see by Lemma 2.1, 2.2, that if (A) is affirmative, then
Theorem 2.1 is true.

Thus, we have only to consider (A) in the following part of this section.
Let $\{G, f, \mathfrak{G}\}$ be a V’-triple and $D$ be the discrete kernel of $f$. Let $\pi$ be

the natural projection $G\rightarrow G/D$ . Defining $\hat{f}=f\pi^{-1}$ , we see that $\{G/D,\hat{f}, \mathfrak{G}\}$ is
a V-triple. In fact, let $V$ be a closed vector subgroup of $G/D$ and $\pi^{-1}(V)=G^{\prime}$ .
Since $D$ is discrete and $V$ is simply connected, we see that $G^{\prime}=G_{0}^{\prime}\times D$ , where
$C_{0}^{\prime}$ is the connected component of $G^{\prime}$ containing $e$ . Thus,
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$\hat{f}(V)=f\pi^{-1}(V)=f(G_{0}\times D)=f(G_{0})$ .
Since $G_{0}$ is connected abelian and $\{G, f, \mathfrak{G}\}$ is a V-triple, we have that $Cl(\hat{f}(V))$

is locally compact. Thus, when we consider (A), we can assume that $f$ is a
monomorphism.

LEMMA 2.3. Let $V,$ $A$ and $f$ be a vector group, a locally compact abelian
group with the first countability axiom and a continuous homomorphism from
$V$ into $A$ such that $Cl(f(V))=A$ . Let $K$ be a maximal compact subgroup of
A. Assume that $K\neq\{0\}$ . Then there is a non-trivial closed vector subgroup
$V^{\prime}$ of $V$ such that $f(V^{\prime})\subset K$.

PROOF. Obviously $A$ is connected. By 4.6 Theorem and 4.7.1 Lemma in
[6], we can find a sequence of compact normal subgroups of $A$ :

$ N_{1}\supset N_{2}\supset\ldots$

such that $\cap N_{i}=\{e\}$ and that $A/N_{i}=A_{i}$ is a connected Lie group.
Let $A_{i}=V_{l}\times T_{i}$ , where $V_{i},$ $T_{i}$ are a vector group, a toroidal group respec-

tively. Since $K\neq\{0\}$ , we have $T_{i}\neq\{0\}$ . Let $\pi_{i}$ be the natural projection
from $A$ onto $A_{i}$ . Since $\pi_{i}f(V)$ is dense in $A_{i}$ , there is a closed and non-trivial
subgroup $V_{i}^{\prime}$ of $V$ such that $(f^{-1}\pi_{i}^{-1}(T_{i}))_{0}=V_{i}^{\prime}$ . Since $V_{i+1}^{\prime}\subset V_{i}^{\prime}$ and $V_{i}^{\prime}\neq\{0\}$

for all $i$ , we see that $V^{\prime}=\cap V_{\dot{t}}^{\prime}$ is a closed non-trivial vector subgroup of $V$ .
Thus, $\pi_{i}f(V^{\prime})\subset T_{i}$ for all $i$ . It follows that $f(V$ ‘

$)$ $\subset K$.

Let $\{G, f, \mathfrak{G}\}$ be a V-triple. Assume that $G$ is a connected solvable Lie
group with the discrete center and $f$ is a monomorphism. Denote by $G_{i}$ the
derived group of $G_{i-1}(G=G_{0})$ . Then

$G=G_{0}\supset G_{1}\supset G_{2}\supset\ldots\supset G_{k}\supset G_{k+1}=\{0\}$

for some $k$ .
Assume that $G_{k}\neq\{0\}$ . $G_{k}$ is a connected, abelian and normal subgroup

of $G$ . Let $\hat{f}$ : $G/G_{k}\rightarrow Cl(f(G))/Cl(f(G_{k}))$ be the homomorphism defined by
$\hat{f}=\pi^{\prime}f\pi^{-1}$ , where $\pi,$

