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1. Throughout this paper, we term X a Banach function space®, if X is
a normed linear space of integrable functions over the interval (0, 1) satisfying

@ |gISIfIP, f= X implies g= X and | g <1 /1;
() 0=/, 1 7S implies sup | full =171

(i) 0<F, 1%, with sup || f, || < oo implies \J f, € XP.
nzl n=1

We shall call the rorm fulfiling (i) and (ii) to be semi-continuous. X is said
to have the Rearrangement Invariant property® (or shortly RIP), if each func-
tion g equimeasurable to a function f< X also belongs to X and ||g||=1{fI.

Let f be an integrable function on (0,1). The Hardy-Littlewood majorant
0(f) of f is the function defined by

) 0= sup [Tt e 0,1,

provided it exists almost everywhere. G.H. Hardy and J. E. Littlewood have
shown that if fe L?(1 < p), then 6(f) is defined and belongs to L? also [9]
Here, in accordance with G. Lorentz [3], we shall say that X has the Hardy-
Littlewood property, and shall denote by Xe HLP, if f X implies 0(f)< X.
In his paper cited above, G. Lorentz discussed this property for Banach func-
tion spaces having RIP®, and presented necessary and sufficient conditions in
order that Xe HLP, in case X is an Orlicz space Lg or a space A(p).

The aim of this note is to give a necessary and sufficient condition in
order that a general Banach function space X with RIP have the Hardy-Little-

1) Here we deal with Banach spaces consisting of real functions. For an exposi-
tion of Banach function spaces see .

2) |g|=|f| means that g(t) =f(t) holds almost everywhere in (0, 1).

3) A norm satisfying (iii) is called monotone complete. If a norm is monotone
complete, it is complete.

4) On account of in [8], we may replace this condition by the weak
rearrangement invariant property (this requires only g€ X, if g is equimeasurable to
an f € X) throughout this paper.

5) In his paper Banach function spaces are introduced in terms of Kothe spaces.
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wood property (Theorem I). As a consequence, it shall be shown that the
results of in case of X=Lgy or X= A(¢), which are simplified so as to
bear directly on @ or ¢, can be derived easily from this condition.

Finally we shall establish a generalization of the Hardy-Littlewood prop-
erty for Banach function spaces consisting of integrable functions on a finite
measure space (E, 2, ).

2. In the sequel, let (X, | - ||) be always a Banach function space consist-
ing of integrable functions over (0, 1) which has RIP. We shall denote by f*
the decreasing rearrangement of | f|, and by f the function defined by

@ foo=[ O ar ey,

It is clear that 8(f)=f, if f is positive decreasing.

LemMA 1 (Lorentz [3]). X< HLP if and only if for every positive decreas-
ing fe X, f belongs also to X. Furthermore, there exists a constant K >0 such
that

® OO =K/l for all feX

holds in this case.

Here we note that the latter part of the lemma can be proved directly as
follows. If Xe HLP, the functional p:f— p(f)=[0(f)|l (fe X) satisfies i)
plaf)=ap(f) for all positive number «; ii) 0 < f < g implies p(f) = p(g). On
account of: the condition (ii) in 1 and the relation | 6(f) | =<6(] f]), we need only
to show that (3) holds for all positive f < X. Now suppose that there exists
no positive number satisfying (3) for all positive f= X. We can then find a
sequence of positive functions {f,}2, of X such that p(f,)=n with ||/,

=1/2" (n=1,2,---). Since X is complete, > f,=f,= X and 0<f,<f, holds
n=1

for each n. Thus we obtain [|[6(f)|=p(f)=p(fa)=n (n=1,2, ), which is
a contradiction.
For any fe X and 0< a =1, let f, denote the function

@ Jw@®=Fflax) (x=(0,1).
If f is positive decreasing, we have for any a, f(0<a, B=<1) and £=0
® fw=fe, if a=<B;
© {fwlp="TSwp,
@ &t w=E{fw} -

The following sufficient condition for X € HLP was given in [3].
LEMMA 2. For X< HLP it is sufficient that for some constant K and for
all fe X,
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® [ Wwlda< K11

We shall show below that (8) is, in fact, a necessary condition for HLP at the

same time (Corollary I).
We write f<g, if | /*0dt = [ g¥t)dt holds for every x& (0, 1). Since X
0 0
has RIP, f<g implies || f| <l gll. Also we write f~g, whenever f is equi-
measurable to g. Then it follows easily that f¥*=g* if f~g, and that f<g,
f~f’, and g~ g’ imply f/<g’. Let X’ denote the conjugate space of X, i.e.

