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Takeuti-Kino discussed a relation between formulas with “constructive”
infinitely long expressions and the analytic predicates in Kleene [4].

We shall deal with this by the notion of “ provability ” instead of “repre-
sentability ” used in [7]. For this purpose, we shall consider two kinds of
formal systems of the theory of natural numbers. One (which we denote by
& (or &%) is an applied second-order functional calculus with equality which
differs only somewhat from the system A, in Grzegorczyk, Mostowski and
Ryll-Nardzewski (or its extension by Mostowski [6]). Another (denoted
by J) is based on the first-order functional calculus with infinitely long ex-
pressions and the class of its formulas consists of only constructive formulas,
whose nesting numbers with respect to quantifier are finite (in the sense of
7).

As an application, we can obtain Gédel’s incompleteness theorem for the
system J.

§1. The systems © and &*.

First, we shall establish a system & for the theory of natural numbers:

1.1. Primitive symbols are as follows: Non-logical constants 0 (zero), *’
(successor), x* (predecessor), *,--%, (addition), *,.%, (multiplication), and z(x,, %,)
(power ; instead of 7#(X,y) we shall often write xV); infinitely many distinct
number-variables g, z,, ---; infinitely many distinct 1-place function-variables
©o, ¢, -+ ¥ ; propositional connectives 7, V, A, and D; the quantifiers (),
(Vz), @¢;) and (V¢,); the equality symbol = ; the symbol = ; and parentheses

G-

1) The authors wish to thank the referees for their kind advice.

2) This system contains the pairing functions: J(X,y) (=/a(X, ¥)=(dF+(ds-¥)")"s
Jer1(Xyy o s X)) =J(Je(Xq, -+ 5 Xz)» Xxe1). Hence it is sufficient to have only 1-place
function-variables.
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1.2. Terms are defined inductively as follows:®

(1) 0 and each number-variable are terms.

(2) If s and t are terms, then s/, s', s+t, s-t and st are terms.

(3) If a is a function-variable and t is a term, then «a(t) is a term.

(4) The only terms are those given by (1)-(3).

1.3. Formulas are defined inductively as follows:

(5) If s and t are terms, then s=t is a formula. (Call it a prime formula.)

(6) If A and B are formulas, then 7A, AVB, AAB and ADB are for-
mulas.

(7) If A is a formula, x is a number-variable and « is a function-variable,
then (Ax)A, (Vx)A, (Ha)A and (Va)A are formulas.

(8 The only formulas are those given by (5)-(7).

14. Sequents are formal expressions of the form I = ®, where I’ andi®
are arbitrary finite (possibly empty) sequences of formulas. The notions of
numeral, closed formula and elementary (or arithmetical) formula are defined
as usual. We shall denote the numeral for the natural number n by 4,. And
we shall abbreviate

AXARAVYAX Dx=Y)) as @IXNAX),
and
(ADB)ABDA) as A=B.

1.5. Postulates for the system &,

(i) Logical axiom schema: Aw=»A, where A is an arbitrary formula.
(i) Axioms for arithmetic:

O n=u= Lo =1

10) =»7@=0)

11) =»0'=0

(12) =) =1,

(13) =y +0=1g,

(14) = L1 = (go+§1)/

(15) =y, -0=0

(16) =y -2 =2 - L1+

a7 =g, 0)=4,

(18) = m(x,, 1) = m(Xo, L1) - Lo

(19)  ¢4(0) =0, (VE)(@o(2a) = 0 D @, (xf) = 0) = (Vr0)(90(x0) = 0)
(iii)) Equality axioms:

3) In the following, we shall mainly use non-italic Roman letters as metamathe-
matical ones, and the lower-case Greek letters «, 8,7, d etc., except for » and ¢, as
metamathematical function letters. The lower-case italic Roman letters denote natural
numbers (as informal symbols). Sometimes a and 8 are used as informal number-
theoretic functions.
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(20) =>r, =1,

(21) x=y, AX)= A(y), where A(x) is an arbitrary formula and y is a
variable not occuring free in A(x) and is free for x in A(X) in the sense of
Kleene [2], p. 79.

(iv) The axiom (—schema) of choice at type 0:

(22) (Vx)@AVAKX, v) = Ja)(VX)A(X, a(x)), where a is a function-variable
not occuring free in A(X, y) and is free for y in A(X, y).

(v) Rules of inference:

Structural rules of inference: As in Kleene [2].

Logical rules of inference: For the first-order functional calculus, as in
Kleene [2]. Additional rules for the second-order functional calculus:

Ala), [ =0 I'm 0, A(B)
f 3\ £ TN
N GnA), T=»0 =T 0, Ga@
where a is a function-variable not where 8 is a function-variable
occuring free in the lower sequent. which is free for a in A(a).
AB), I'=»0 I =0, A(a)
f £

V=) a)A@), [ =0 YT 26, YA@)
under the same proviso as in under the same proviso as in
the rule (=p3)», the rule (3f=»).

w-rules :

(=) Ad,), I'=»0O for all n =6, A(4,) for all n

TEAXAX), [ =06 ’ )T 0, (Vx)A(x) ’

where A(4,) is the formula obtained from A(x) by replacing x everywhere
by 4,.

Cut : I'w6,D D, A=]I] .

I', A=0, 1]
&* is the system obtained from &€ by adding the following axiom-schema
(cf. Mostowski [6]):
(VEDAE, @) =Ea)V)VIVYBE) = aldy - 47) D Ax, P},
with the trivial conditions.
If a sequent I'— 6O is deducible from the axioms by means of the rules

of inference in & (or &%), then I’ = @ is said to be provable in & (or &¥*) and
we shall write

—, =@  (or —y I'm0O).

In particular, if I'=@® is of the form =» A, where A is a single formula, then

. . . . =6, AUx t(x))
4) It is sufficient to adopt these forms instead of e. g. the form: =0, @A(x)
because we have the axiom schema (iv) above (and the equality axiom).
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we shall write simply
—, A (or —y A).

§2. The system J.

In this section, we shall consider a formal system with infinitely long ex-
pressions having an arithmetical structure. (Cf. Takeuti-Kino and Maehara-
Takeuti [5].)

2.1. Primitive symbols are as follows: Non-logical constants are the same
as in ©; infinitely many distinct number-variables b, v,, v,, --- ; logical symbols
7,V, A\, 3, V; the equality symbol = ; the symbol = ; and the parentheses (,).

2.2. We shall correlate distinct odd numbers to the primitive symbols,
thus :

0 b, = v 4+ . r = 7 VvV A 3T V¥
3 7+ 5 9 11 13 15 17 19 21 23 25 27,
respectively.

2.3. Terms are defined inductively and correlated the Godel numbers
(denoted by I't1 for a term t) in the following manner :

(1) 0 and v; are terms, and [07=3 and 'b;1="77+1

(2) If s and t are terms, then t/, t', s+t, s-t and s* are terms and

e1=2.3M, [t7=20-3%, [ght]=21.3%.5",
[s-t1=21.3 .5  and  [g]=21.3%1.5M,

(3) The only terms are those given by (1) and (2).

24. Formulas are defined inductively and correlated the Godel numbers®
in the following manner. First, such formulas were defined in and called
“ constructive ”.

(1) If s and t are terms, then s=t is a formula (called a prime formula)
and 2!7.3™1.5M™ jg the Godel number of it.

(2) If A is a formula and b is a Godel number of %A, then 7A is a formula
and 2v.3% is a Godel number of it.

(3) If A’s are formulas for all 7 and if there is a number f defining re-
cursively f() as a function of ¢ such that for each ¢ f(z) is a Godel number of
%A;, then V(¥ Ay, ++) is a formula (abbreviated as V) and 22!.37 is a Godel
number of it. '

(4) Similarly for A®, %A, ---) with /L\QL and 223.37,

(5) If Ais a formula and b is a Godel number of A, and if (Ve Decryy =+
is a sequence of distinct variables of order-type < w such that g(t) is a recur-

5) In generally, Godel number of a formula is not uniquely determined.
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sive function, then Jo,, 0,0 -+ A is a formula and 225.3¢.5" is a GOdel number
of it, where g is a number which defines recursively the function g(?).

(6) Similarly for Vg, gy -+ A with 227.3¢ .52,

(7) The only (constructive) formulas are those given by (1)-(6).

2.5. The notions of numeral and closed formula are defined as usual. Let
us denote the numeral for the natural number n by 3,. We shall abbreviate :

Ve, 3B, B, ) as AV B,
AL B, B, ) as AAD,
7ANV B as ADSB,

and
ADODBANEBDON as A=9B.

2.6. Nesting number of a formula. Let n() and n’(A) be ordinal numbers
defined in [7], and called the nesting number of a formula % and that with
respect to quantifier, respectively. proves n(A) <w;, for all constructive
formula N, where w, is the first non-constructive ordinal (in the sense of Church
and Kleene).

Let the class of formulas in 3 consist of all constructive formulas % with
finite n’(A). A sequent in 3 is defined as in § 1. It should be noted that each
sequent consists of only finite number of formulas in g.

2.7. Postulates for the system 3.

(i) Logical axiom schema : =9,

(il) Axioms for arithmetic: Similarly as (9)-(18) in § 1.5, replacing g; there
by v;. They are named (9)-(18), respectively. (System I has not the axiom
of induction.)

\1:/(31: = b0)-

(iii) Equality axioms:

(20) Dy = 1.

21 /i\(Ugcz'):’Jncm), A0 gc03 Dgcry » *++) = W(Brcors Pncry » --+), under the trivial con-

ditions, where g and h are recursive functions. Here and after instead of {g}(?)
we write simply g().

(iv) The additional axiom-schema :

(22) /i\ \j/‘l[i(aj)-bﬂbg(o)bgm 4\‘21i(bgm), where no v,y occur free in any %;(3;)

and 37 is free for bg(i) in ‘)Ii(bg@)).
(v) Rules of inference.

=0, AL =06
TS rae S rae, 7w

N, [ =6 for all { I'=»6,%,
V=, T w0 Vo v
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(A =): Dually as (= /), (= A): Dually as (\V =).

N(Ogc05 Vgcry » *++), L b O
Fgcorgary =+ AWgeors Ve » *++)y I = O

3

=)

where g is recursive and {,q), Vs -+ » 1S @ sequence of distinct variables of
order-type = such that no v,y occurs free in the lower sequent.

F‘@; SJ'I(to’ tls "')

= ]
( ) F »@: al’g(o)bg(l) o s)’I(Dg(o)’ Dg(l): "') ’

where g is recursive and (b, Vg -+ > 1S @ sequence of distinct variables of
order-type =w, and (t, t;, ---) is a recursive sequence of terms (this means:
[t;] is a recursive function of i) such that it is of the same type as the former
and is free for {0y, Vg ==+ 10 (0003, Veds =+ )-

(VY=): Dually as (=3), (=Y): Dually as (3m).