$\pi^{\prime}$ be the natural projections $G\rightarrow G/G_{k},$ $Cl(f(G))\rightarrow Cl(f(G))$

$/Cl(f(G_{k}))$ respectively.
LEMMA 2.4. Notations and assumptions being as above, $\hat{f}$ is a mono-

morphism.
PROOF. Since $G_{k}$ is connected, $Cl(f(G_{k}))$ is a connected locally compact

subgroup of G. Let $K$ be a maximal compact subgroup of $Cl(f(G_{k}))$ . Since
$K$ is also a normal subgroup of $Cl(f(G))$ , we see by Theorem 4, [5], that $K$

is contained in the center of $Cl(f(G))$ . If $K\neq\{0\}$ , then by Lemma 2.3, we
have that $G\cap f^{-1}(K)$ contains a $ve$ctor subgroup. Since $f^{-1}(K)$ is contained
in the center of $G$ , this contradicts the assumption that $G$ has the discrete
center. Thus, we see $K=\{0\}$ .

It follows from Theorem 6 [5] that $Cl(f(G_{k}))$ is a connected abelian Lie
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group without any compact subgroup, $i$ . $e.$ , a vector group. So we see easily
that $Cl(f(G_{k}))=f(G_{k})$ . Thus, $f^{-1}(Cl(f(G_{k})))=G_{k}$ , because $f$ is a monomorphism.
This means that $\hat{f}$ is a monomorphism.

Now, if (A) is affirmative, then especially the following is true:
(B) Let $\{G, f, \mathfrak{G}\}$ be a V-triple. Assume that $G$ is a solvable Lie group with
the discrete center such that the derived group $G_{1}$ of $G$ is abelian and that
$f$ is a monomorphism. Then $Cl(f(G))$ is locally compact.

LEMMA 2.5. (A) is affirmative, if and only if (B) is true.
PROOF. We have only to prove that if (B) is true, then (A) is affirmative.
Assume that (B) is true. We use the induction on the length $k$ of the

series of the derived groups

$G=G_{0}\supset G_{1}\supset\ldots\supset G_{k}\supset G_{k+1}=\{0\}$ , $G_{k}\neq\{0\}$ .
Assume that (A) is affirmative for any connected solvable Lie group with

the discrete center such that the length of the series of the derived groups
is smaller than $k(k\geqq 2)$ .

Let $G$ be a connected solvable Lie group with the discrete center such
that the length of the series of the derived groups is $k$ and let $\{G, f, \mathfrak{G}\}$ be
a $V^{\prime}$ -triple. Denote by $D$ the discrete kernel of $f$ and $\pi^{\prime\prime}$ the natural projec-
tion from $G$ onto $G/D$ . By defining $f^{\gamma}=f\pi^{\prime/-1}$ , we see that $\{G/D, f^{\prime}, \mathfrak{G}\}$ is a
V-triple and $f^{\prime}$ is a monomorphism. So we may assume that $f$ is mono-
morphism.

By Lemma 2.4, the mapping

$\hat{f}:G/G_{k}\rightarrow Cl(f(G))/Cl(f(G_{k}))$

is a monomorphism. Let $V$ be a closed vector subgroup of $G/G_{k}$ and
$G^{\prime}=\pi^{-1}(V)$ where $\pi$ is the natural projection $G\rightarrow G/G_{k}$ . Since $G_{k}$ is a vector
subgroup, $G^{\prime}$ is a closed and connected solvable Lie group such that the
derived group $G_{1}^{\prime}$ of $G^{\prime}$ is abelian.