the totality of measurable functions g for which llgll’:l ”sup A] {f,g>| < oo,
IFNSLFEX

where (f, g)= jolf(x)g(x)dx (fe X, g X’). X is also a Banach function space

having RIP, and can be considered to be included in X*, the Banach dual of

X. It is well known that |-} on X is reflexive, i.e. [4, 6]
Ifll= sup Kf,g>l (feX),
g’ =1, X7

and [<{f, g)| =<{f* g*) holds for each f= X and g= X’. For any measurable
set e (0, 1), we define a linear operator Ae by the formula:

® Aef = (~yiey § S e,

where ye is the characteristic function of the set e and d(e) denotes the
Lebesgue measure of e. Since Aef</ for any positive fe X, [|[Aef| =Sl
holds. Furthermore, we have

LemMMA 3. If f;, 1=0,1, 2) are all positive decreasing functions belonging
to X and fo=fi+/f,. Then

10 1ol =1 Aw,o /it

holds for any 0< £<1.
Proor. For any positive decreasing ¢ = X’ with | c|’=1, one obtains

{Sor € =1, O+ fo €0 Z A, f1s 0+ TSos € =LA, [1F T2
because of f,>>Aq,sf:- Hence it follows that [|f,| = || Aw,efi-+/2]l, since the
norm | - | is reflexive, and both f, and A, f,+ /. are positive decreasing.

We can now prove our main result:
THEOREM 1. X & HLP if and only if there exist positive numbers K and
P (0<p<1) such that

() I Il = Ka™?| fI

holds for every a (0, 1].
Since the function g(a)=a~? is integrable over (0,1) for any p with
0< p<1, the sufficiency of the theorem is obvious by virtue of Lemma 2
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Therefore, we merely need to prove the necessity. First we shall prove the
following lemma.
LEMMA 4. If there exists an ¢y(0<e,<1) such that

€9 [fI=1 and n=2" imply |fabl=st,

then (%) holds for some p with 0<p<1.

PrOOF. We may assume that ¢, satisfying (%) is taken so that m =2¢;?!
is an integer. For any natural number v and f= X with ||f|| =<1, one obtains
that

(11 n=m” implies [ f,-»ll=¢e.

In fact, for y=1, this is valid on account of (). Now suppose that this holds
true for y=»~k—1. Then we have | f -+, | S &> for every f with ||f]|=1.
BUE || &8 pmrssy | S 1 implies &7 = (65 pmsass)immsy | = €7 | frnesy | 0D account
of (6) and (7). Consequently, we find |/, =e&” and (11) is proved by
virtue of (5). Now let p be a positive number satisfying (e,/2)?=¢,. One
sees that 0<p<1 and |f| =1 implies | fp-ill Ses”=m? for every v=1.
Therefore, using (5) again, we see that (x) holds for K= m?.

PrROOF OF THEOREM 1. Suppose that Xe HLP. Since (Z2w)*<(g2%w
holds for each a with 0<a =<1 and each g< X, it is sufficient to show that
(*) holds for all positive decreasing f= X. Furthermore, in view of the semi-
continuity of || .|, it suffices only to prove that (¥) holds for all positive de-
creasing step functions of X.

Now assume that this does not hold. By the preceding lemma, there
exists no ¢,>0 for which (#) holds for all positive decreasing step functions
of X. Hence we can find a sequence of positive numbers {¢,};%; with ¢, | 52,0
and a sequence of positive decreasing step functions {f,};2,C X with [/, || =1
(v=1,2, ) such that || f,m3t, [ >e5* holds for each » =1, where m, =2¢;'. Let

&
v fix and f, = 3 ai)w,ep Where 0<6, <&, < - < &= nt
i=1

1<i<k. From (2) we find

® and 0< «; for all

v

- 1 x k 1 z I_c‘ N k
fu(x)= —x—jofu(t)dt = 231 ai_x“jo X(o,sp(t)dt = %1acho,ei> = ?§lgi »
where g;= a;%0,:p(=1,2, -, k). Applying Lemma 3 we obtain”
”fu | = | Aco,myenGit8at -+ +8k =1 A(O,muspgl+A(o,my$2)g2+g3+ el

k
= = “ EAco,m,ei)gz: .

