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" There have been some fragments asserting that a Riemann matrix of a
curve does not decompose into a direct sum. But it seems to the authors that
there have been no attempts, as far as they know, to treat the subject rig-
orously and systematically.

In this paper we shall examine if a product EXE’ of elliptic curves E
and E’, with rings of endomorphisms isomorphic to the principal order of an
imaginary quadratic field Q(+/—m), can be a Jacobian variety of some curve
of genus 2 on EXE’. Rather unexpectedly the following result is obtained:
ExE’ can be a Jacobian variety for all values of m except 1, 3, 7 and 15 (cf.
paragraph 4, [Theorem). In the last paragraph we shall show that there are
only a finite number of curves of genus 2 on EXE’ up to isomorphism. In a
forthcoming paper it will be shown that the number tends to infinity with m.

Let E and E’ be two elliptic curves. We denote by Hom (F, E’) the set
of all homomorphisms of E into E’; in particular when E=FE’, we denote
Hom (£, E) by WE). We put WU (E)=WEYRQ, where Q is the field of ra-
tional numbers. We denote by Z the ring of rational integers.

§1. Preliminaries.

Let Q(W/'—m) be an imaginary quadratic field and o its principal order;
when m =0, we may understand that Q(~—m) and o coincide with Q and Z
respectively. We consider an elliptic curve E for which %,(E) and (E) are
isomorphic to Q(+v/—m) and o respectively. Since in case m =0, Q(+—m) has
two automorphisms, there are two isomorphisms of Q(v/—m) on W(E). We
choose and fix one of them, and denote it by ¢. We can identify A(E) with
o by e

For any finite number of endomorphisms 4,, -+, 4, €0 of E, {4, -+, 4.}
=+ {0, ---, 0}, the correspondence
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n

—
hh,'"./ln: EBX—>(21X, cee an)eEx e X E

defines a homomorphism of E into EX .- X E. The image of E by Ay, 18
an abelian subvariety of dimension 1 on EX --- X E, namely an elliptic curve
lying on EX --- X E; we denote it by Ej,,...1,-

[t is clear that translations of £, ... ;, are also elliptic curves on EX -+ XE;
conversely we have the following

LEMMA 1. For each elliptic curve £’ [ying on the product of n copies of
E, there exist n endomorphisms 2y, -+, A, €0 of E such that E' is a translation
AOf Eh,'--,ln'

PROOF. E’ is a translation of an abelian subvariety of dimension 1 on
Ex -« XE (cf. [6], Th. 9); therefore we may assume that E’ itself is an
abelian subvariety on EX --- X E. We can easily see that E’ is isogenous to
E; let a«: E—E’ be an isogeny. Since E’ is a subvariety on EX --- X I, a is
:a homomorphism of E into EX -+ XE and the image of E by a is E’. Let
A; be the composed map of a and the projection of EX --- XE to the i-th
factor ¢ =1, ---, n). We then have E'=E; .. 1,

For any endomorphism « =0 of E, we can consider the following corre-
spondence

a*: By in D Aax, o, 0) > Quax, -, Agax)EE;  uxEE.

‘Since the ring o is commutative, a* is well-defined and determines an endo-
morphism of the elliptic curve E,,, ., It is easily verified that the corre-
spondence
*Fro2a—a* s WE;,. 1)

is an injective homomorphism. Now A(Ej,,..2,) is isomorphic to A(E), and
.consequently to Q(v —m); this implies that ¢* is surjective. We may identify
W(E,,, -,2,) With o by ¢*. Then hy,,..,;, is an o-homomorphism of E on E;,,...;, .

Now we have the following

PROPOSITION 1. Let E and E’ be elliptic curves whose vings of endo-
‘morphisms are both isomorphic to the pricipal order o in Q(v —m). Suppose
that there is a homomorphism h of E onto E’. Then, for each endomorphism
7! of E' (resp. 2 of E), we can find an endomorphism y of E (resp. 2’ of E’)
S0 that y’h=hy (resp. A’h=~hA); such an endomorphism is uniquely determined.
The correspondence y' —y (resp. A—2’) gives rise to an isomovphism of rings
of endomorphisms of E and of E’. Moreover the above correspondence 1is
independent on the choice of h.

ProoF. There is a homomorphism A’ of E’ onto E such that A'h=ndg

1) Then, putting a= (2, *--, Ax), hiy, .., 1, is an e-multiplication in [5] (cf. [5],
P. 52).
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and hh/ =ndg, where n=v(h) and 05 (resp. 0z) means the identity map of E
(resp. of E’). For given ¢/, we put r:—ln—h’r’h. It is easy to show that 7 is

integral over Z and our assertions follow immediately.

COROLLARY 1. If we tidentify W(E;,...2,) and WE,,,.,,) with o by * re-
spectively, every homomorphism of E; .., on E,. .. ., is an o-homomorphism.

Proor. Let ¢ be any homomorphism of E;,,...1, 0n E,,....,,. Then @ohy, .1,
is a homomorphism of E on E,,. . Since there exists an o-homomorphism
Rpgyery of Eon E, ., @ohy,,..2, 1s also an o-homomorphism by Prop. 1. But
the latter fact implies that ¢ is an o-homomorphism.