Let $Z_{1}^{\prime}$ be the connected component of the center of $G^{\prime}$ , containing the
identity $e$ and let $Z_{i}^{\prime}/Z_{i-1}^{\prime}$ be the connected component of the center of $G^{\prime}/Z_{i-1}^{\prime}$

containing the identity. Then we see that

$Z_{1}^{\prime}\subset Z_{2^{\prime}}\subset\ldots\subset Z_{r^{\prime}}=Z_{r+1}^{\prime}$

for some $r$ and $G^{\prime}/Z_{r^{\prime}}$ is a connected solvable group with discrete center such
that the derived group of $G^{\prime}/Z_{r^{\prime}}$ is abelian. By using Lemma 2.2 repeatedly,
we see that $Cl(f(G^{\prime}))$ is locally compact if and only if (A) is true for $V^{\prime}$ -triple
$\{G^{\prime\prime}, h, \mathfrak{G}^{\prime}\}$ where $c//is$ a connected solvable Lie group whose center is discrete
and whose derived group is abelian. Since we can assume that $h$ is a mono-
morphism, we have by the assumption that (B) is true that $Cl(f(G^{\gamma/}))$ is locally
compact.
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It follows that $Cl(f(G^{\prime}))$ is locally compact and then

$\{G/G_{k},\hat{f}, Cl(f(G))/Cl(f(G_{k}))\}$

is a V-triple and $\hat{f}$ is a monomorphism.
The length of the derived groups of $G/G_{k}$ is smaller than $k$ . Again by

using Lemma 2.2 repeatedly, and by the induction assumption, we have con-
sequently that $Cl(\hat{f}(G/G_{k}))$ is locally compact. Since $\hat{f}(G/G_{k})$ is dense in
$Cl(f(G))/Cl(f(G_{k}))$ , we have $Cl(f(G))/Cl(f(G_{k}))$ is locally compact. Since
$Cl(f(G_{k}))$ is locally compact, so also is $Cl(f(G))$ .

iv) By Lemma 2.5, we have only to consider (B).
Let $G$ be a connected solvable Lie group with discrete center such that

the derived group $G_{1}$ of $G$ is abelian. Since the center $Z$ of $G$ is discrete, we
see that $G_{1}$ is a vector group (that is, $G_{1}$ contains no toroidal subgroup).

Let $N$ be a closed normal subgroup of $G$ and $G^{\prime}=G/N$. Then, the derived
group $G_{1}^{\prime}$ of $G^{\prime}$ is contained in $G_{1}N/N$. Thus we see that

$\dim G_{1}^{\prime}\leqq\dim G_{1}$ .
If $N$ is a non-trivial closed vector subgroup of $G_{1}$ , then

$\dim G_{1}^{\prime}<\dim G_{1}$ .
For convenience, a connected Lie group $G$ is called a $S_{0}$ -group if (i) $G$ is,

solvable and the derived group $G_{1}$ of $G$ is abelian (ii) $G$ has the discrete center
and (iii) $G_{1}$ contains no non-trivial connected closed normal subgroup of $G$ .

LEMMA 2.6. Notations being as above, (B) is true, if and only if (B) is true
for $S_{0}$-groups.

PROOF. The necessity is trivial, so we show the sufficiency. We use the
induction on $\dim G_{1}$ . If $\dim G_{1}=1$ , then $G$ is an $S_{0}$-group. Thus (B) is true.
Let $G$ be a connected solvable Lie group such that $\dim G_{1}=n$ . Assume that
(B) is true for any connected solvable Lie group $G^{\prime}$ such that $\dim G_{1}^{\prime}<n$ .

Assume that $G$ is not an $S_{0}$ -group. Then, there is a vector subgroup $N$ of
$G_{1}$ such that $N$ is a normal subgroup of $G$ . By defining $\hat{f}=\pi^{\prime}f\pi^{-1}$ , where $\pi,$ .
$\pi^{\prime}$ be the natural projection from $G\rightarrow G/N,$ $Cl(f(G))\rightarrow Cl(f(G))/Cl(f(N))$ re-
spectively, we have by Lemma 2.3 and in the same way as in Lemma 2.4
that $f$ is a monomorphism from $G/N$ into $Cl(f(G))/Cl(f(N))$ . It will be shown
below that

$\{G/N,\hat{f}, Cl(f(G))/Cl(f(N))\}$

is a V-triple.
Let $G^{\prime}$ be a closed subgroup of $G$ containing $N$ such that $G^{\prime}/N$ is a vector

subgroup of $G/N$. Then, $G^{\prime}$ is connected. The derived group $G_{1}^{\prime}$ of $G^{\prime}$ is
contained in $G_{1}\cap N$. Thus,
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$\dim G_{1}^{\prime}\leqq\dim N<\dim G_{1}$ .