Structural rule of inference: —IQL}IAT, where any formula occuring in I’

or A is contained in @ or II, respectively.

Cut - e A, N, O[]
ut: I, 0=, IT .

The notion of “[ =@ is provable in I is also defined as in §1. And
we shall write as —, I'= . In particular, for —, =% we write simply —,%.

§3. Statement of Theorem 1. 3.1.

THEOREM 1. Let a be a Gidel number of a provable formula N in I such
that n(M)==Fk and its proof contains no formulas in which a variable occurs
both free and bound. Then

L™ Qu(4,, @),
where Qi(a, @) is the formula obtained by formalizing the predicate Q(a, @)
defined in in the system &* (see below).

This is a counterpart of in [7].

3.2. We shall define a predicate F(a, b, @) for the Goédel number a of a
term inductively as follows. (The notations using here are informal ones and
are found in Kleene [2].)

a=3 & b=0.—.F(q, b, ).

a=7% & (a);=0 & b=a((a);=1)-— . F(a, b, ).

a=25.3"1 & (Ed)XF({(a), d, @) & b=d+1).-— . F(a, b, a).

a=2°.3"1 & (Ed)(F({(a),d, @) & (b=0 & d=0-.V\-d=0b-+1))
-— . F(a, b, a).
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a=2".3®1.5@ & (Edd,)(b=d,+d, & F((a), d,, @) & F{(a),, d,, a))
-—.F(a, b, a).

a=21.3®1.5 & (Ed,d,)(b=4d.d, & F((a),, d,, a) & F((a),, d,, @)
-—.F(a, b, a).

a=2%.3@1.5@2 & (Edd){(b=1 & d,=0-\ -b=d¥)
& F((a), d,, ) & F((a),, d;, @)} -— - F(a, b, ).

F(a, b, o) only as required by the above clauses.

By Kleene [3], the predicate F(a, b, @) is in the class X9. Hence it i
formalized in the system &, and the formula obtained by formalizing it wx
shall denote as F(a, b, @), which is an elementary formula.

LEMMA 1. If a is the Godel number of a term, then

D —; @!D)F(de, b, @).

PrOOF. Since the formula F is elementary and (Va)(3!b)F(4,, b, a) is true
in the principal model of &, we have (1) by Theorem 3.1. E in [1].

3.3. The inductive definition of the predicate Q.(a, @) is given as follows
(These predicates are the ones in [7])

@ Qua, 2 ({a=2v.3@1.5@2 & (EB(F(a)y, b, ) & F((a)y, b, a))}
V{a=2v 31 & Qy(a), @)}
V{e=22.391 & (DENT.(a)y, %, 3) & ENNT1(@)y, %, ¥)
— Qu(U(), a))}
V{a=22.391 & (NENT(a)y, x, ) & OXT: (@), %, ¥)
— Qu«U(), adH)
3 Quula, )= ({a=217.3@1.5@2 & (Eb)(F((a), b, @) & F((a),, b, a))}
V{a=2" 391 & Q. (a), @)}
Vi{a=22.321 & (N)(ENT(a), x, ) & EX)NT(a), x, )
= Qi+:(U(3), a))}
Vdia=2%.3 & ((ENT(@);, x,3) & (DONTW(@)y %, )
= Qi+1(U(3), a))}
V {a=2%.3®1.5@2 & (x)(Ey)T.((a),, x, ) & (ER)(D(a),, a, B)
& Q:(a), BN}
VA{a=27.3%1. 592 & (ENT(@), 7, 3) & (BD(@),, @, B)
— Qi(@x B,

where D(a, a, B) denotes the following predicate :
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@ ENWT(a, y, w)— x # Uw)— a(x) = B(x)) .

Takeuti-Kino proved that for each 2=0, Q(a, ) is expressible in the
form Xi,, \[IIL., under the condition: a is a Godel number of a formula. We
shall denote by Qua, &) and Qj}(a, «) the formulas obtained by formalizing in
©&* the XYi.,- and [T}, ,-predicates, respectively.

Now in the first colomn of the following table we shall list the formulas.
which are obtained by formalizing (in ©) the predicates listed in the second
colomn of it:

B,(@) a=T7% & (a); #0

By(a, b, ) b= a((a),~1)

B,(a) for m>2 a=2".3"1 & (a);#0

B.(a) a=2m.3®1.5®2 & (), #0 & (a), #0
© Cia, x) (@);=x

D(a, a, B) D(a, a, B) (see above)

Uy, 2 Uly)==z

(see Kleene [2]).
T, x,y) T(a, x, )

We can show that the following formulas are provable in &* ((6) in &)
based on the proof of in [7]: For the Gédel number a of a term
in J,

(6) Fd, b, a)=d, =4, Ab=0)V (B,(4,) AB;(4,, b, ) VvV (B:(4,)
AFd o, bY, @)V Be(d) A[(diy,=4; ANb=0)
V F(d,, b, @)
V (Bi(42) A @edF( Ly, ¢ @) AF Ay d, @) Ab=c+d])
V (Bis(da) A @cd)[F(dcayy, €, @) AF(dayy, d, @) Ab=c-d])
V (Bis(do) A Qed)[F(d oy, €, @) A F(diayy, 4, @) Ab=1m(c, d)]).
For a Godel number a of a formula % in J such that n’'(W) < &,
™ Qs @) =Qi(d,, @),
®) Qu(4a, @) =(Bi(do) A @D)F(diayy, b, @) A F(diay, b, a)D)
V Bis(dw) A 7Qi(dayys @)
V Bau(da) A VROENT w1 X, ) A GV T @ X, ¥)
D@EDLU(G, 2) A Quz, @)1}
V (Bss(4o) A (V)ENT oy, X, 1) A VOV T w1 X, ¥)
D@ADLU(y, 2 A Qu(z, @)1}
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V (Bi(4da) A (V0EV Ty, X, ¥) A GBHIDU ) @, B)
A Qi-1(dcarss BYD)

V (B4 A (YEN T @y, X, ) AVBIDA iy, @, B
DQi-1(dwrss B,

where in the case £=0 we omit the last two disjunctive members.
And if f is a Godel number of a recursive function of one variable (in
the sense of Kleene [2]), then we have:

©) —, Yx)A!'yTU, x,y) and —, (V3! 2)UEX, 2).
10) —, Ty, 4;, v) = U(y, 4d50) .
= D;, @, B) = (VOLVy2) (T, y, 2) D 7U(z, X)) D a(x) = B(x)] .

In the following, for the simplicity we shall often use e.g. U(5), [ =0,
P(d(x)), where U(0d) is an abbreviation of (Vx)U(x, d(x)), instead of

I'=»0, @Gy)Ux, y)APH)]
I'=»0, (YyIUE y)DPy)].

or

Obviously we have :
12) —; @YU, 0(x)) and +—; @I)VXIC(X, 0,(x)) .

(In &, the treatments for particular primitive recursive functions are done in
the same ways. But sometimes these expressions are. complicated.)

§4. Proof of Theorem 1.

In this paragraph, we shall prove below, from which
1 can be obtained as an immediate corollary.

THEOREM 2. Let A= Il be a provable sequent in 3 such that its proof
contains no formulas in which a variable occurs both free and bound. Then
we have

@ s A*(a) = [1%(a),

where, if A denotes a sequence of formulas U, -, N, in I whose Godel
numbers are a,, -+ , Ay, respectively, and if n(W) =k; G=1, 2, --- , m), then A*(a)
denotes the following sequence of formulas of &*:

Qk(daly (X), ] ka(dam’ a) .

PrOOF. By the transfinite induction on the order of proof of the sequent
A= IT in 39,

6) The notion of “order of proof” is defined as usual.
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Basis. The order 0.

Case 1. A= Il is of the form A= A. This case is obvious.

Case 2. A=II is one of the axioms in (ii) §2.7. E.g., let A=Il be
o =1t{ =, =1, and let a and b be Gb6del numbers of tj=1v]; and v, =1b,, respec-
tively. Obviously, we obtain

e Qo(dm a)= a’(do) =a(d,) and 4 Qo(db: a)= a(do) =a(d,)
by (6) and (8) §3. Hence we have Q,(4,, @)= Q.(4,;, «). (Here and after, we

often omit the symbols +,, —, and +—,.) For the other axioms: similarly.
Case 3. A=Il is Nty = Ynirs AOgors Dgcnrs =) ™ W(0r03s Brcars *++)s where g
T

and h are recursive. Let a, b and ¢ be GOdel numbers of those formulas,
respectively; and let n’Q)=~Fk and () =Tbus . Then a=2%1.3/, where f(2)
=15 ="0rs . By (8 §3 we have
2) U©0) = Qy(4,, a)=x)NYLTU,, X, y) DQ,0(y), )], and for all ¢
) Qs @) = a(dyi) = a(dyw) .
Obviousely, for all i,
@ U@, Ty, 4;, y), Ty, 45, 7) D Q) a) = Qu(d s @) -
By (6) §3 for all i
®) a(dyy) = a(dyesy) = F(dyy, a(dgi), @)
Therefore we can obtain (by above (2)-(5) and (9) §3)
U(9), Qu(4,, )= (Vxuv)[T(,, x, W) AT, %, v) - D - FOw), a(dw)), a)].
Hence by below we have (using §3)
Qo s, @), Qu(dy, ) = Qu(4,, @) .

LEMMA 2. Let A0y Vecrys »++) be a formula in J such that g@i) is recursive,
and A(ty, ty, -++) be the formula obtained from the above formula by replacing
by by terms t; such that ['t;] is a recursive function of i®. Further, let b and
¢ be Godel numbers of the formulas, respectively; and let t be a number
defining recursively Tt;1 as a function of i. Put

) 2, (a, 0) ={xuv)[T,, x, ) A T, %, V) DFO), a(d)), a)].
Then it holds
U(©0), 2,,(a, 0)= Qi (4, @) =Q4., @),
where n’/(W)=k.
Proof of this lemma will be given in §5.
Case 4. A= 1l is Y /J\?Ii(gj)-bﬂbg(o>bg(l) 4\91i(bg<i>), where no b, occurs

7) Of course, we assume that the substitution is free.
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in any ;. By our presupposition, there is k:l\_/iax n’(A;). Let b be a Godel
number of i/\j\/?Ii(gj) and hence b=2%.3%, where b,(1)=22".3%%1 and for each

J {0:)}(J) is a Gédel number of A, (z;). Further, let a be a Gédel number of
Fogobem =+ AWilvgy) and hence a=2?%.3¢.5%, where a,=22.3% and e(3) is a

Godel number of N,(v,,,). First, by (8) and (9) §3 we obtain
(M Cy0)), UG) = Qu(dy, @) = (Vxu)(T(dy,;, X, 1) D Qud(w), @)
= (Vxu)(T(4,,, x, u) © @2)(YY)LT@,0W), z, ¥) D Qud(y), @)])
= (VOEU(T (s, x, W) A @2)VYLTO.(W), 2z, ) D Q) a)])
= (V@A) Vu)(T( oy, x, W) DYYLTG(6(W), 2, ¥) D QO(Y), a)])
= (Vx)A2)PE, z, «, 0,, 0), where C,(#,) denotes (Vx)C,(X, 0,(X))
and P(x, z, a, 0,, 6) denotes the formula

and (Vu)(T(Abp X: u) D (VY)[T(01: (5(11)): Z: Y) D Qk(a(y): a)]) .