COROLLARY 2. Assumitions being as in Prop. 1, let 3 be the kernel of h.
Then we have 233 for every endomorphism A of E.

Starting from E;,...;, in place of E, we can define (E},,. .1, Where
A;, ¢y are elements of o. Then (E;,,...1,) ., 1S an elliptic curve Ej . 10m,inm
on the product of #n/ copies of E.

PROPOSITION 22. v(hyy,...2,) = Norm (4,, -, 4,,).

Proor. There exists an ideal (g, -+, ¢;) in o such that (4,, -+, 4,)(¢ty, =+, o)
=(r),yr €0 and that ((hz,.2,), Ny, -, ))=1. We consider the homo-
morphism :

hful,...,ﬂl . Ehr",ln—>(E/11,"-,1n)/11,-~~,/1z .

Let k£ be a field over which £ and each endomorphism are defined, and x a
generic point of E over k. We can readily see that k(4,u:x, A%, =+, Anpti%)
= k(yx). This implies that v(Aj,,...s 0 hay,,2,) =v(r); and, since v(y) = N(y), we
have (A, 1)V Pty o) = NCAy, -+, A)N(ey, -+, ). Since v(hy,,..2,) 1S prime to
Ny, -+ ), v(hagenny) divides N4, -+, 4,).  Quite similarly v(h),,..,,) also
divides N(yy, -+, p). Therefore we have v(hy,,..,2,) = Ny, -+, An).

Let % be a field over which E and each endomorphism of E are defined;
let x be a generic point of E over k. If two ideals (4, -+, 4n), (g1, --+, ) are
equal, then k(4,x, -+, 4,x) = k(uyx, -+, pix); and hence E;, ..,,;, is isomorphic to
E,, .y If y#0 is an element of o, then yx is also an generic point of E over
k; and hence Ej,,..1, i1s equal to E;y,..2,» We shall prove the following

ProOPOSITION 3. Hom (Ey,,...an0 Eps,nm) 1S canonically isomorphic to (A, -+,
Aa)(tta, -, p)"t as 0-modules. Moreover, if h & Hom (E;,,.. 150 Epyye ) COrvesponds
to a s Ay, -y An)(yy =, )™ by this isomorphism, then v(h)= Na - N(py, -+, )
INQy, =+, 2. '

Proor. We can find an element 7 in o and an ideal (8;, -+, B;) so that
Ay, oy A)Byy ooy B = ptry =, 7). We put Ej, .2, =FE’. Then the corre-
spondence : (yx, -+, reux) — (BilAyx, <, 2.%), -+, Bs(Asx, -+, 2,0), x € E, defines

2) Prop. 2 is a special case of Prop. 10, Chap. II in [5] For the convenience of
readers we reproduce the proof here.
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an isomorphism ¢ of FEy,,..ry, on Ej,..a. Now let i be a homomorphism :
Ejpnan @ (Aix, oo, 2,0 =G’y -, rpux’) € Evpyerpe Then @oh is a homo-
morphism of E’ into E’X --- XE’; and the composed map of ¢oh and the
projection of E’Xx .-- X E’ to the j-th factor gives rise to an endomorphism
a;eo0 of E'. We have B;(Ax’, -+, 2.x")=a;(Ax, -+, 2,x) (=1, ---,s). This
determines an element o’ (B, -+, Byt such that a’'B8;=a; (=1, -, 59).
Thus we have ¢oh(Ax, -+, 2,%) = (@’ By(A1x, -+, Axx), ---, &’ B(Ayx, -+, A,X)) ; hence
hQAx, -+, Agx) = (a@’ypx, -, &’'7px). We put a=a'y; then a (4, -, )y, -+ »
)™t and h(Ax, -, Ax) = (apx, -, apx).  Conversely it is clear that any
element a € (A, -+, 4,)(t, -+, p)™* gives a homomorphism of Ej; ..., in Epy .
in the manner described above.

The rest of our proposition follows immediately from Prop. 2.

COROLLARY. E;,...2, 1S isomorphic to E,,,.,., if and only if there exists an
slement o € Q(~v/'—m) such that .

Ay, =+, A =alp, -, ) [ideals].

PRrROOF®. “If” partis obvious. Let us consider the converse. We suppose
that there exists an isomorphism & of Ej,,...2, t0 E,,,.,n; We take a (4, -,
Ay, -+, )7t which corresponds to A by the canonical isomorphism given in
Prop. 3. Then we see that NaN(y,, --- , ) = N(4y, -+, 2,). Whence we obtain
alpry, - )= Ay -, An)

PROPOSITION 4. (In this Proposition we assume that m+0.) Let E and E’
be elliptic curves whose rings of endomorphisms are both isomorphic to the
principal order o in Q(v'—m). We suppose that there is a homomorphism h
of E onto E’. Then there exist a finite number of endomorphisms ay, -, a,
€0 of E such that E' is isomorphic to E,,.. .,

ProoF. By Prop. 1 we can identify o with €(F) and AE’) respectively
so that % is an o-homomorphism of E on E’. Then, in case that s is separable,
we can apply Prop. 23 of [5]. On the other hand, when the characteristic p
of our geometry is positive, the correspondence: x—x? is an automorphism
of the universal domain; this defines the “ p-th power” E? of E. According
to Deuring [1] (pp. 219-220), we see that there is an ideal 3=(4,, -+, 4) in o
such that E? is isomorphic to E,,,..,; Combining these facts and noticing the
statement before Prop. 2, we can obtain our assertion.