6) Since (fVX(O,m;I))(m;l) =fv(m;1) holds, we may assume f, = fuXco,m=1)
v

7) Note that all g; (1 =i=<k) are positive decreasing.
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On the other hand, it follows from the definition (9) that for each i(1<i<k)

Aco,myep8s = nf%;( "dx +L s dx)X(o,min)

2

_a,(14logm,)

= m, Xco,myes) -

A+ log m _(1+log m,)f
vim

-1, hence
m,

u) ZazX(o syl —
\7, |!>L1—+—l9gﬂ“) ufvm_l)||>~1M iz L logm,

k
This implies _Z Awmep &=

Therefore, we

have shown that both | £, || =1 and ]If,, | =1/2(1+1log m,) hold for every v=1,
which is, however, inconsistant with [Lemma 1. Thus the proof is completed.

Q.E.D.
From it follows immediately

COROLLARY 1. The converse of Lemma 3 is also valid, i.e. X HLP if
and only if (3) holds for a constant K > 0.

As a simple sufficient condition for X = HLP we have

COROLLARY 2. If

(12 sup [ /1, [ <2

7=
holds, then X e HLP.

This can be derived in the quite same manner as the proof of
by showing that implies (¢).

For any a >1 and f<= X we define f° by

flax), for x=(0, a™),

13 o=

0, otherwise.
Now we consider the following condition on the norm | - | of X:
) | f@ <Ka?|f] for all fe X and a>1,

where K >0 and p(0<p<1) are both constants.

In Banach function spaces with RIP, the conditions (x) and (4) are mutu-
ally dual, that is, we have

THEOREM 2. X satisfies (%) if and only if X’ satisfies (4).

ProorF. Assume that (%) holds in X. For any g X’ and a > 1,

, , 1
fg“l|l”= sup _ A< g0 = sup [ famn, g7
5= a I fll=1

1 .
= o sup [ {fia=ry, 821 = g || K=" P,
I feq=1y 1l =KaP
since || fea-1 | = Ka? implies || f]| =1, and f= {f“°} -1, holds. This shows that
(4) holds in X’ for p’=1—p. The converse can be derived similarly. Q.E.D.
3. Special classes of Banach function spaces with RIP are spaces A(¢)
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and Orlicz spaces Lg (for an exposition of the theory of Orlicz spaces see
[I]. We shall show below that the equivalent conditions for X e HLP pre-
sented in [3], when X is one of these spaces, can be derived from [Theorem 1.

THEOREM 3. An Orlicz space Ly has the Hardy-Littlewood property if and
only if the complementary function & of @ satisfies

(14) VQuWMTw  for u=u,,

for some constants M and u,=0.

PrOO¥. As (Lgp) = Ly, we shall prove that the norm of Ly satisfies (4)
if (14) holds for ¥'. 1If follows from (14) that the norm | - ||y is finitely mono-
tone (i.e. for any e (0<e<1) there exists an N >0 such that ||f;[|=e, fi1f®

(i=xy) and n=N imply | %}fi | >1) [6, 8], hence by virtue of Theorem 6 in
i=1

[77, there exists a lower semi-p-norm!® |- ||, on Ly equivalent to ||-|ly. For
any f< Ly and for any natural number n, we see obviously that f can be
written as

f~i§1fi with f;1f; for ixj and fi~fo~for o~ fu=1®.
Thus, we have for some fixed a > 010

(Va3 llEle ESI!JZII za-n|f™If,

which implies || f™ ||, < (an)'?| f|l,. Because |-||, and |||y are mutually equiv-
alent, we find that |-||g fulfils (4), hence Ly & HLP.
Conversely, let (4) hold for Ly. If (14) fails to be true, we can find a

sequence of positive elements {f,}3., such that both | f,|l¢y <1 and 51¥f(2fn)dx
0
=n hold for all n =1®. Then,

frerma="1 frempa=,

which implies »*5 1A 11¢<K<-~W> 17, nLK(m)” for all n=1. But

this is a contradiction. Q.E.D.
Let ¢ be a decreasing positive integrable function of (0, 1), which we shall

8) (14) is equivalent to that 2/@(u) < @(lu) holds for every u =u, for some con-
stants [ >1 and u, =0 [1].

9) f 1l g means that |[f|N]g|=0, i.e. f(H)g(®) =0 a.e..

10) A norm is called a lower semi-p-norm, if f | g implies || f+gll?=|fP+ |l g]l?.