(8) U(a) » Qk+1(Aa) CY) = (H‘B)(D<Ag1 a: ‘8) /\ Qk(dagr ‘8))

=3 DU, a, B) AxLTU., X, y) D Qu), ).
Next, in the same way as in the proof of (see §5), we have: for all
7 and j.

U(a): T(Agx Ai; W): T(Ag» Air W) -] Aj: B(Ag(j)): Qk(Ad(i,j): ﬁ)»Qk(Ae(ih ﬁ) »
where d(i, 7) = {(b,(@);}(j). Since no b,u’s occur in any Ay, by below :
D(Agv a, B)ym Qu(dyu.ip B) = Qk(Ad(i,j): a).

Hence for all 7 and j
D(‘Ag’ a, ﬁ): U(a)r T(Ag7 Ai: W); T(Ag’ Ai: W)D Aj: ﬁ(a(W)), Qk(dd(i,j)! Of)

= Q4o B) -
By (9 §3

D(d,, &, £, U@), YW)LT,, 4y, )2 4;=F0(W)), Quldaci, i )= Qu(dewr» £ ,
and hence (by w-rule) for all ¢
€ D4, a, £), U@, A){(vwW)(T(4,, 4;, w) Dz = B(6(w))
AN YT ay0915 2, ¥) D Qu((Y), @)} = Q(decsr, B) -

Since

=1 (YWLTg, 4i, W) D VYT BOWD), ¥) D Qu(A(Y), a))]
= A2){(YW)(T g, 4;, W) Dz = BOW)) A VYN Ty 2, ¥) D QOF), @)},
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by (9)
Cl<01): D(Ag’ o, ﬂ), U(5), (VW)ET(Agy At: W) D(Vu){T(Abp Air U)
DYNTE:6W), BOW)), ¥) D Qu(O(Y), a)}]= Qulde B) -

Ie,
@(011 5)! D(Ag! «a, 48)1 (VW)[T(Ag’ Air W):) P(Au ,3(5(W)), «, 01» 6)] #Qlc(de(i)l ﬁ) ’

where ©(,, ) denotes C,(0,) A U(0).
Using several rules of inference

6@0,, 0), D,, a, B) A(Nvw)(T4,, v, w) D P(v, B(o(w)), a, 8,, 0))
= AR (D, o, B) AVxy)LTE., X, ) DQOG), B -
Hence by (8)
6@,, 8), @BIDU,, a, B) A (Vvw)(T,, v, w) DP(v, f(6(W)), @, 01, 6))]
= Qi+1(da, @) .
So, if the following sequent is provable in &*:
(10) 6, 9), Qi(d,, @)
= (AB)DE,, @, B) A (Vvw)(T(d,, v, w) D P(v, f(o(w)), a, 8,, 0))],

then (using §3) we have: —y Qu(ds, @)= Qe (d,, ), which is the desired.
Now we shall prove [I0): It can be easily shown that

—x PO(X), 2, a, 8, 0) = AZ)[ {(Vvw)(T(4,, v, W) DX # 0(W)) A 2= a(X)}
VA@vw)(T,, v, w) Ax=0(wW) A P(O(x), z, @, 6, 6)}] .
Hence we have
(Yv)@2)P(v, z, a, 0,, 0)
= (Vx)AZ{Vvw)(T ,, v, W) DX # 0(w)) A z= a(x)}

Vv A{@vw)(T4,, v, W) Ax=03(W)) A POX), z, a, 6,, )}] .
By )

D 60y, 0), Quds, )= (V@Y YWI(T (L, v, W) DX # 6(W)) A 2= a(x)}
VA@VWX(T,, v, w) Ax=0(w)) A POX), z, @, 0,, 0)}] .
On the other hand, we can obtain
VxV{(YW)(T(4,, v, w) Dx=0(w)) D I(xX) = v}, @vw)(T(4,, v, W)
A X =0W)) DPOX), z, a, 0,, 0)= (Nvw){T(4,, v, w)
AX=0(w)-D.P(v, z «,0,0)}.

Therefore,
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Vx){(YWXT,, v, w) Dx=0(wW)) D O(x) = v}, (VXA {(Vvw)(T4,, v, w)
DX #0W)Dz=aX)} AN{@vw)(TU,, v, w) A X =0(w))
DPOX), z, a, 0, 0)} 1= (V)@ {(Vvw)(T(4,, v, w)
Dx#+ow)Dz=aX)} ANFvw{TU,, v, w)
Ax=0(w) -D- P, z, a,b,0)}].
From this together with [11), we obtain
AOHVx{YWY T, v, w) Dx=0(W)) DO(X)=v}, O, 0), Q(4,, )
= (V)@ {VvwW)(Td,, v, w) DX # d(w)) Dz =a(x)}
ANNVVWH{ T, v, W) AXx=0Ww)-D-P(v-z-a, b, 0)}].

It can be proved that the first formula of the above sequent is provable in &.
(Use the condition: (E)(g@) =7)=»(E!1)(g@)=7j), which our recursive function
g possesses by our supposition.) Hence by the axiom (iv) §1.5, it holds:

0@, 9), Qu(4,, a) = ARNXL{(VvWXT,, v, w) DX # o(W))
DBE)=a(x)} ANvw{TU,, v, w) A Xx=0(W)
- D P(v, f(x), «, 8,, 0)}] .
Therefore we have (by §3)
6(0,, 9), Qu(4s, @)= 3PDU,, a, p)

A (VVvwWI(T(d,, v, W) D P(v, B0(wW)), a, 0, 6)] .
This is [(10).

LEMMA 3. Let a be a Godel number of a formula % in I, and n’(A) = k.
If no v, occur in A, then it holds:

(12) |_>k D(Agx «, ﬁ)»Qk(Aax C() = Qk(da: ﬁ) ’
where g(t) is recursive.
Proof of this lemma will be given in §5.
Case 5. A=Il is =\/3;=v,. Let a=2%.3/, where for each ¢, ()

=[3=1,1. Then by (6) and (8) §3 we obtain:
U0) = Qy(da, @) = AVY)TUy, %, y) D Qu(0(y), @)
4; = a(0) = 4, = a(0)
4= a(0) = Qy(4 s, @)

4; = a0) = (AX)(VYNT,, X, y) DY), ).
I.e,
4, = a(0)mQ,(4,, @) for all i.

Hence 3x)(x = a(0)) =» Q,(4,, @). But —, (3x)(x = a(0)). Therefore, —, Q,(4,, @).
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Induction step in the proof of We shall prove only for several
cases, since the others can be similarly done.
W, I’ =»E for all i

Case 1. A=1Ilis \i/‘lI,-, I' =, and VI, T =0 By our presup-
position, there exists M<ax n’(N,). Hence, let k;=n’(A;) and k:M<ax k;. We

use the following lemma which will be proved in §5.

LEMMA 4. Let k=0'(N) and a be a Godel number of N. Then for every
natural number m, —y Qu(dy, @)= Qrin(d,, @).

Let a be a Godel number of \/2A; and hence a=2*.3/ where f(i) is a

Godel number of UA; for each i. By we have y Qi (dsw, @)
= Qu(dsuy, @). Using +—4 Quld ), @), I'*(a)=O*%a) (which is obtained by the
hypothesis of induction) and cut, we obtain (for all 7)

U(a); T(Af: Ai» Y)r T(Aft Ai: Y)D Qk(a(Y): a)v F*(a)-b@*(a) .
Hence (by w-rule and (9) §3)
U(0), @)y Ty, x, ¥) D QW) a)), [*(a) = O%(a).

By (8) §3 we obtain —4 Qi(4d,, @), [*(a) = O*(a), which is the desired.
Case 2. A= Il is 30,050, -+ A(0gcors Vgcrs +++), I =» O and
A(0gc03 Vgirss =), I = O
F0gcoecry =+ AVgeors Vgerrs ==+ ), [ = O '
a=2%.3¢.5" where b is a Godel number of (v, vy, -+ ), and n’Q)==k.
By the hypothesis of induction: Qu(4,, 8), I™*(3)= @*(8). By that proviso and
stated above, we have

D,, a, B), [*(a)=»I"*(8) and D4, «, B), O*(B)=»O*(«a).

Hence D(4,, a, B) A Qi(dy, B), I'*(a) = @*(a). So, by (35 =»)-rule and (8) §3 we
obtain Q..,(4,, @), I'*(a)=» O*(a), which is desired.
Case 3. Am Il is I'm O, 0,09,y * (0ge0rs Dpcry -++) @nd
I'=» 0, N, t;, ---)

I' =0, Fo,050505 - WAdgeors Vgcrrs =
a=2%.3%.5", where b is a Godel number of (v, Vzy -+ ), and n/Q) = k.
Further, let ¢ be a Gddel number of UA(t,, t;, ---) and let ¢ define recursively
lt;1 as a function of i. Then by the hypothesis of induction: /™*(«)=»O@*(«),
Q.(4., «). On the other hand, by the same method as in the proof of
2 we can obtain: U(9), 2, (a, B, )= Q.(d;, B)=Qi4., @), where 2,/(a, B, 0)
=yuw)(T,, y, ) A T(4,, y, W) -D- F(0(w), B(6(u)), a)). Hence

U(a): D(Ag9 a, ‘8) /\ ‘Qg,t(ai ﬁ: 5)) F*<a)»@*(a); D(Agy a, ﬁ) /\ Qk(db: ‘8) ’
U(a)) (aﬁ)(D(Ag) «, ‘B) /\ ‘Qg,t(ar ﬁ! 5))7 F*(a)
= 0%(a), 3BDU,, o, ) A Qu(dy, B) -

under the proviso in (I=»)-rule of J. Let

y under the proviso in (= 3J)-rule of J. Let

SO
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If we can show [I3): +—, U0 = @@BD4,, a, B) A 24.(a, 8, 5)), then we have
(using (8) and § 3) I*(a) = O*(a), Qi+:1(4ds, @), which is the desired.
Proor oF [I3): Let P(x, z, a, 0) and P(x, z, @, 9, 6) be
{(Vyu)(T(4,, vy, W) DX # d(u) D a(x) = 2}
A (Yyuw){T(d,, y, W) A x=0(u)
AN T(At: y, W) c - F(a(w): z, le)}

and
{(Vyu)(T(4,, y, W) Dx +# d(u) D a(x) =z}
A (VYLIW){T(Ag, Y, WAX= 5(“)
AT, 6(x), w) -D-F@(w), z, ®)},
respectively.