It is well known that each ideal in o can be generated by at most two
elements; if (4, .-+, 4,) =(ay, @,), then E, .., is isomorphic to E, .. Let 7
be an homomorphism of E into E,, ., Then, by Prop. 3, we can find an
element y € (a;, a,)™* so that 7 is given by the correspondence

7 Ex—((radx, (fa)x) € Ea ey -

3) For another proof we can apply Cor. 1 of our Prop. 1 and [5], Prop. 14.
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Now we consider an product EXE, e If A0 and pe(ay, a,)™!, then
Ej, pay, nag 18 an elliptic curve lying on EXE,, .. The above discussion enables
us to show the following

LEMMA 1’. For each elliptic curve E' lying on EXEy, q, there exist two
elements Ao and p<(ay, a,)™ such that E' is a translation of Ej juy,pas-

Proof is similar to that of [Lemma 1l

In order to calculate intersection numbers of divisors on EXE,, ., we need
some lemmas®.

LEMMA 2. Let «, B, 7,0 be endomorphisms of E, and k a field over which
a, B,r,0 are defined; x and y be independent generic points of E over k.
Assume that ad—By #0. Then

[k(x, y): k(ax+7y, Bx+0y)]= Nad—pBr) .
ProOOF. First we suppose that 0 #0. We calculate the degree of the ex-
tension k(x, y) over k((ad—p7y)x, Bx+0dy) in two ways. Noticing that k(x, dy)
= k(x, fx+0y), we have

Lh(x, ) : R((@d—B1)x, Bx+-0)]
=[k(x, ) : k(x, 6y)ILk(x, Bx+0Y): k((d—By)x, Bx+03)]
= NoN(ad—f7)

in one way. On the other hand, if we put ax+yy=u and Bx+0y=v, then
du—yv=(ad—PBy)x; noticing k(du—yv, v) = k(0u, v), we have

Ch(x, 3) : k((ad—B7)x, Bx+0y)]
=[k(x, ¥) : R(Ou—7yv, v)]
= [k(x, ) : k(u, v)1Lk(u, v) : k(0u, v)]
=[k(x, v): k(u, v)ING .

Since N0 + 0, by comparing these two equalities, we obtain our assertion.

If =0, then y+#0 and we can take y in place of 4.

In what follows the symbol (X, Y) means the intersection number of
divisors X and Y on EXEq,, as.

N('b]‘,uE)N(an as)
N(4, uay, #az)N(E: Nay, Nay)

PROOF. Since Ej,,..1, = Eray,,1a, for any y#0, y =0, we may assume that
A, ¢ (resp. &, 7)) in this formula are elements of o, multiplying 4, ¢ (resp. &, 7)
by a suitable non-zero element of o if necessary.

Let x and y be independent generic points of E over %, where % is a field
over which endomorphisms «;, «,, 4, ¢, §, n are defined. If Ap—p&=0, then

LEMMA 3' (Elvllal)/la2’ EE'ﬂa]’ﬂaﬁ) =

4) Only Lemmas 2 and 3 are needed, and Propbsitions 5—9 are not necessary for
this object.
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Es, por,pas = Ecz gar,ney and our formula clearly holds. Hence we may assume
Ap—pé +0; then we know by that Ax+&y and px-+7ny are algebra-
ically independent over k. We have (cf. [6], Th. 4, Cor. 2)

(E/I,/za1,/ll¥2: EE,ﬂﬂ'l:ﬂa'Z)
=[k(Ax, pox, poyx, £y, na,y, na,y) : k(Ax+E§y, a(px+7y), a(px+ny)]

_ LRG0 2 RQAx+&y, px+y) kG : k(ayu, ayu)]
T LRG) : k(Ax, pagx, pax)JLR(Y) 2 R(EY, na, v, na, y)]

where u = px+ny. Since u is a generic point of E over &, our assertion follows
immediately from and Prop. 2.
NGy —pé)

N, N, 7) -

COROLLARY 2. E4 pay,pas = Er,prar, ey 1f and only if there exists an element
¥ € QW —m) such that 2’ =71, p' =yp.

Our assertion follows immediately from Lemma 3.

By virtue of Prop. 3, we can see that each endomorphism of EXE, ., 1S
given by the correspondence :

(x, ay, azy)"(ax+ry’ al(ﬂx+5y)! az(ﬁx+5y)) ’

where a and d o, B (a,, a,)™, 7 € (ay, a,). This endomorphism may be ex-

COROLLARY 1. (E; ,, E¢p=

pressed by a matrix (g g .