Then, by using Lemma 2.2 repeatedly and by the induction assumption, we
see that $Cl(f(G^{\prime}))$ is locally compact. Since f $(G^{\prime}/N)$ is dense in $Cl(f(G^{\prime}))$

$/Cl(f(N))$ , we see that $Cl(\hat{f}(G^{\prime}/N))$ is locally compact. Thus,

$\{G/N,\hat{f}, Cl(f(G))/Cl(f(N))\}$

is a V-triple.

Since the dimension of the derived group of $G/N$ is smaller than $\dim G_{1}$ ,
we see, by the induction assumtion and by using Lemma 2.2 repeatedly, that
$Cl(\hat{f}(G/N))$ is locally compact. Since $Cl(f(N))$ is locally compact, we have
that $Cl(f(G))$ is locally compact.

LEMMA 2.7. Notations being as above, if $G$ is an $S_{0}$ -group, then there is a
subgroup $H$ of $G$ such that

$G=H\cdot G_{1}$ , $H_{\cap}G_{1}=\{e\}$ .
The proof of this lemma is the same as the last part of the proof of

Lemma 3.4 in [5].

Since $G_{1}$ is a vector group, we denote $V$ instead of $G_{1}$ . Eor any $h\in H$,
the transformation from $V$ onto $V$ defined by $v\rightarrow hvh^{-1}$ induces naturally a
linear transformation $A(h)$ on $V$ . The correspondence $h\rightarrow A(h)$ gives obviously
a representation of the abelian group $H$.

LEMMA 2.8. Notations being as above, if $G$ is an $S_{0}$-group, then $\dim V$ is
one or two.

PROOF. For any $h\in H$, the eigen values of $A(h)$ are equal or conjugate
each other because $H$ is abelian and $A(h)$ is an irreducible representation of
$H$. Moreover, since $A(h)$ is a real matrix, by Shur’s lemma we see that
$\dim V=1$ or 2.

Since $H$ is connected abelian Lie group, letting $\mathfrak{h}$ be the Lie algebra of
$H$, we see $\exp \mathfrak{h}=H$.

Let $\dim V=1$ . Then, $A(\exp X)=e^{\lambda(X)}$ for $X\in \mathfrak{h}$ , where $\lambda$ is a linear
mapping from $\mathfrak{h}$ into $R$ . If the kernel of 2, $\mathfrak{h}^{\prime}$ would be non-trivial then
$\exp \mathfrak{h}^{\prime}$ must be contained in the center of $G$ , contradicting the fact that $G$ is
an $S_{0}$-group. It follows that

$\dim H=1$

and $\lambda(X)\not\equiv O$ .
Let $\dim V=2$ . Then the eigen values of $A(\exp X)$ are $e^{\lambda(X)}$ and $e^{\overline{\gamma(X)}}$,

where $\lambda$ is a linear mapping from $\mathfrak{h}$ into the complex number field. Let
$\rightarrow 1(X)=a(X)+\sqrt{-1}b(X)$ . Then
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$A(\exp X)=\left(\begin{array}{ll}e^{a(X)}cosb(X), & -e^{a(X)}sinb(X)\\e^{a(X)}sinb(X), & e^{a(X)}cosb(X)\end{array}\right)$ .