Now, we have the following provable sequents:
(Vyu)(T(d,, y, W) D x # o(u))
= (Vyu)(T(4,, y, W) DX = o) A a(x) = a(x),
(Vyu)(T(4, y, WD x # 6(w)
= (A2){(Vyu)(T(4,, y, w) DX # 0(W) A a(x) =12},
(Vyu)(T(4,, v, WD x # 6(u))
= 32 {(Vyu)(T(4,, y, w) Dx # dW) A a(x) =z}
V {@yu)(Td,, ¥, W) A x =) A (YW)(T(4,, 6(x), W)
DF(@(w), z, ap}l,

and
(Vyu)(T(4,, v, w) Dx # d(u))
= (A {(Vyu)(T,, y, w) Dx # d(u)) D a(x) =z}
A@yu)(T g, v, u) A x=6d(u) DVw)(T(,, 6(x), W)
DF@(w), z, a))}].
Hence
(14) (Vyu)XT4,, v, w)Dx + o(u))=»3z)P(X, z, «, 7, 0) .

On the other hand, for all i
T, 4;, u) Ax=0), (T, 4;, ) Dx=0W)DIX)=4;,
T, %), w), T(d,, 4;, w) D F@OW), z, a) = F(o(w), z, a)
Hence for all ¢

T(4,, 4;, ©) Ax=0d(u), (Vyw{(Td,, y, ) Dx=0u) DI =y},
(denoted by M,(x, 4;, u, d), My (x, 0, 8), resp.),




Two systems for arvithmetic 259

Yw)X(T(4,, 4;, w) D F(o(w), z, a))
= (YW)(T(4,, 0(x), w) D F(o(w), z, @),
M,(x, 4, u, 0), My(x, 0, 8), Yw)(T(4,, 4;, w) DF(o(w), z, a))
= @D{AYWM,(, ¥, 1, 3) A (YW)(T(4,, 6(), w) DF@EW), 2, a))} .
In the same way as above, we obtain
M(x, 4;, u, 9), My(x, 3, ), (YwW)(T(4,, 4;, w) D F(o(w), z, a))

= (A2)P(x, z, «, 3, 0) .
Hence
M,(x, 4;, u, 0), My(x, 6, ), Bz)(VwW)X(T(,, 4;, w) DF((w), z, a))

= (32)P(x, z, «, 0, 0).

Since t(i) is a Godel number of a term in J, by we have
'—1 U((S)ﬂ(HZ)(VW)(T(At, Ai; W) D) F(B(W), Z) a)) .
Hence for all 1

Uu), My(x, 4, u, 0), My(x, d, )= (A2)P(x%, z, a, d, 0) .

By (u=)-rule and w-rule : U(5), @yuwM,(X, y, u, 9), M.(x, 0, 0) =» (32)P(X, z, «, 3, 0),
i.e,

A5 U@, Ayu) (T, y, w) A x=0(w)), My(x, 0, )= F)P(, z, &, 0, 0) .

By and we have [(16): U(9), My(x, 0, 0) = (32)P(x, z, a, 0, §). Now, we
shall show : U(0), My(x, 0, )= (32)P(X, z, «, d). First,

(T4, y, ) Dx=0)DIx)=y, T(d,, y, WAx=0w) AT, y, W)

= T(4,, 0(x), W) .
Hence

(T, y, W) Dx=0W)DIX)=y, T4, v, y Ax=0u) A T, y, W),
T, y, W) Ax=0u) A T, 0(x), w) D F@Ow), z, a)
= F(o(w), z, a),
(T, v, ) Dx=0) D)=y, T(4,, y, W) A x=0(u)
A T(d,, 0(x), w) - D- F(o(w), z, )= T(4,, y, u)
Ax=0u) AT, y, w)-D-FWw), z, a),
M,(x, 3, 8), (Vyuw){ T(4,, y, u) A x=0(u) A T(4,, 0(X), W)
+ D F(o(w), z, )} = (Vyuw){ T(4,, y, u) A x=0d(u)
AT, y, w)-D-F(o(w), z, a)} .
M,(x, 0, &), {(Vyu)(T(4,, y, u) D x # d(u)) D a(x) =z}
A Nyuw){T(,, v, ©) A x=0() A T(4,, 0(x), w) - D F(0(w), z, @)}
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= {(Vyu)(T(4,, y, 1) DX+ o(w) D a(x) =z}
ANNVyuw){T,, y, ) Ax=0wW AT, y, w)-D- F(o(w), z, a)} .
i.e, My(x, 0, ), P(x, z, a, 0, 0) = P(x, z, a, 6). Hence
M,(x, 0, 0), A2)P(x, z, a, J, 6) =» (A2)P(x, z, «, 7).

Together with [(I6) we obtain [A7): U(5), My(x, 9, 6) = (A2)P(X, z, a, §). From
this by (=) rule we have: U(0), @H(Vx)M,(X, d, 0) = (A2)P(x, z, a, ). Since
we may assume that the recursive function g possesses the property : (Ef)(g(j)
=)= (E!j)(g(j)=1), we can obtain —; (ADNVXMX, 4, §). (Cf. the proof
of [I0) in this section.) Hence U(d)=(Iz)P(X, z, @, §). Therefore U(S)
= (Vx)(32)P(x, 2, a, 0), and hence U(0)= (IAP)(VX)P(x, B(X), @, §). That is,

U(0) = @BLYV){(Yyw(T(4,, y, w) DX # (1)) D a(x) = B(x)}
A V)Vyuw) {T(4,, y, u) A x =) A T, y, W)
- D Flow), Bx), a)}]

Hence
U(0) = 3P)LD,, a, B) A (Vyuw){T(4,, y, v)

ATy, y, w) - D F(o(w), B(0(w), e)}].
This is just [I3).
Thus, the proof of (and hence of will be completed,
when Lemmas 2-4 will be proved.

§5. Proofs of lemmas stated in the preceding paragraph.

5.1. Proof of Lemma 2 by the induction on the nesting number of A.

Basis. U is a prime formula. Then (v, Yeepy, -+ ) has the form: Z;(vy0,
ey -+ ) = To(0gcoys Vecryy -++ ), Where ¥, and T, are terms (in J) and only finite
numbers of variables occur in them. And A(t,, t,, ---) is of the form: T (t,, t,;,
<o )=, (t, ty, --- ). Since —, B{;(4;) and —, B,(4,), by (8) §3 we have

U((S) = QO(AZ), a) = (HX)(F(A(b)p X, Of) AN F(A(b)zr X, C()) VAN QO(AC’ CY)
=@X(F Uy, X, ) A F(dy, X, @) .

Hence, it is sufficient to prove the following lemma :

LEMMA 5. Let {9y, gy, ---» be an infinite sequence of distinct variables
in 3, where g is recursive, and {t,, t,, ---> an infinite vecursive sequence of terms
in I (this means: Tty is a recursive function of 1). Further let v and s be the
Godel numbers of terms Z(bzq, Vgay -+ » Vgay) and T(t,, ty, -+, ty), respectively.
If g and t define recursively the functions g(i) and Tt;], respectively, then it
holds

€)) —, U@), 2, (a, 0)=»F(4,, x, a)=F,, X, a),
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where £, (a, 0) denotes the following formula:
VyuwXT,, y, O AT, v, W) - D - F(O(W), a(6(w)), a) .
Proof of by the induction on the construction of (b, -+, Vew)-
1°) r=3, i.e, the term is “0”. Then I(t,, t,, -+, t;) is also “0”. Hence
obviously we have —, F(4,, x, «) = F(4,, X, ).
2°)y r="7*, where j+ g() for all i</. Then s=7*'. Hence the lemma
holds.
3°) r="729%1 for some 1 </, i.e. T(Vge, o+ 5 Vp) 1S “0,0 7" and F(ty, ty, -+, t)
is “t;”, and hence s=1t@)=It;]. Then
U@, T4, 4;, w), T4, 4;, w), T(d,, 4;, OANT,, 4;, w)-D-Fo(w), a(d(w), a)
= F(d;0, a(dger), @) .
Hence by (9) §3
U(©0), 2,,(a, 0) = F(dy», a(dywy), ) .
On the other hand we have: F(4,, X, @) = x = a(d,) by (6) §3, and by Lemmal
1 —, 3!'x)Fd,, X, @). Therefore, we obtain
U(a); ‘Qg,t(a: 5)» F(A'I" X, a) = F(At(i)’ X, CY) = F(Asr X, 0() .

4°)y r=21.31.572 Then —, Bi(4,), T(vgcp =~ , V) has the form F,(v,¢p,
o 0g)+Za(0pc0s o0 5 Vpwp), @and hence E(t, -, t) is of the form Z,(t,, -, t)
4T (g, -+, t), s=21-3-52 and —, B{|(4,). By (6) §3, we have

U©0) = F(4,, x, )= Fcd)(F4,,, ¢, &) ANF(4,,, d, a) Ax=c+d)
and
U(0) = F(4;, x, ) = (Tcd)(F(4,,, ¢, @) AF(4y,, d, ) Ax=c+d).
By the hypothesis of induction :
U©), 2,,(a, )= F(4,,, c, ®) =F(4,, c, a)- A -F(d,,, d, &) =F(4,,, d, ).

From these we obtain: U(9), 2, («, 0)= F(4,, x, «) = F(4,, %, a).

5°) The other cases are also similarly treated. (q.e.d.)

Induction step in the proof of [Lemma 2: Case 1. A is of the form 7%B.
This case is obvious.