PROPOSITION 5. u(% g) = N(ad— 7).

ProOoOF. Let x and y be independent generic points of F over k, where &
is a field over which F and each endomorphism are defined. Then, by definition,
the left hand side of our proposition is given by the degree [k(x, a,v, a,¥):
klax—+ry, afx+a,0y, a,fx+a,0y)]. If we multiply this number by [k(¥):
k(o v, a,y)] and divide the resulting number by [&(x): k(ax, Ba,x, Ba,x)1[k(y):
k(yy, da,y, da,y)], then we obtain the intersection number (Ey pay,pay Er,sar,daz)-
Our assertion follows immediately from Lemma 3 and Prop. 2.

COROLLARY. An endomorphism

(5 3)
B 0
of EXEgs,a ts an automorphism if and only if ad—PBy is a unit of o.
PROPOSITION 6. For any Ej ja,pas 00 EXE4 0y there exists an Egya;qaq
such that (Ej, ye, paos Ee,par,pas) = 1.
Proor. By virture of Lemma 3, we have only to show that there

exist & neo such that (4, pay, pa,)é, nay, na,) =Ap—pé)ay, a,). We put
NQ, pay, pay=n and (a,, a,)=a; namely -(1, pa)(A, fa) = (A2, A7q, 2 pa, pfiaa)
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=(n). This means that there exist » & (2, @) and &< (Rq, Zaa) such that
An—pé=n. Then we have (¢, na) C (2, ga)a and hence (4, pa)(€, na) C (An—pé)a.
But the relation (4, pa)(§, na) D(Ap—pé)a is obvious. Hence our assertion
follows.

REMARK. One can read in our proof that E¢ yu; 5, 1S Dot unique; and that
the ideal class of (&, yay, pa,) is uniquely determined; in fact (§, na,, pa,)(A,
pa,, pa)~(aq, ay). Then Cor. of Prop. 3 shows that “ partners” FEg ya,9a; Of
E;, pay,nas are isomorphic to each other.

COROLLARY. For any Ej pai,pay 00 EX Eqy s, there exists an Eg yo, qay SUCh
that E; pay, pag X Ee qar,nas 1S 1S0morphic to EX Eqy ay; moreover the corvespondence
is given as follows:

Ej, pas, mas X E&Ml,wz (P, Q)—P+Q € EXEq,ay-

Proor. This Corollary follows immediately from Prop. 6 and [6], Th 4,
Cor. 2; namely E ,q,,4q, in Prop. 6 has the desired property.

Here we shall give an example in which the assertion of Prop. 6 can not
be generalized to the case of EXE’, where E’ is isogenous to E.

ExaMPLE®. Let E be an elliptic curve such that the ring of endomorphisms
is isomorphic to the ring Z of rational integers. Let ¢ be a prime which is
different from the characteristic of our universal domain; then the subgroup
of the points of £ whose orders are ¢ is a direct sum of cyclic groups 3, and
3, of orders g. There exist elliptic curves E;= FE/; and separable homo-
morphisms A;: E— E,=E/3; such that the kernels of 4, are 3, (1 =1, 2). We
can readily see that any homomorphism of £ to FE; is written as nd;, where
ne Z. From this we can see that any abelian subvariety of dimension 1 on
E X E, is a locus of a point (mA.x, nd,x), x € E, where m, n=Z and we may
suppose that (m, n)=1; we denote it by Eni, i, We take E; ;. [t is easy
to see that, for any E,i,.1, (m+#n), the intersection FEj, 1, N Eniyniy contains
other points than the origin (0, 0).

PROPOSITION 7. Let E, uay,pay @NA Ejpray, ey be elliptic curves on EX Eq,, -
If there exists an homomorphism @ of Ej pay,pas 0080 Ejr pay, prass then ¢ can be
extended to an endomorphism of EXEgy a.

PrROOF. We take E ,4),7as a0d Eer yiag,prag SUCh that Ey oy, pag X Ez,par,gay and
Ejr pros, prag X Egtyraymiag are both isomorphic to EXE. 4. Since Eg yayyay 1S
isogenous to FEgr yiay,yay, We can take an homomorphism ¢ of Eg ya,94, ONtO
E¢t yiayyas- Then we obtain a homomorphism

OXP 1 Eg s, man X Egnar,nas = B, pras, man X Egryyrag, prac -

Since EXE,, ., i1s isomorphic to either of two products, we obtain an extension
of ¢ via. X ¢.

5) This example is suggested by our friend S. Koizumi.
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PROPOSITION 8. Let Ej pay,uay A0d Ejr,pray, was be elliptic curves on EX Eqy u.
If there exists an isomorphism @ of Ej pay,nag 00 Eurpag, was then @ can be
extended to an automorphism of EXEq,, q

ProoF. Our assertion follows from Cor. of Prop.3, Remark at the end of
Prop. 6, Cor. of Prop. 6, and our proof of Prop. 7.