11) Since |-}y and ||. |, are mutually equivalent, there exists « >0 such that
f~g implies | fllo=all gl

1) ifly=int {7 [ ena=1}.
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assume zero for x>1, and let @(x):fxgb(t)dt. The space A(¢) consists of all
0
functions f(x) such that

(15) N fllga= folgs(x) - fF)dx < oo

The dual space of a space A(¢) is M($) consisting of functions f with

(16) 171 = sup (~grgay ) § rdt < oo

Obviously A(¢) and M(¢)*® are Banach function spaces having RIP [2].
THEOREM 4. A space A(P) has the Hardy-Littlewood property if and only
if
an 1irr01 sup OQ2u)/P(u) < 2.

Proor. Assume that (17) holds. Then, we see easily that there exists an
k

e >0 such that @(2u) < (2—e)@(u) holds for all 0 <<u. Let f= X a;xq,ep be a
i=1

positive decreasing step function with || /|4 =1. Since | y«,ella=D(&) for all
& with 0<&<1 and ||fll4 =</, ¢), we find immediately | fu/m ll4={Sfam ¢

= 3 a@@2£). This implies | fum |1 = @) Xad(E) = @~ fl4 and in view

of the semi-continuity of |/-||4, one can derive easily that (12) holds. Con-
sequently, we obtain A(¢) = HLP by Corollary 2.

Suppose conversely that A(¢)= HLP, or equivalently that (x) holds for
some constants K and p (0<p<1). We can then find an «,>0 and a p’
O<p=p' <1)suchthat | fiwls S a?|fll4 holds for all 0 = a < a, and fe A(p).
Now choose a natural number n as 2" < «,, and an ¢ >0 as (2—2"%) > 27", If
(17) is false, there exists a & with & <2~ for which @(2&) > (2—e)P(&) holds.
But this implies @(&) = (2—2e)P(&/2), for otherwise we would have @(28)—@(&)
S 2ADE)—D(E/2) < PE)—DPE/2D+(A—2)D(E/2) < (1—e)P(&), which contradicts
the choice of £, Therefore, repeating this argument n times, we get

D28 = (2—)PE) =ZC2—e)2—2)D(E/2) = -+ = (2—2"e)"D(§/2%1).
On the other hand, by virtue of @Q2".£/2" 1) = || y¢,z/mn-1,0~m |4 We have
028) = O@¢/2) S 27DE/ 1) < Q=20 0E/2Y,

hence a contradiction. Thus we have shown lim sup @Q2u)/P(u) < (2—e¢), and
u—0

this proves our assertion. Q.E.D.
REMARK. For an arbitrary Banach function space X with RIP 0(f) belongs

13) A necessary and sufficient condition for M(¢) € HLP is also given in [3].
14) This fact is due to [3]. But the proof becomes somewhat simpler than that

of [3]
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to X, if f(x)log(1/x)e X.
This fact has been shown in [2; Theorem 7] in case of X= A(¢), and the

proof is similarly obtained, since for any positive decreasing ¢ < X’ and any
S € X one obtains

€O, 0> =275, eyo =2 proarf - dx

=2 () log (1/D)e(tydt .

4. Let (E, 2, ) be a non-atomic finite measure space with a countably
additive non-negative measure g on a o-field £ of E, and let X=X(E) be a
Banach function space of integrable functions over E, which has RIP.

Now, we consider the following condition on X :1®

©) M A lfle X

for any f=X and for any system of measurable sets {e,},<a=; satisfying
e.Ce; for ¢ = 5. As is easily shown, this property can be considered to be
what corresponds to HLP in the case when E is an interval (0, a) of real
numbers. In fact, if f is positive decreasing and e, = (0, aa) for all « € (0, 1),
then \U Ae,f coincides with f.

(=a=1

Lastly we shall describe a necessary and sufficient condition in order that
X satisfies (@). For any 0<a =<1 and 0= fe X, we denote by S(f; «) the
set of all 0=ge X satisfying p{r:g®)>r}=a-p{x: f(x)>r} for all »=0.
Then, we can prove

THEOREM 5. X(E) satisfies (@) if and only if there exist positive numbers
K and p (0<p<) such that |f|| < Ka?| gl holds forall 0=fe X, g S(f; a)
and 0<axl.

The proof being quite analogous to that of [Theorem 1, we omit it.

Department of Mathematics,
Hokkaido University
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