Case 2. % is of the form \i/%i, i.e., Aoy ey, --+ ) has the form \t/iBi(bg(o),

Deay --+ ). Then At,, ty, -+ ) 1is \‘/iBi(to, ty, --). Let 6=2%.3" and ¢=2?'.3%,

where for each ¢ b,(1) and ¢,(t) are Godel numbers of B,(v,¢), Veqy, ---) and
B(t,, t,, --+), respectively. By the hypothesis of induction :

@) U(9), Qg,c(a, 0) = Q. (4, @) = Qr,(deyy, @) for all i,
where k;=n’(B,;). But, if £=n’(), then by we have
29 U©), 24,(c, 0) = Qu(dyey, ) = Qu(deyery, ) for all 1.
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Since
U(a): T(Abp Ai: Y), T(Abp Air Y) ] Qk(a(y): a)»Qk(Abl(i)» Cl) ’
by above (2’) and (9) § 3 we obtain: for all :

U(0), 2¢,(a, 8), VyXT(dp,, 4i, ¥) D Qu(6(y), @)
= (AX)(VW)(T(4,,, X, 1) D Quo(w), a)).
By w-rule and (8) §3 we have
U(9), £2;,(a, 0), Qu(ds, a) = Qi (4., ).
Similarly we can obtain:
U0), 24,(a, 8), Qu(d., @)= Qi(d, ).

Case 3. N(vgy, Vg, --+) has the form Jvgpac =+ BOrcors Brcars == 3 Vgcors Vgcrys ***)s
where )(HLAG) # g(5)]. Then AL, t;, ---) is of the form Fo,ynay -+ BOnws
Oncyy *o 5 Loy tyy +). Let b=220-3".5% and ¢=2%.3".52 By (8) §3 we have:

U©0) = Qps:(ds, @) =@ABYDUn, a, 8) A Qu(dsy, BY)

and
U(0) = Qi.+1(de, @) = @YD e, B) A Qu(deyy B))
where £=n’(B). By the hypothesis of induction:

U(9), 2,8, 0) = Q(dyy, B) = Qu(4dy, B) .
In the similar way as in the proof of below, we can obtain
D, a, B) =2, (a, 0)= 82,8, 9,
because ()()(h() # g(y)) and {t,, ty, =+ is free for <y, Vgepy >IN Foncybray
+++ B(Oncors Drcwrs ** 3 Vgors Vgey =++) i the sense of Kleene [2] p. 79. Hence
U(0), 2;,(a, 0), D(4x, a, B) A Qi{dpy, B)=D(dys, a, B) A Qu(d.s, B) .

Thus we have
U(0), 2,(a, 0), Quri(ds, @) = Qpri(4., ).
Similarly,
U(a), Qg,z(a; 0), Qis:i(de, @)= Qi i(ds, ) .
The other two cases are also similarly treated. This completes the proof
of [Lemma 2
5.2. Proof of by the induction on n(%). Basis. U is a prime
formula: t,=t,. Then by (8) §3 we have

QO(Aa) C() = (EX)(F(A(a)p X, a) /\ F(A(a.)zr X, a))
and

Qu(da, B = ANEFEwy, X, B A F(dws X, B)).
Hence, it is sufficient to prove the following :
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—1 D(4,, a, py=F(4., x, ) =F(4., %, ),

where ¢=Tlt1 and t is a term (in J) which contains no v,4’s. This can be
easily shown by the induction on the construction of the term t (by using
) §3).
Induction step. Case 1. A is of the form 7%B. This case is obvious.
Case 2. % is of the form V®B;. Let n’'Q)=+k, n'(B)==%k; and a=22.3/,

where f(i) is a Goédel number of B;. Then by the hypothesis of induction, we
have

D(4,, a, B) = Q(dsw, @) = Qi (dsw, B) -
By LLe 4.
’ D(4,, a, B) = Qu(d s, &) = Qu(dsw B) -
Hence for all 1.
U@©), D4,, a, B)=T(d,, 4;, y) D Qé(Y), a) = Ty, 4;, v) D Qldsa, B,
and hence
U(9), D(4,, a, B)= @E(Vy)NT;, %, ¥) D QoY) @)
= @0OV(TEy, x, ¥) D Q) B)) .
I.e. U@0), D(4,, a, B)=Q(4,, o) = Qi(d, B), and hence we have
D4, &, B)=» Qi(4ds, @)= Qi(4a, B) -
Case 3. % has the form Jv,buq -+ B, where
€) OO #g ()] .
Let a=2%.3".5° where b is a Godel number of B. Then by (8) §3
U(0) = Qi1(da, ) = RO, a, B) N Qulds, B))
where £=n/(8B). By the hypothesis of induction.
@ D, v, 0)= Qu(dy, 1) = Qu(de, 0) .
Since by the supposition (3) we can obtain
U(0) m (Vxyuw)[ T4y, x, ) AT, v, w) - D 0(u)#o(w)],
we can show that the following sequents are provable in &:

U6) = (VX)AZ){(Vuvw)(T(dp, u, V) DX #0(V)+ A - T(d,, u, w)
Dx#=0W)NAz=a)}V {@uv)(T(dy u, V) AX=0(V) A z=7(x)}
VAGuw)(T(4,, u, W) AX=0W) A z=BX)}],

U0) = (VX))@ {(Vuvw)(T(ds, u, V) ODx#0(V) - A - T(d,, u, w)

Ox# W) Dz=aX} A {Guv)(Ty u, VY AX=0(W")Dz=7(X)}
AN {Guw)(Td,, u, W) Ax=0(w) Dz=B(x)}],
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®) U©) = @ADNVIOL{(Vuvyw) (T4, u, VIDx#0(v)- A - T, u, w)
DX #0(W)) DOIX)=ax)} A {Guv)(Td,, u, V) A x=0(V))
D) =y} AM@uw)(T,, u, w) A x=0(wW)) DIx)= Bx)}].

We shall abbreviate the formula in succedent of the last sequent by (30)M(a,
B, r,0,0) or even we write simply (30)M. Then we can obtain:

U(0), M(«, 8, 1,0, 9), D(d,, a, B), DG, a, 1) = D(4,, 1, 6) AD(dy, B, 6).
Hence by (4)

U@0), M, D4, a, B), D4y, a, 1) N Qildy, 7) =Dy, 8, ) N\ Qu(ds, ).
By (= 36), (30 =), (5), (37 =) and § 3 we obtain

D(Ag: «, ‘8): Qlc—l-l(Aay a)#Qk—Fl(da! 18) .
Similarly.

D,, @, ), Qu1(da, B) = Qpei(da, @) .
Case 4. U has the form Vou0ua -+ B, where (3) holds. Then
U(0) = Qi11(4a, @) = (VDU a, ) DQ4y, 0)) ,
where a=2%"-3".5% b is a Godel number of B and n’'(B)=+k. As in Case 3
we can obtain
(6) U(0) = AN NVL{(Vuw)(T(4y, u, w) Dx = o(w)) D 0(x) = a(X)}

A A{@uw)(T(dp, u, W) A X=0(W)) DOX) = y(X)}]
and
U@), D, «, B), D4, 8, 7), N(«, 7, 0, 0)=»D(4,, r, ) AND4,, a, ),

where )N(a, 1, 0, 6) denotes the formula occuring in the succedent of the
sequent (6). Hence by (4)

U(5), D(Ag) «, ‘8): N(a) T, 0’ 5): D(Ah,’ a, 0)3 Qk(Alb 0)#D(Ah7 [87 r) ] Qk(db! T) .
By (V6 =). (30=), (6) and (= Yy) we obtain
U(a)y D(Agr a, ‘8)’ Qk+1(AaJ a)*QIc+1(Aa: ﬁ) .

Hence D,, a, B), Qu+i(ds, @)= Qyi(4d,, §). This completes the proof .of
Lemma 3. -
5.3. Proof of by the induction on k=n’(A) can be readily done.
Thus, all the lemmas used in the proof of have been proved.

§6. Statement of Theorem 3.

In this paragraph, we shall deal with a counterpart of in [7],
which asserts that a predicate expressible in n-function-quantifier form is
“representable” by a constructive formula A such that n’‘(M)=n. For this
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purpose, we shall quote several definitions from [7].

Formulas in © in which each variable belongs to at most one quantifier
and no variable occurs in both free and bound, we shall call regular. Let t
be a term and A be a regular formula in &. Let g be a number which defines
recursively the function 2i(2%2j+1)=1). We shall write ¢(i, ;) instead of
{q}@, /). Further, let /, and K, (or simply, / and K) denote sequence of
distinct numbers <{j,, -+, jny and sequence of numbers {ky, -+, k> (m=0),
respectively. We shall define formulas [7;t]f and [AJ{ in J, where 1 is a
number and no g, ---, &, occur as bound variables in A, as follows:

@ If tis 0, then [z;t]f is 3 =0.

(2) If t is r;, where jeJ, then [1; t]Z 1S 3 =g, -

(3) If tisry;, where 1 =/=<m, then [i;t]% is 3 =3x.

@) If tis ¢y ty), then [1;t]{ is \’L/(ai:3Q(j+1,h)/\[h s 6.

(5) If t has one of the following forms: ti, t, t;+t,, t,-t, and n(t,, t,) then
[i; tld is

VG=d AL 410", Y(aizai ALCh; D,

V VG = dmtns A Lo s 6IE A Dhy s £1D2,

h1 hy

VG =i A s 602 The s 619
1 2
or

V VG =G 1) A [y 5 65 A Js s 6190,

Ry Ry
according as t is tf, t;, t;+t,, t;-t, or w(ty, t,).
(6) If A is of the form t,=t,, then [AJf is \i/([i s EE N L 6.
(7) If A has one of the forms: 7A,, A, VA, A, \NA, and A, DA,, then
[ATZ is: 7[A DL [AJE VIAL, [AdR ALATL or VLA DLV [A %
(8 If A has one of the forms: (Jr)A, and (Vr)A,, then [AJL is V[A,J%%
or Q[Al},’gﬁ;, where “/, ;7 denotes the sequence {ji, -+, jm, J »- *

©® If A has one of the forms: (3¢)A; and (Vp,)A,, then [A]L is

A0gcir1,00G+1,0 r LALTE OF  V04001,00¢G+1,0 -+ LA L -

In case / and K are empty, we write [A] instead of [AT%. The following
lemma was proved in [7].

LEMMA 6. For each regular formula A in &, (AL is a formula in § (in
which no variable occurs in both free and bound).

Then we can obtain the following

8) 20=0, 3j41=3;""
9) We abbreviate A (YU, B,E,E, 6, --+) as AABAGC.
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THEOREM 3. If A is a provable regular formula in &, then [A] is provable
in S.

§7. Lemmas used in the proof of Theorem 3.
71. LEMMA 7. If tis a term of &, then —, \/[h;t]%
h

Proof by the induction on the construction of t.

Case 1. t is 0. This case is obvious.