We take a Z-basis (minimal basis) {1, w} of b, where w =+—m if m=1
or 2 (mod 4) and w:%—«(l—{—\/——m) if m=3 (mod 4); then each element of o

can be written uniquely as a linear combination of 1, w with coefficients in Z.
Let {8, B.} be a Z-basis of the ideal (a;, a,)™". Then E, g, 5,0y are the graphs
of homomorphisms: E 3 x—(B;a:x, B;0,X) € Epyue G =1,2); and E, 0, Ep,a1,00
mean E X0, 0X E,, ., respectively. According to [6], Th. 22, we know that
each divisor X on EXE,, ., is algebraically equivalent to a linear combination
of these elliptic curves; namely we have

@ X= aEl,ﬁloq,ﬂlaz'f"bE1,ﬂza1,ﬁza2+CE1,o,o+dEo,a1,ag
where coefficients are rational integers®-™.

As (X, E¢ yay,7a9) 1S linear with respect to divisors X, it follows easily from
Lemma 3 that there exist rational integers £k, [, [ =0(mod M(a;, a;)), and an
element a of the ideal (a,, a,) depending only on X so that

(2) (X’ E&,ch,mm) :(kfé-f‘m’—}—afﬁ—&éﬁ)ﬂv(é‘, 77“1’ 77“2)
for all E¢ ya,paee Moreover, as is easily verified, constants &, [ and a are
uniquely determined when X is given. Now it is convenient to attach a
matrix
k —a -

M(X)= (—a I ), where keZ, le Na,, ,)7Z, a =(a,, ;)
to any divisor X on EXEg, «,. For an elliptic curve E; ua,pag 00 EXEyy 0y WE
have

— N(aly az) ‘Llﬂ —'—Zﬂ
M(EA,/1a1,,ua2) — N(Z, ras, ﬂaz) '—/,lj 22 .

As (X, V) is linear with respect to Y, we can get the following formula:

(X, Y)=(kl' +1k'—ad’—aa’)/N(a,, @,), where M(X)= (__2 M?) and
M(y):(#f,/ _C_;i). In particular, putting X=1Y, we have
1 _

6) In what follows we shall denote by = the algebraic equivalence.
7) Of course, we may take the graphs of homomorphisms of Ey, ., onto E, namely
Erye,09 Evg,ayag in stead of Ey gy piaq (i=1,2), Where {y1,72) is a Z-basis of (ay, az).
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When X is expressed in the form (1), we have

. (alV‘B.l‘]i_bN‘Bz)N(av a)+d —(a51+b52)N(a1» as)
MO =(_ (a8 bpyNCes, (atbt Ny ay )

This implies in particular that to every matrix M= (_5 _C;), ke Z,
a e (a, a,), [ € N, a,)Z, there corresponds a divisor X such that M= M(X).

We also know that M(X)=M(Y) if and only if X=Y.

LEMMA 4. Let X be a divisor on EXEgy, ey such that (X, X)=2. Then
we have [(X)=1 or otherwise I(—X)=1, where [(X) means the dimension of
the complete linear system |X| determined by X.

PrOOF. By virtue of the Riemann-Roch theorem on EXE, . we know
that

I(XD)+H(—-X)= X(EXEm,ag)'—XExEm,az(-—X) .

Since the arithmetic genus of an abelian variety is zero, we have Y(EXE,; ap)
=0; and further the virtual arithmetic genus Xg«ga,.,(—X) is equal to

-—%(X, X) (cf. [4]). Therefore we have
KX)+U(—X)=1.

This implies either (X)=1, (—X)=0 or I(X)=0, [(—X)=1.

The following lemma is due to Weil (cf. [7], Satz 2).

LEMMA (Weil). Let A be an abelian variety of dimension 2, and X be a
positive divisor on A such that (X, X)=2. Then, if X is an irreducible curve,
then X is a curve of genus 2 and A is a Jacobian variety of X; if X is not
irreducible, then there exist elliptic curves E and E’ on A such that X =E-+E'®.

LEMMA 5. Let X be a positive divisor on EXEgy 4 such that (X, X)=2.
Then X is an irreducible curve if and only if (X, Ej pag,ua0) > 1 for all elliptic
curves on EXEq g

Proor. First we suppose that X is irreducible and that (X, Ej, jay,pa0) =1
for some 1<0 and g < (ay, a,)™". Then, by virtue of Weil [6], Cor. 2, Th. 4,
we know that there is a birational transformation of EX E,; 4, 0nto X X E; uay,pas-
This is a contradiction, because the dimension of the Picard variety of
XX Ej poy,nas 18 three (recall that genus of X is 2).

Conversely if X is not irreducible, then by Weil’s lemma there are elliptic
curves E; japas A0Ad By piag,was SUCh that X = E; oy pastEv war,was.  Since
(X, X)=2 we see that (Ei pay,pasr Lir,par,wa)=1. This implies that (X, E;, .aq,ua0)
=1.

8 Notice that, if (X, X)#0, then X is non-degenerate (cf. [3].
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§2. Formulation of the problem.