It follows that $\dim H\leqq 2$ .
Thus, we have the following:
THEOREM 2.2. Simply connected $S_{0}$ -groups are the following:
a) $H=R,$ $V=R$ and $A(t)=e^{at},$ $a\neq 0$ ,

b) $H=R,$ $V=R^{2}$ and

$A(t)=\left(\begin{array}{ll}cosbt, & -sinbt\\sinbt, & cosbt\end{array}\right)$ , $b\neq 0$ ,

c) $H=R,$ $V=R^{2}$ and

$A(t)=\left(\begin{array}{ll}e^{at}cosbt, & -e^{at}sinbt\\e^{at}sinbt, & e^{at}cosbt\end{array}\right)$ , $a\cdot b\neq 0$ ,

d) $H=R^{2},$ $V=R^{2}$ and

$A(t, t^{\prime})=\left(\begin{array}{lll}e^{at}cosbt^{\gamma}, & -e^{at}sin & bt^{\gamma}\\e^{at}sinbt’, & e^{at}cosbt’ & \end{array}\right)$ , $a\cdot b\neq 0$ .

We see easily that the groups of a), c) are without center and the groups
of b), d) have the centers isomorphic to the additive group of the integers.
It follows immediately that if an $S_{0}$ -group $G$ is not simply connected, then $G$

has the finite center and then $G$ is absolutely closed by Theorem 1.2.

v) On account of Lemmas 2.1, 2.2, 2.5 and 2.6, we have only to show that
the proposition (B) is true for the $S_{0}$-groups whose universal covering groups
are listed in Theorem 2.2 above.

Assume that $\{G, f, \mathfrak{G}\}$ be a V-triple and $f$ a monomorphism. If the $S_{0}-$

group $G$ has the finite center, then $f(G)=Cl(f(G))$ and $Cl(f(G))$ is locally
compact. So we assume that $G$ has the infinite center. Then $G$ is the group
b) or d). Let $Z$ be the center of $G$ . Since $Z\subset H$ and $f(H)$ has the locally
compact closure, we see that $Cl(f(Z))$ is locally compact.

Let $\pi,$
$\pi^{\prime}$ be the natural projections $G\rightarrow G/Z,$ $Cl(f(G))\rightarrow Cl(f(G))/Cl(f(Z))$

respectively. Since $Cl(f(Z))$ is contained in the center of $Cl(f(G))$ , we see
that

$f^{-1}(Cl(f(Z))=Z$ .

Thus, by defining $f=\pi^{\prime}f\pi^{-1},$ $f$ is a monomorphism from $G/Z$ into $Cl(f(G))$

$/Cl(f(Z))$ . Since $G/Z$ is without center, $G/Z$ is absolutely closed. It follows
that $Cl(\hat{f}(G/Z))=f(G/Z)$ is locally compact. Since $Cl(\hat{f}(G/Z))=Cl(f(G))$

$/Cl(f(Z))$ , we have that $Cl(f(G))$ is locally compact.
Thus, we get the complete proof of Theorem 2.1.
Moreover, we have the following theorem which is slightly stronger than

Theorem 2.1.
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THEOREM 2.3. Let { $G,$ $f$, (S6} be a V-triple of a connected Lie group $G$ and
a fopological group $\mathfrak{G}$ with the first countability axiom and a continuous mono-
morphism $f$ from $G$ into G. Then $f(G)$ has the locally compact closure.

\S 3. The group of homeomorphism of a one dimensional manifold.

By theorem 2.1 we obtained a fairly simple criterion for a topological
group $\mathfrak{G}$ to belong to the class $\mathfrak{B}$ stated in the introduction. Namely we have
only to consider the vector groups instead of the general Lie groups.

It might then be natural to consider the problem of reducing the dimension
of the vector group in question to a smaller one. It seems, however, to be
difficult, because we have an example of a connected abelian topological
group $\mathfrak{G}$ which is the closure of a homomorphic image of a vector group $V$

and which is not locally compact though the homomorphic images of any
proper vector subgroups of $V$ have locally compact closures [7].

This seems to mean that to solve the original conjecture of Gleason-
Palais we have naturally to analyse the structures of the homeomorphism
group itself.

In the case of one-dimensional manifolds, however, the homeomorphism
group is an example of a V-group.