Case 2. tisy; where j=+j, (1=<I<m). Then [h;t]Lis 3, =10, By the
axiom (21) of I (see §2.7) we have —, ’\L/(ah:t]o). Hence +, \V (31 =400,

h

Case 3. tiszg; where 1=/<m. Then [h;t]% is 3,=4#, But it holds
=2 V(=) Hence =2 VL g

Case 4. tis t. Then [A;t]% is VGn=#A[i;t;]1%. By the hypothesis of
induction we have ~, V [7; t,0% Hence we can obtain —, \/ V G,=# A [7; t.J%)-

) o4

For the case that t has one of the forms t}, t;4t,, t,+t, and =(t;, t,):
Similarly above.
Case 5. tis ¢;(t). Then [h;t]% is \){(3h:bq<j+1,k)/\[k;t1]%{). We shall

write v for Yy4q,0. Then we have the following proof of \/[A;t]%:
h

=17 [k t g = s =0F \[k; t,]} for all &, k
B=0 Lk te= YV V Gu=bF ALk tip) for all h, k
h

By using (19) §2.7

-P\’L/(thb;ck) \h/(ah:b,’:), [k; tlj«};.;\h/[h; t7% for all %
kit k= \/ [h;tlf for all k
By the hyp. ind. Lk tudx y[ 1%
=\ [k; t% VIE; tk= VA tf
= \h/ Lh; tTk

This completes the proof of Lemma 7.
7.2. LEMMA 8. If T(t) is a term of &, then

= [0 TOI= Y Ch; Ik AL TU10 -

PrOOF. First of all, we must show that the expression on the righthand
side is a formula in 3. For this, it is sufficient to show that there is a partial
recursive function ¢™(q, t, 1, h,J, K) such that if ¢ and a are Godel numbers of
terms t and T(t) of &, respectively (under a suitable Godel numbering of terms
(and formulas) in &), then ¢™(a, t,1, h,J, K) is defined and its value is a Godel
number of formula [7; T(4,)J% of 3. This fact can be proved by the same
method as in [7] which uses the Kleene’s recursion theorem. Here, the proof
is omitted.
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Now we shall show the above equivalence: For simplicity we shall omit
J and K, and furthermore, (here and after) we shall often use the notation for
“ chains of equivalences” in Kleene pp. 117-8.

Case 1. T(t) does not contain t. If we write T for T(t), we can obtain
(by Lemma 7) :

= V(O VS TD =Y T DAL TI=[; T,
Case 2. T(t) is t. Then we have
= VO AL TUD =V (A tTATE 4,7
=V OAu=w=U 0 As=u=[i;t]

=[; TV,

by using the following facts:

1°) If i+ h, then —, 7G;=3n)

2 —, VO, B, A 78,8, N\ 78, )=, and

3 w,[i;4,]=3 =3, (by the mathematical induction on A).

Case 3. T(t) is one of the forms: T,(t), T.(t)', Ti)+Tyt), Tyt) Tyt)
and w(T(t), T,(t). Let T(t) be T,(t)+Tyt). Then we have:

=, [0 TOI=V VG =+ AL TAOIA [72; To(DD

1 72

=V V{=31+3 A\ y [y Tidn)I A TRy D

L 72

AV s Tudi)] AThe €3

by the hyp. ind, =V V V {3:=t48: A\ Cri; Ti(dW)] Alre; ToLld)IA TR €D}

r1 r9 h

(since we obtain +—, [Ay; tT A [hy; t]1= 3, =3, bY

= VAR 1AV V Gi=tntin AL s T A L7 T}

L 72

= VAT AL T+ Tuldly =V Chs 1AL TDD .

h
Case 4. T(t)is ¢ (Ty(t)). Then —,[i; T(®OI= \/ Ge=9, AN[r; T()]) (where
we write simply b, instead of by¢j1,0) =V a=0- AV Ch; tTALr; TuwD} (by
the hyp. ind) =V {[A; t1 A U o (Ty(d))]} = }/ {Ch; AT T4}

This completes the proof of [Lemma 8

73. Let AQp, - ,%p,) be a formula of & and t,, -+ ,t, terms of & such
that each t; either a numeral or a number-variable. For such a term t we
define [t]% as follows:
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3i if t is Ai,
Def
@€ [tk =1 3 if t is t;, where j; &/,
bew,p 1f t is r;, where j & /.

Then we have 2): —,[h; t]%=3,=[t]% Further, suppose t,, ---, t, is free in
A(gpp Tt xpn)

LEMMA 9. Under the above provisos, for every J and K (such that p,, -+, Da
&) [AJLCL %, -, [tn] t)—that which is obtained from [AQp, -+, Lp) 1k bY

replacing Ygw,p *** » Yaco,pm 0V [tilk, -+, [tulk, respectively—is a formula of J,
and 1t holds:
3) =, LAty -, )Tk = [ATR(C 6% - 5 [tadR) -

Proor. For the sake of simplicity we shall deal with only the case n=1
and write t for t,, x, for x,,. That [AJ&(t]% is a formula of J is proved
by the same method as in [7] pp. 184-187. Hence, it is sufficient to prove
(3) by an induction of form corresponding to the inductive definition of A(x,).
We shall show only few cases.

Case 1. A is a prime formula. Then A(t) is of the form T,(t)= Tyb).
By using Lemma 8 and (2) we can obtain:

=y [AQ) 1% = [Ti@p) = Toley) 1k

=\ VAT 0k A L T AT T3

V'V (o= 050 A L5 Ti)EA L T4}

Similarly we have

—; LA(D %

il

VOV o= DA L TR A L T4
Hence

—, LAMI =LAt -
Case 2. A(t) is of the form (Jg;)A,(t), where t is not r;. Then

—, [AM)Ik = \/ CA,MOI%E= )C/ CAJZi(t]%% (by the hyp. ind)
= \/ LA JZ(t]L), because t is not 1;.
—, LA@) 1% = \/ [Al:l%’,]l.c(nq@,p)) .

Vg0,

[ATRCt1% ) Sume [AQ,) % -

Hence we obtain +—, [AM)J% = [AIL[(t1D-
Case 3. A(t) is of the form (e, )A,(t). Then
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— LAk = Fg¢ia1,000G+1,0 -+ [AL(DI%
= Agcja1,000+1,0 -+ LA JL([(t]%) by the hyp. ind.
s LA = F09¢i41,000¢41,0 -+ [ATEOq00,m) -
Hence ~—, [A(©Tt =AM tID.
74. LEMMA 10. If t is a term of ©, then
@ = [k Ik = [h; tlh =8 =1

Proof by an induction of form corresponding to the inductive definition of
term t.

Case 1. tisOory; Lettbeyx;, Then [k;tlk IS 3% =00,» OF 3 =3
according as j&J or j=j,/J. Hence. obviously 4) holds.

Case 2. Let t be t,+t,, Then [%k;t]% is ;/Y(gkzahl—l—ahj\[hl;tl}{(
1 2

/°\ [hy; t.0%). Now for all natural numbers #%,, h, we have

30 = duat i Lhas 6% Dhas 805 3= 30 30 = 30T 30 A\ Cha s 6% A Dhas t7%.
Hence by rules (=»\/) and (\/ =)
[k; tittolk, sn == [h; t1Z.
Therefore, [k; t1; =3, =3, D[h; t1%. Conversely, by the hyp. ind., we have
8 = By Tin Lo tIk [he stk 8= 3r T dre [ras 6k, (e talk

= 3,0 =31y /\ 3 =3ny for all Ay, h,, v, and 7r,.
Hence [ =b3,=3, where I' denotes the antecedent of the above sequent.
Therefore

Lk tittodk, (A tibt k= 3 =3 .

Hence [k; t1=[A; t1k D3 =n-
Case 3. t is of the form ¢ (t,). What is to be proved is:

V Ge=bgar1,0 A\ [1; T 1% = \]/ Gr=100as1,p NLJ; 1D =3%=3n .
This sequent can be easily proved by using following fact:
®) =5 35 = 3; ™ Dyqa1,0 = Vgqs1,pp fOr all 7, j.

7.5. LEMMA 11. +, \’{ B(0ges, i) N 3= ) = B(0gs,1) «

Proor. This lemma can be easily proved by using (5) and the equality
axiom in J. Or, directly:

() =5 B0¢5,0) N 31 = 3= B(0gcj 1) -
And, if A+ &, then
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3n = 3r ">
3n = 3 " B(0gcs,00)
@ B(0gcs, i) N\ 3n = 3= Bbges ) -

By (6) and (7) —,B(gc10) N 31 = 3= B(bgs,) for all h. Hence +—, Y(%(Uqu,m)
A 3 =31) = B(by;,1). The converse is obvious.

7.6. LEMMA 12. Let T(p, ) be a term of &. Then in J, [1; T(o)Ik%
is equivalent to the formula obtained from [i; T(t,)1&: (where g, does not occur
in T(exp) and pe]) by replacing 94,5 bY Vgat1,0-

Proor. By Lemma 8 we have (omitting J and K)

—, [ Tl N]i= ’\)/([h s N T
= \h/ (y Gr="0gar1,» N7 &) N5 TUDID
= >L/ (y Gn=Yga+1,m N3r=3) A\ 5 T(dn)ID

= \h/ Gn=Ygas1,0 A\ L5 T)ID
by Lemma 11. And

—, [ Tl = Y Ch; i AL TAID
= }L/ Gn = Vg0, A\ (75 T -

Hence the assertion of LLemma 12 holds.

LEMMA 13. ¢tp) is a term of © free for v, in AQy). [AIRIg+1,e) IS
defined similarly as in Lemma 9. Then
®) =y [A(SDL(EJ'))]{{’,]}; = [Ajk,';c(bq(Hl,k)) .

Proof by an induction of form corresponding to the inductive definition of
the formula A(x,).

Case 1. A, is prime, i.e., of the form T,(x,)= T,(,). Then

[AGy)IRE= V(@ Talp) Ik AL Tl Ik

and

LA IRE =V O Tulee)Ieh AL Tolpue )RR -

Hence by (8) holds.
Case 2. A(x, is of the form (Ar,)A,(x,), where m#; and m+p. Then

) CAGHIE= \/ LA IR,
and
10) Allp )%= y CAee ) IEA -

By the hyp. ind. we have
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a1 LA IZms = [A IR ™I Oge1,00)

Hence by (9)-(11), (8) holds for this case.
7.7. LEMMA 14. Let t be a term of S free Sfor r; in A(;). Then

(12) —, [k tl% = LA =[AG)IRL for all k.