We take a divisor X on ExXE,, ., such that (X, X)=2. Put
E —a
oo - (5 )
then by (2), we have k=(X, E.o0). Since either I(X)=1 or (—X)=1 by

Lemma 4, we can see that I[(X)=1 if and only if £2>0 (since ‘]\I;(l;—qu
1 2

:%(X, X)=1, we have k+ 0). By virtue of Weil’s lemma, and our
5, formulas (2) and (3), we have the following

CRITERION. Let X be a divisor on EXE,, ., such that
)] k>0, kl—ad = N(«,, a,)

N E —a
where M(X)= (~a ]
(5) kfé’!’l’?ﬁ'—aéﬁ—dév = N(§, Ny, 77“2)
has a non-trivial solution {&, n} + {0, 0} in o, then there exists an elliptic curve
Eé’m’ﬂ'lm'az such that XEEé,va'l,va’z"'_Ef’,v’al,v’(\'w (Eé,ml,mz: EE’,z'a'lm’az):l; and
otherwise there exists an irreducible curve 0 of genus 2 on EXEg, ., which is
linearly equivalent to X so that EXE,, ., 1S the Jacobian variety of 6.

). If the equation

§3. The case: m=0. (The case without complex multiplications.)

We are now going to solve the equation (5) under the condition (4). First
we treat the case m=0. In this case we may assume «,=1, a,=0, §,=1,
B,=0, =0, and we have

MX)= (a_tld a:fcl ) , where X=aFE +cE, +dE,,.
The conditions (4), (5) are written in the following form:
9] a+d>0, actcd+da=1
59 (a+d)x*—2axy+(a+0)y*=1.

It is easy to see that under the condition (4’) the equation (5’) has always so-
lutions in Z (cf. e. g. [2], p. 160). Namely, in this case ExFE can not be a
Jacobian variety.

§4. The case: m > 0. (The case with complex multiplications.)

Case 1. First we shall consider the case in which the ideal (a,, a,)Co is
not principal. We put 2=2; and take an element « in the ideal (a,, a,) such
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that the ideal BC o defined by (@) =(a,, @,)®B, is prime to 2; then the condition
kl—ad = N(a,, a,) determines a number /& N(a,, a,)Z. Let X be a divisor
on EXFE,. ., such that

M =(_2 7).

Since (B, 2)=1, we have N(@, 2a,, 2a,) = N(a,, a;), and the following relations
holds (cf. Preliminaries) :
(6) 2X= E1,0,0+Ea,za1,2a'2 .

Now we shall show that (X, E; ja,,9¢,) >1 for all elliptic curves F¢ yay,a0-
Suppose there is an elliptic curve Eg ;o ya; such that (X, E¢ yai,940) =1. Then
(6) implies (E1,0,00 Eepai,nan) T (Eajar,zan Eeparnas) =2 1 (Ei0,00 Eeypas,nas) =0,
then we have FE, = FE¢ ya;,7q0 DY Lemma 3, so that (Eﬁ,zal,zaz’ Eio)=2. On
the other hand, by our construction we have (X, X)=2, which means (Fz 4, 209
E, ) =4. This is a contradiction. Similarly we know that (Ez sq;,200 Ee,na1,5a0)
can not be zero. Hence we must have (E, 0,0, E¢ ya1,102) = (Ea pay,200 Lz pargas) = 1-
Then by Remark of Prop. 6, ideals (1, 0, 0) and (@, 2a;,, 2a,) belong to the same
ideal class. But we have (@, 2a,, 2a,) = (B, 2)(«,, a,) = (a,, @,) and the ideal
(a, @,) is not principal by our assumption. This is a contradiction. Thus we
know that (X, E¢ a0 ,9q0) > 1 for all elliptic curves Ez ,ap,a0 00 EXEq

Case II. We shall treat the case in which («,, «,) is a principal ideal. In
this case we may assume, without loss of generality, that a, =1, a,=0 (cf.
Cor. of Prop. 3). Since FE,, is isomorphic to F, we may consider £x E in place
of EXE,, (And E, , in place of E, ,.)

Let %, [ be rational integers and « be an element of » such that £2>0,
hl—ai@—=1: and X be a divisor on Ex E with M(X):(ﬁi ~%). We have
similarly as in case I the following relation

kX =E +Ea-

First we shall test the value k=2. Suppose there exists an elliptic curve E¢,
such that (X, E.,)=1. Then we have (E,,, E:,)+(Ez, E:,)=2. We easily
see as in case I, that neither (E, ,, E;,) nor (Es,, F:,) can be zero. Hence we
must have (E,,, E¢,) = (Fz,, Es,)=1. Then by Remark of Prop. 6, (§, ) must
be a principal ideal ; therefore we may assume (&, n) =bo, multiplying a suitable
non-zero element y € Q(v/—m) to & and 7, if necessary. Then by Cor. 1 of
[Lemma 3 we know that » and 2§—a are units of o; this means that a must
be congruent to a unit of o modulo 2. We can conclude from this that if we
can find « so that a@+1=0 (mod 2) and that « is not congruent to a unit
modulo 2, then we can find [ = Z such that 2/—ad@ =1 and for such values of
a and [ the equation 26& 417 —af7—aén = N(E, n) has no solution {&, 5} # {0, 0}
in . Such a exists in the following cases:
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a=1+v—=m if m=2 (mod 4)
a=~—m if m=1 (mod 4), m>1

a:%(il%—\/—m) if m=3 (mod 8), m>3.