Let $M$ be a connected manifolds with the second countability axiom.
Then it is known [3] that $H(M)$ endowed with the compact open topology
satisfies the second countability axiom and $H(M)$ is complete under the bilateral
uniform structure, $i$ . $e.$ , the uniform structure generated by uniformities of
the form

{ $(g,$ $h)\in H(M)\times H(M);gh^{-1}$ and $g^{-1}h\in V$ }

for some neighborhood $V$ of the identity. It follows that $H(M)$ is a space of
the second category.

Let $G$ be a Lie group and $\varphi$ a continuous homomorphism from $G$ into
$H(M)$ such that $\varphi(G)$ is closed. Then, $\varphi$ is an open mapping from $G$ onto
$\varphi(G)$ , since $\varphi(G)$ is a topological group of the second category as a subgroup
of $H(M)$ .

LEMMA 3.1. Let $f$ be a continuous monomorphism from $(R^{r}, \mathfrak{T}_{0})$ into $H(R)$ ,
where $\mathfrak{T}_{0}$ is the ordinary topology on $R^{r}$ . Then, $f(R^{r})$ is closed.

PROOF. Assume $f(R^{r})$ is not closed. Then, the relative topology for $f(R^{r})$

determines a topology $\mathfrak{T}$ for $R^{r}$ such that $(R^{r}, \mathfrak{T})\neq(R^{r}, \mathfrak{T}_{0})$ and $(R^{r}, \mathfrak{T})$ is
contained in $T(R^{r}, \mathfrak{T}_{0})$ . By Lemma 1.1 we see

$ f^{-1}(U_{\cap}f(R^{\gamma}))\cap(R^{r}-D(k))\neq\phi$

for any neighborhood $U$ of the identity of $H(R)$ .
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Let $W(K, V)=\{h\in H(R);h(K)\subset V\}$ , where $K$ is a compact subset and
$V$ is an open subset containing $K$. By the definition of the compact open

topology, there are $K_{i}$ and $V_{i},$ $i=1,2$ , , $m$ such that $U\supset\bigcap_{i=1}^{m}W(K_{i}, V_{i})=W^{\prime}$ .
Take sufficiently small $U$ such that the diameter of any connected component
of $f^{-1}(U\cap f(R^{r}))$ is smaller than $\epsilon$ and $\epsilon<k$ .

Let $y\in f^{-1}(W^{\prime}\cap f(R^{r}))\cap(R^{r}-D(k))$ . Since $\epsilon<k$ , we have
$\cup\{ty;t\in[0,1]\}\propto f^{-1}W^{\prime}$

Thus, there are $t\in[0,1]$ and some $j$ such that $f(ty)(K_{j})c[U_{j}$ . On the other
hand, $f(y)(K_{j})\subset U_{j}$ . This contradicts the fact that $\{f(ty);t\in R\}$ is a one
parameter transformation group on a line $R$ .

LEMMA 3.2. Let $f$ be a continuous monomorphism from $R^{r}$ into $H(S_{1})$ .
Then $f(R^{r})$ is closed in $H(S_{1})$ .

PROOF. Assume that $f(R^{r})$ is not closed in $H(S_{1})$ . Then, we see that
$f(R^{r})(t)=S_{1}$ for all $t\in S_{1}$ . In fact, if there is $t_{0}\in S_{1}$ such that $f(R^{r})(t_{0})\neq S_{1}$ ,

then $f(R^{r})(t)\neq S_{1}$ for all $t\in S_{1}$ . By the same argument as in Lemma 3.1, we
see in this case that $f(R^{r})$ is closed, contradicting the assumption. Thus,
$f(R^{r})(t)=S_{1}$ . Let $K_{t}$ be the isotropy group of $R^{r}$ . Since $R^{r}$ is abelian and
operates transitively on $S_{1}$ , we see that $K_{t}=K_{0}$ . This means that $f$ is not a
monomorphism, contradicting the assumption.

By the above two lemmas, we have the following:
THEOREM 3.1. The group of the homeomorphisms on $a$ one dimensional

connected manifold is a V-group.

Tokyo Metropolitan University
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