Proor. Case 1. A(r;) is prime. Let A(gj) be T,,)=T.x;. Then by
Lemma 8

LT = Tlepl&h

M

VV Gr=ae AL T AL Tl
[Tu()=Tuk =\ V Ch; Ik AL T AL T

By [k; t1, =3, =3.=[k; t]k. Hence (1) holds for our case.
Case 2. A(r;) is 7A,(;). By the hyp. ind.

[kt = LA (0% = [AGC)I%%
Hence

[k; tIk = 7[AMI% = 7LAC)IZE -
Thus,

[k tlk=[7A Mk =L7AGDIEE -
Case 3. AQ) is A,¢)XA.x). By the hyp. ind. [k;tl% = LA (1%
=[AG@)IEE n=1,2.

[k t1% = CADTEX LA T% = CAGHIRA X TAL)IRS -
Hence
Lk t0k = [A DX A0 =LA X Al )R -

Case 4. A(x)) is Ara)Ai(), tn) or (Ve)A(), r.). By the hyp. ind.
[kt = LA L) l&h = LA, t) 15 -
Since t does not contain x, (by our stipulation),
[k; tin=k; tTk -
Hence [k; tlc= V LAt t) 1 =V LA, Ln) 306

[k ; Ik = [E) AL, 2)1% = [Ar) AR t) 1R -
Similarly

[k ; t1% = (Ve ALt 2 1% = [(VE) Ay, L) 1R
Case 5. Ay is @p)A(;, o) or (Vo)A ¢). By the hyp. ind.
Ck; t1h = LA, @)k = LA, ¢)I%% -
Hence
[k; t]% -» Eh’q(l+1.o)bq(l+1,1> [A1(t: GDZ)]"I{T = abqtlH,O)Uq(Hl,l) [Al(gj: 90l>]%’,jlc .
Thus,
[k; tIk = [Ee)At, @)T%k = [Ee) A eIk -
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§8. Proof of Theorem 3.

Let A be a finite sequence of formulas A, .-, A, of & Then we shall
denote the sequence [A,1%, ---,[A.1% of formulas in I by [47% We shall
prove the following theorem from which can be derived as a
corollary :

THEOREM 4. If the sequent A=/l is provable in © and no variable both
occurs free and bound in it, then [A7, = [ /1% is provable in J.

Proof by the transfinite induction on the order of the proof of A=/l in &.

Basis. The order is 0. Case 1. A= [] is A= A, where A is a formula
of &. This case is obvious.

Case 2. A= [l is one of the axioms for arithmetic, i.e., one of (9)-(19) in
§1.5. We shall show only two cases: (i) A= /] is tj=1/=»y,=z,. Then [A7%
w17 is V(e A D el =V s e i AL 81k, In 3, this sequent is
equivalent to one of the following sequents:

V G = %0,0 /\ 3 = 0,0) = \/ (3 = 000,00 /\ 3= Yg00,) »
hence to
050,00 = D50, 1> ™ Ygc0,00 = Vgco,1 »
OF  Yjy0,00 = ko ™™ Vgco,00 = kg »
Or 3y = bf;(o,l) = 351 = Y000 5
OF By = By ™ 3Ky = Bkg »

according as 0,1/, 0/ & 1/,0e/J & lajor 0,1/, (Af ie] (for i=0
or 1), then assume i is j;.) It is obvious that these sequents are all provable
in ¥ (i) A=l is

?0(0) = 0, (V2)(9o(80) = 0 2 ¢4x0) = 0) = (V2o) (9 (k0) = 0) .

Since the formulas occuring in the sequent contain no free number-variable,
we may assume ] and K are empty. It is sufficient to show that

O =V O =0A5=0), ACuao=0A5=82V Cuaumn=0As=3i)
= AV Qgam=0A3=3.

Let B@,) be \}{(bq(l,h):O/\ghzgk). Then (1) is expressed as follows:

an =2 B0), N\ (BGe) =BG = A\ BG) -

By the mathematical induction on n, we shall prove:

2 5 B(R,), /k\ (BGw) D BGL)) = BG3,)

for all n.
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Basis. n=0. Obvious.
Induction Step Obviously :

By the hyp. ind. B3r), BGa) D B(GL) = B(,)
Bo), /\ (B > Bi)) = B3 B3a), /\ B D BGL) = B3 1)

Bo), /\ (Bl3e) D BGL) = BGa) -

Hence for all n, we have (2). Therefore, (1) holds good.

Case 3. A=l is an equality axiom. Let A=/l be r,=1;, AQ,)=A,).
For example, suppose 0 €/, j,=0 and 1 /. (The other cases are also similarly
done) Then by it is sufficient to prove:

=2 31 = V00,100 LATXGr) = [ATEWyc0,0) -

&Y

[t holds by the equality axioms in J.

Case 4. A= I is an instance of the axiom-shceme (22) in §1.5. Let A= /]
be (Ve)Ttn)AR;, tr) = @e)(VEDAR;, ¢ix)), where ¢, does not occur in A(L;, tn)-
If we write Gy, 3») for [AQ;, 1)k then [AQ;, ¢x)1%% is equivalent to the
formula NG, vyas1,0), Dy Lemma 13 If we write simply (v, Vye,m) fOr
CAQ;, )]k (where j, h&J), then by Lemmas 9 and 13 we obtain

=y CAGy, 2125 = Gk 30)
and +—, [AQ;, & )I1%% =AGs, V9a+1,)- Now by an axiom of I (i.e. (22) §2.7)
=y {c\ \r/m(izu 3) ™ A0,q41,00041,0 *** /k\s)[(%k, Bgaa1,m) -

Hence we have
— [AT% = LI 0% .
Induction step.
Case 1. The last-applicated rule of inference in the proof of A= /] is one
of structural rules of inference. This case is obvious.
Case 2. That rule of inference is one of rules of inference in the pro-
positional calculus. This case is also obvious.

Case 3. A= Il is (Ar)A(x,), ' =6 and

not occur in I' and 6.
By the hyp. ind. we have:

y LAGIES [ 1% = [O1%) for all k.
By Lemma 9 and by the fact that x; does not occur in /" and 6O,
—, LATRGe), [ 1% = [O1% for all &.

Ay, I'=» 06

GEDAG), [ =0’ where r; does

Hence

— \ [ATRAGY, [ Tk= [0k .
That is,

=, (@)W ) 1%, [ k= [O1%
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. . 'm0, A(D) .
Case 4. A=][l is 'm0, Qr)AL;) and =6, GL)AG) where t is an

arbitrary term free for r; in A(z;). By Lemma 14
Lk; t1%, CAMIL =»[AQ1k; for all k.

Hence
VIE; tle LA = v CAQ)I%L -
By
[A®I =\ [AG)IRA-

On the other hand, by the hyp. ind.

[ k= [07%, CAM)I%.
Hence
[ )%= [O1%, Y CAG)I%E -
That is,
[ Tk =[O1%, [GrpAGIk

. Alp), ' =06
5. 4 ; ), I J
Case = [T is Qe)Alp,), I'=»6 and TopAwy), [ =0 where ¢; does

not occur in /" and @. Then by the hyp. ind.
LA [ 1% =[O0k .

Hence
abq(j+1,0)bq(j+1,1) [A(SDJ')]'I’(: [F]‘{{-’[QJ'{( .
(Notice that: Since ¢; does not occur in [" and O, each of b,¢r1,0 Vgcjrt,0r =

does not occur in [/']% and [@]%. Hence the (I=) rule is applicable to the
first sequent.)

Case 6. A=l is I'= 0O, (Jp,)Alp,) and =6, Gp)Aey By the hyp.

ind.
(L' 1= [O1%, [Alp) % -
Hence
[F]‘,’(-D [@]‘I’(: at’q(j+1,0)%(14—1,1) [A(ﬂoj)]}’{ .
That is,

(1" 1= [00%, [QepAlp)Ik -
(Notice that: [A(p;)]% can be expressed in the form AWyj+1,09 Vgj1,00 -+ ))
Obviously, the sequence of natural numbers {y¢ie1,09 Dgcje1,000 -+ > 1S recursive.
Hence our (=»3) rule is applicable to the first sequent.

. . . A(d,), =@ for all n
Case 7. A= Il is (Fx)AQR,), ' =60 and TE)AG) =0 , Where
A(d4,) is the formula of © obtained from A(r;) by replacing ¢; by 4,. Then

by the hyp. ind.:
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(AL, [ ], =»[O]% for all k.

By Lemma 9
CAT%Gw), [1 1% =[0]% for all k.
Hence
CAG)IZS, (L 1= [01% for all k.
and
)_/ CAG)IZ: [ = 10]% .
That is,

[ENAC)I% [ k= [O0]% .
This completes the proof of Theorem 4.

§9. An application of Theorem 1.

In this section, by above and below we shall show
that there exists a (constructive) formula such that neither it nor its negation
is provable in J, using a result in Mostowski [6].

THEOREM 5. Let A be an arbitrary regular formula of &*, a be a Godel
number of the formula [A] in ¥ and n=n(A]). Put

(Di(OI, 5: X) = (VY){ T(AS{((},O): Ai:' Y) - a(a(Y)) = X}
¥ia, 0, B)=y2){(dy di+1, v, 2) D a(3(2) = BV},

where q is the number explained in §6, and T(a, x,y,2z) is a formula which
strongly represents the predicate Ty a, x,y, 2) (cf. Kleene [2]) in the system ©.

Further, let 1, -+, %, and ¢y, -, ¢, be the number- and function-variables
which occur free in A, respectively. Then the sequent

U(o), {@i(a, 0, Si)}i:ih---,ip {¥(a, 0, Sﬂi)}i:zl,---,ls"A = Q,(4,, @)

is provable in S*,

First, we shall prove the following lemmas:

LEMMA 15. Let W and B be formula in I, a and b Godel numbers of A
and B, respectively. Suppose —, N=1B. Then

'_* in(da: C() = anz(db; ‘8) »

where n, =) and n,=n(B).

LEMMA 16. Let 1y, -+, 8, and ¢y, -+, @i, be the number- and function-
variables occuring in a term t of &, respectively. Then

U(B): {@i(a, 6’ gi)}i=i1,~--,irr {wz(a, 5: ¢i)}i=l1,~--,l3»A]‘: t= QO(AGJ C()

is provable in &*, where a is a Godel number of the formula [j;t] in I.
LEMMA 17. Let f be a Godel number of a rvecursive function such that
EDJOQ=7)=»E!'D(f@)=]). Then
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= @Dy, a, 1) AXYXTy, X, y) D70(y) = B} .
Proor OF LEMMA 15: By Theorem 1, —, Q,(4,, a), where ¢ is a Godel
number of A=VB in J and n=Max (n,, n,). It can be shown that

Lo Qn(Ac: a) = (in(da: a) = Qng(db’ 0[)) .
Hence we have
LY Qn(da: C() = Qn(Ab; 0() .