To treat the case: m=7 (mod 8), we put £=8. Let «a be an element of
o such that a@+1=0 (mod 8); X be a divisor such that

M(X)—_—(_S —CZ_K), where l:%(ad-‘rl)-

We have (X, X)=2 and 8X=FE, -+ Ez, Suppose there exists an elliptic curve
E., such that (X, E;,)=1. Then the above relation gives

(7) (El,o, E{-‘,ay)+(Ec_v,8: E&'ﬂi) =38.

We can find ideals a, b in o so that (9)=(§, n)a and (B8&—an)=(§, b respec-
tively ; by Cor. 1 of (7) can be written in the following form:

Na+Nb=8.

Similarly as in preceding cases we see that neither (E,,, E:,) nor (Ezs, Egy)
can be zero; this implies that neither 7 nor 8—an can be zero. We put
y=Na/n. Then we have (7§, yp)=a. Therefore taking 7§, yy in place of &,
7, if necessary, we may suppose that (£, 7)=a, = Na. Now we can write
the condition for the existence of E;, such that (X, E;,)=1 in the following
form:

®) N@E—an)=7n@—n)>0, NE n=7n; &neo.

Since >0 and 8—% >0, we have 1 =<9 =<7. First we consider the case
when 7 is odd. We put 8§ —an=x+yw, where x, y= Z, and o = —%(H—«/—m )s;
we then have x2+xy+%(1+m)y2:7;(8—~77)5 1 (mod 2). From this we know

that y must be even. Therefore we have
<x+—32}*)2+m(—%)—>2+(7)—4)2: 16 ;
and, if m =23 (namely if m#7, 15), we can conclude that y=0. But this is
impossible since (p—4)*=1 or 9. Thus we see that if m =23, » can not be odd.
Second we consider the case: =2 or 6. We put ~—%—(8§—c’r77):x+ya);
then we have x2—|—xy+7lf(1+m)y2=3; multiplying both sides by 4 we have

@2x+yy+my*=12. If m=23, this equation is unsolvable; namely 7 can not
be 2 nor 6.

Finally we consider the case n=4. From the first equation of (8) we have
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N@E—a)=1; this implies 26—& = +1. Combining this with the second equa-
tion of (8), we get N(a+1)=0 (mod 16).

Therefore we can conclude that if we can find a so that a@+1=0 (mod 8),
and +(a-+a&)=aa-+1 (mod 16), then we can find [ Z such that 8/—ad=1
and for such values of a and | the equation 8£&-+In7—afy—aéy= N, n) has
no solution {&, } {0, 0} ino, provided m =7, 15. Now we can easily see that

a=++—m,4+3v—m when m=7 (mod 16)
a==+3vV—m,4+~—m when m=—1 (mod 16)

satisfy the required conditions. Namely, if m=7 (mod 8 and m =23, then
there exists a divisor X on EXE such that (X, X)=2 and (X, E;,)>1 for
all E;,.

Our problem is settled except when m is 1, 3, 7 or 15. In these cases we
shall show that

(59 REE+InT—al—akn = N, 7)
has a solution {&, 7} = {0, 0} whenever &,/ Z, a =0 satisfy the condition
4 k>0, kl—ad=1.

Put é=x+y0, p=2z4uw (x,y,z,ucsZ); then the left hand side of (5')
becomes a positive definite quadratic form with real coefficients in four vari-
ables x, v,z and u. We denote its discriminant by 4; then it is easy to see
that 4= D?/16, where D means the discriminant of the imaginary quadratic
field QW —m). By virtue of Theorem 106 in Dickson’s book [2], p. 185, the
minimum of this quadratic form is not greater than #¥44. Since V44
=4+/]D]/2, we can see that the minimum is 1 when m is 1, 3, or 7, and that
the minimum is 1 or 2 when m 1is 15.

A pair {§, »} of elements in o for which the left hand side of (5’) takes
the minimum 1 gives a solution of (5’), because N(§, »)=1 for such a pair
{&,7}. Now we shall consider the case when the minimum is 2. If N, n)=2,
then clearly {&, n} is a solution of (5’). Suppose that N(§, »)=1. This implies
that (¢, 7)=1. Then we can find 4, g =0 so that é4—pu=1; and we have

G DCETDE D=2 79 wee nez

2l,—a,@,=1; namely Na,=1 (mod 2). Since m =15, this means that a; =1
(mod 2); we can put a;=1+28, where 0. Again we have

(b D5 16 D=3 .

Since 2/,—1=1, we have [,=1. This implies that the minimum of the left
hand side of (5) must be 1; this is a contradiction. Namely this case can
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not happen.

Thus we have the following

THEOREM. Let E and E’ be elliptic curves whose rings of endomorphisms
WE) and N(E") are both isomorphic to the principal order o of an imaginary
quadratic field Qv —m). Suppose there exist a finite number of elements
Ay oy Ay of W(E) such that E' is isomorphic to Ey, .1, Then the product EXE’
can not be a Jacobian variety when E’ is isomorphic to E and m is equal to
one of 0,1, 3, 7 and 15. In all other cases there exist curves of genus two,
with the self intersection number 2, on EXE’; in other words EXE is a
Jacobian variety of some curve of genus 2.

§5. The number of classes of curves of genus 2 on EXE,, .,

Assumptions for E being the same, we suppose that EXE, ., is the
Jacobian variety of an irreducible curve X and also that of another irreducible
curve X/, X and X’ being on EXE,, 4. According to the theorem of Torelli
{(cf. we can say that X and X’ are birationally equivalent to each other
if and only if there exists an automorphism 4 of EX E,, ., such that X’= A71(X).
Now there arises naturally a problem to find out the number of classes of
curves of genus 2 on EXE,, ., modulo birational equivalence. We are going
to show that this number is finite.

We denote by G the group of all matrices (‘Z :) whose entries sarisfy
the conditions: p and s<vo, = (a,, @,), g< (a,, @,)"' and ps—gqr is a unit of o.
We can write an automorphism 4 of EXE,, ., by an element (jq) Z) of G
(cf. Cor. of Prop.5). Then we can easily see that M(A“‘X):<£ Z)M(X)(*Z 7;) ;
the condition X’ = A%(X) is expressed by the relation

N (P T pr
o= (7 Do (? 7).
Now we consider an equivalence relation

u~(z Pu(g 9. (G D=

k ~%), where ke Z, a= (@, a, | € N, a)

-Z, k>0 and det M =kl—ad = N(a,, «,); and we shall shdw that the number
of equivalence classes is finite. (It is clear that this includes the assertion
mentioned above?®.)

in the set of matrices M:(

9) We can see that the number of classes of divisors X such that X=E/+E",
(E’,E'")y=1, is equal to the number of pairs {C’,C’/} of ideal classes such that the
product C’C’ contains the ideal (a;, ay).
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We put £=x+yw, p=2zp,+ufB, where x,v,z,ucZ and {B, 8.} is a
Z-basis of the ideal («;, a,)™; then the left hand side of (5) becomes a positive
definite quadratic form in four variables x, y, z, # with real coefficients. Its
discriminant is equal to D?/16 and hence depends only on m. This implies
that the minimum £k, of kEE+Ip7—ali—ady (Eco, e (a, a,)™) does not
exceed a constant depending only on m (cf. Minkowski’s well-known theorem
on a convex body and lattice points; or Dickson loc. cit.). Now we can
choose and fix an integral ideal a; with the smallest norm out of each ideal
class C; of o, j=1, ---, h, where h is the number of ideal classes. Again we
choose and fix 7,0 and J; < (a,, a,)™ such that (y, J;a,, 0;a,) =a; for each
Lh1=i=h

Suppose that £ =&, 0, =7, € (a;, a,)"* give the minimum &, of kEE-+In7
——a'§77—~&’§77. Then there exist a number j, 1<j=<h, and an element
reQW—m), r=0, st_lch that (y&,, 7700, Tty = a;; since & = y&,, =17, give
the value k2 Ny of kEE+In7—abij—aéy, it follows from definitions of %, and q;
that Ny=1. Hence we may assume that (§,, n,a,, n,a.) =q;, taking r&,, 77,
in place of &, %,, if necessary. Then we have (y;, 0;a,, 0;a;) = (&, Dotty, Npa,).
Therefore there exists an isomorphism ¢ : (y,x, 0;a,x, 0;0,%) — (§oX, N0, X, Po@,X),
x € E, of Eyj 501,005 00 Egqpoar,meass @nd by Prop. 8, ¢ can be extended to an
automorphism of EXFE,; .. Therefore there exists a matrix P< G such that

(ig)zP(gj) Hence we have

30 P(_q )P(F) =

J

We choose and fix 4;€0, g, (a,, a;) such that y;4,—0;¢; = Na;. Again we
choose and fix a set of representatives o, ---, o, of 0 modulo %,(«;, a,). Then
we can find an element S < (a;, a,) so that

G DE 9eCE ~DeE 96 D

where —@, is one of ¢;’s.

I
—~
|
;>
\
-~ &
N’

Now, denoting (g] ‘;‘J) by A;, the double coset GA;G can be divided into
right cosets: T

We shall show that the number of these right cosets is finite. In fact this
number is equal to the index [G: 4;'GA; N\ G]; and if we denote by I'(Na,) the

r) of G such that p=s=1 (mod MNa,), =0 (mod (a,,

S
a,)Naj), ¢=0 (mod (a,, @,)"'Nay), then I'(Na;) is a (normal) subgroup of finite

set of elements (‘2



16 T. HavasHIDA and M. NIsHI

index of G, and contained in A7'G4;; this implies that the number of right
cosets in (9) is finite.
Thus we can find a matrix Q in G so that
=~ k —a = ky, —a
L __tp-t 0 0 -1
Ay ")=F(_q ~)R"
Since the number of matrices appearing in the right hand side is finite, the
proof is completed.

Ochanomizu University
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