Proor orF LEMMA 16: Case 1. t contains no function variables. Then
we can obtain +—,[7;t]=3=[t], where [t] is the term in J obtained from t
(in ©) by replacing 1;, (for k=1,2, .+ ,7) by 94,,, and the other symbols in
t by the corresponding to ones in J. Hence by (8) §3 and above Lemma 15

we have
U(5)1 {@1(0(: 5’ r,i)}i=2'1,---,ir» Aj =t= Q()(Aa, a) .

Case 2. t is @(t;). We must show that

U0, {P(a, 9, L) iz ey {¥{a, o, O Yimty pools, ™ Aj =t=Q\(4, @),
where &;;, -, %, and ¢, -+, ¢, are the variables occuring in t,. By the def.
of [j;t], it is }c/ Gi="04ar1,0 N [k; t,]). Now let a=2% -3/, where f(k) is a
Godel number of 3; =0,q41, /\ [k, t]. By the hyp. ind. we have
(1) U<5): {@’L<a’; 5: x;i)}i=i1,-~,iw {w@(ay 57 gpz‘)}i=l1,~-~,ls#Ak: t= Qo(Ag(k): C() ’
where g(k) is a Godel number of [k;t,]. (We may assume g is recursive.)
The antecedent of (1) we shall abbreviate as Z(«, 6) or simply =Z. Further,
let f(k)=222.39% yhere {(f(k)),}(0) is the Godel number of 3;=10,q+1,0, and
for m=0,1, 2, --- {{(f(R),}(m+1) is a Godel number of [k; t,]. By (8 and (10)
§3 we have:
2 U(0) = Qu(da, @) = @)y T, x, ) DQO(Y), @)},
(3) U(5)7 T(Af! Ak; Y), T(Afy Ak: Y) ) Qo(a(Y); a)»QO(Af(Ic)) a) f()r all k )
“) U(0) = Qy(d i, @) = (Yuz){ T any, Uy 2) D Qy(0(2), @)},

U0), Tdcrany, 0, 2), T(drams 0, 2) D Qu(0(2), a) = Qu(dicramiioyr &) »
and for all m
(5) U(a)) T(A(f(k))]’ Am+1; Z): T(A(f(k))p Am-H’ Z>D Qo(a(z>, a)
= Qo(dicranymrn @) .
Hence by above (1) and (6), (9) §3, for all £
E, Vuz){ Tl any, 1, 2) DQW0(2), a)} m 4, =t, A d;= a(dyar,p) »
i.e.,
5) QO(Af(k)y C() g Ak = t1 A Aj = a(dq(l+1,k)) for all & .

By this
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5: T<Aqy Al’ Akr Z)r T(Aqy Al; Akr Z)

D a(0(2)) = odr), Qu(dsu, o) = 4;= @ (t,) .
Hence for all &,
E: wl(ay 51 Sol)r QO(Af(/C)’ a) = Aj =t.

From this together with (2) and (3), we can easily obtain:

5, w‘(,(a, 5, SDl)y QO(Aa; a)»AJ:t y
and hence
E; wl(a: 5’ @L)#Q()(Aa; a) - AJ =t.

Conversely, from (1) and ()
(6) Z, di=t, = (V2){ Tl s dmri, 2) D Qe(0(2), @)} for all m.
Since
T, 4., 4y, z), T(4,, 4,, 4, 2) D a(6(2)) = ©(d,) = a(dyqs1 ) = @(dp)

we have

Uia,d, ), 4;=0t), dy=t, = 4;= a(dyqs1,0) »
and hence

u®), ¥(a, g, o)), 4;=@ty), 4y =t, V2 { T dsar, 4,, ) D Qy(0(2), @)} -
Together with (6), by w-rule and (4),
B, U(a,d, @), 4,=@ty), 4, =1t, = Qy(d;4, @), for all k.
By (3), for all &
E, U a,d, o, d;=@uty), 4= t, = FE{TU,, x, ) D Q6(), @)} .
Using (I=»), —, @x)(x=t,) and (2), we obtain
E,V(a,0,0), 4;,=t=»Q,4,, a),
E,¥(a, 0, 0)m d;=tDQy(4,, ).

Case 3. t is t,+t,., We must prove: Zwd;=t,+t,=Q,4,, @), where
Lip s, and ¢y, -, ¢, are the variables occuring in t, or t, (and a is a
Godel number of [j; t;+t,]). By the hyp. ind.

) Ewml;, =t,=Qydy, a)- N+ dj,=1t,=Qy(4,, @),

where b and ¢ are Godel numbers of [, t;] and [J,, t,], respectively. Now
L5ttt i VY Gy= i ATi; 1A Lie; t.D). Let a be its Godel number.
Then a=221.3"1 f,(j)) is a Godel number of X(gjzajl—i—ajz ALj; AL ta])
and hence is of the form 22! - 3292 where f,(j) =(fi(j)),- Further, {£,(D}{U2)

is a Godel number of (3;=3;,+3s /o\[jl; t] /o\ [ja;t.]) and hence is of the form
22 . 3730130, where fy(Jy, j2) = { U0} And { fu(J1, 72)}(0) is a Godel number
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of 3; =35+ {/fs(172)}(1) a Godel number of [j,; t,] and {£,(ji, j2)}(m+2) a
Godel number of [j,; t,] for all m. By (7) we obtain
5= QO(A{fg,(jl,jz))(l), a)= Ah =t,
and for all m
B -iQo(A(fgql,jz))(mﬂvz): ay=4d;,=t,.
Further, we have Qy(disy¢,.im0 @) = 4;,= 4,+4;,. From these, by using w-rule
and by (8), (9), §3 we can obtain:
5w Qy(dy, a)=d; =141, .
The other cases are also similarly treated. Hence has bzen
proved.
PrROOF OF LEMMA 17. This is done in the same way as in the proof of
10) §4.
PROOF OF THEOREM b. Case 1. Ais prime. Then A has the form t,=+t,,
and hence [Alis V([j; t.JALJ; t:]. Let a be a Gédel number of [A], and
J

hence a=221-3/, where f(j) is a Godel number of [j; t;,JA[J; t,] and hence
F(G)y=222- 39915 {(f()):}(0) is a Godel number of [j; t,] and {(f(7)).}(m+1) a
Godel number of [j;t,] for all m. Hence by (we shall write g(j, m)
instead of {(/(),}(m)) g — Aj == Ql)(Ag(j,O): a); 5 -»d;=t,= QO(Ag(j,m+1), a)
for all m. From these, in the similar way as in the preceding paragraphs,
we can obtain:

E»A = QO(AG,: a) .
Case 2. A has the form 7A,. This case is obvious, because we have

—, [ 7A, 1= 7[A,] and —4 UQ0)=Q,(4,, @)= 7Q.(4,, @), where b is a Godel
number of [A,].

Case 3. A has the form A,V A,. Then [A] is V([A,], [A.], CA.] ).
Let a=22.3/, where f(0) is a Godel number of [A,] and f(G-+1) a Gobdel
number of [A,] for all i. By the hyp. ind. and by Lemma 4, for all i 5= A,
= Qu(dy@, @) - A - Ay = Qu(dysen, @), where n=n((A]) = Max (n(CA,D), n(CA, D).
From this, in the similar way as in the preceding paragraphs, we can obtain:

A VA =Q,U,, a).

Case 4. A is of the form (Jr)A;(k;). Then by [Lemma 9, —,[A]l=
V [A,JGx). Let b be a Godel number of \/ [A,]Gx) and hence b=22.3/, where
k k

f(R) is a Godel number of [A,JG:). By

) Qu(da, @) = Qu(dy, @), where n=nA,])=n(CA]).
By the hyp. ind. and by Lemmas 9 and 15 (since +—, [A;(4)]1=[A,]1Gw)
) E e Ay(d)=Quldsay, @), where 1y, -+, 2, and ¢, -, @y

are the variables occuring free in A,(4;) (and hence also in (3r)A,&;)). So,
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E, A(dy)=» T(d;, 4i, ¥) D Q(Y), @) .
Hence for all %

E, A4 = @E0{ TS, X, ¥) DQ.6®1), )} .
By w-rule

E, @A @) = Q.(4., ).
On the other hand, from (9) we can obtain
E, Qu(ds, )= (Fx)A 1) .

Hence, by (8) we have & = (Jr)A(x,) = Q.(4., ).
Case 5. A is of the form (3p)A,(¢). Then by the def. of [A], it is
Agas1,00%ar1,0 - [Ae)]. We must show :

(e, 0) = (Fo)A (@) = Quii(da, @),

where a is a Godel number of [A7] and n+1=n(CA]).
By the hyp. ind.

10) E(r, 0), Uiy, 6, o) = Al = Qu(ds, 1),
where b is a Godel number of [A,(¢;)]. Hence
an (@, 0), Ty, 8, 92, Dldsicqurns @, 1), Alp)
= AN{DUsigusn @ DA Qo P} . (e Quiadar @)

On the other hand, since the ranges of the function Axq(i, x) for i+#[41 are
disjointed from the range of Axq(/-+1, x), we can prove

D(dsicq sy @, 1) = (e, )= E(, 9),
in the similar way as in the proof of Lemma 3. Therefore by
E(a, 0), ¥y, 0, o), D(AS}<q,z+1); a, 1), Ay(@) = Quii(da, @),
and hence
E(a, 0), @GN, 0, o) ADdsigrns &, 1D}, As(e) = Quis(de, @)
By and (3, =) we can obtain
E(a, 0), Qo A(0) = Quii(da, @) .
Conversely, by using and by we can show that:
E(a, 0), Qui(da, )= Fe)A(¢) .

Thus, we have proved Case b.

The other cases are also similarly treated. Hence is established.
THEOREM 6. There is a formula of J such that neither it nor its negation

is provable in J.

Proor. Let A be a closed formula of & which is undecidable in &*. (See
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A. Mostowski [6]) Then [A] is the desired formula of J. For, if [A] were
provable in J, then by we have

L Qn(da: a) ;

where a is a Godel number of [A] and n(fA])=n. On the other hand, by
(notice: A contains no free variables): —4 A = Q,(4,, @). Hence it
would be —4 A. This contradicts unprovability of A. Next, suppose 7[A]
were provable in ¥. Then we had —4 Q,(4,, «), where b is a Godel number
of 7[A7. Since

i Qn(Ab’ CY) = Qn(dc: a) )

where ¢ is a Godel number of [ 7A], and by —s 7A=Qu4., a),
we would have —, 7A. This contradicts unprovability of 7A. (Q.E.D)

Tokyo University of Education
Hosei University
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