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There have been some fragments asserting that a Riemann matrix of a
curve does not decompose into a direct sum. But it seems to the authors that
there have been no attempts, as far as they know, to treat the subject rig-
orously and systematically.

In this paper we shall examine if a product $E\times E^{\prime}$ of elliptic curves $E$

and $E^{\prime}$ , with rings of endomorphisms isomorphic to the principal order of an
imaginary quadratic field $Q(\sqrt{-m})$ , can be a Jacobian variety of some curve
of genus 2 on $E\times E^{\prime}$ . Rather unexpectedly the following result is obtained:
$E\times E^{\prime}$ can be a Jacobian variety for all values of $m$ except 1, 3, 7 and 15 (cf.

paragraph 4, Theorem). In the last paragraph we shall show that there are
only a finite number of curves of genus 2 on $E\times E^{\prime}$ up to isomorphism. In a
forthcoming paper it will be shown that the number tends to infinity with $m$ .

Let $E$ and $E^{\prime}$ be two elliptic curves. We denote by $Hom(E, E^{\prime})$ the set
of all homomorphisms of $E$ into $E^{\prime}$ ; in particular when $E=E^{\prime}$ , we denote
$Hom(E, E)$ by $\mathfrak{A}(E)$ . We put $\mathfrak{A}_{0}(E)=\mathfrak{A}(E)\otimes Q$ , where $Q$ is the field of ra-
tional numbers. We denote by $Z$ the ring of rational integers.

\S 1. Preliminaries.

Let $Q(\sqrt{-m})$ be an imaginary quadratic field and $\mathfrak{v}$ its principal order;

when $m=0$ , we may understand that $Q(\sqrt{-m})$ and $0$ coincide with $Q$ and $Z$

respectively. We consider an elliptic curve $E$ for which $\mathfrak{A}_{0}(E)$ and $\mathfrak{A}(E)$ are
isomorphic to $Q(\sqrt{-m})$ and $0$ respectively. Since in case $m\neq 0,$ $Q(\sqrt{-m})$ has

two automorphisms, there are two isomorphisms of $Q(\sqrt{-m})$ on $\mathfrak{A}_{0}(E)$ . We
choose and fix one of them, and denote it by $f$ . We can identify $\mathfrak{A}(E)$ with
$0$ by $f$ .

For any finite number of endomorphisms $\lambda_{1},$ $\cdots$ , $\lambda_{n}\in 0$ of $E,$ $\{\lambda_{1}, \cdots , \lambda_{n}\}$

$\neq\{0, \cdots , 0\}$ , the correspondence
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$h_{\lambda_{1},\cdots.\lambda_{n}}$ : $E\ni x\rightarrow(\lambda_{1}x, \cdots \lambda_{n}x)\in E\times\cdot\cdot\times E\leftrightarrow n$.

defines a homomorphism of $E$ into $E\times\cdots\times E$ . The image of $E$ by $h_{\lambda_{1},\cdots,\lambda_{n}}$ is
an abelian subvariety of dimension 1 on $E\times\cdots\times E$ , namely an elliptic curve
lying on $E\times\cdots\times E$ ; we denote it by $E_{\lambda_{1},\cdots,\lambda_{n}}$ .

It is clear that translations of $E_{\lambda_{1},\cdots\lambda_{n}}$ are also elliptic curves on $E\times\cdots\times E$ ;
conversely we have the following

LEMMA 1. For each elliptic curve $E^{\prime}$ lying on the product of $n$ copies of
$E$ , there exist $n$ endomorphisms $\lambda_{1},$ $\cdots$ , $\lambda_{n}\in 0$ of $E$ such that $E^{\prime}$ is a translation
of $E_{\lambda_{1},\cdots,\lambda_{n}}$ .

PROOF. $E^{\prime}$ is a translation of an abelian subvariety of dimension 1 on
$E\times\cdots\times E$ (cf. [6], Th. 9); therefore we may assume that $E^{\prime}$ itself is an
abelian subvariety on $E\times\cdots\times E$ . We can easily see that $E^{\prime}$ is isogenous to
$E$ ; let $\alpha:E\rightarrow E^{\prime}$ be an isogeny. Since $E^{\prime}$ is a subvariety on $E\times\cdots\times E,$ $\alpha$ is
a homomorphism of $E$ into $E\times\cdots\chi E$ and the image of $E$ by $\alpha$ is $E^{\prime}$ . Let
$\lambda_{i}$ be the composed map of $\alpha$ and the projection of $E\times\cdots\times E$ to the i-th
factor $(i=1, \cdots , n)$ . We then have $E^{\prime}=E_{\lambda_{1},\ldots,\lambda_{n}}$ .

For any endomorphism $\alpha\in 0$ of $E$, we can consider the following corre-
spondence

$\alpha^{*};$ $E_{\lambda_{1},\cdots,\lambda_{n}}\ni(\lambda_{1}x, \cdots’\text{{\it \‘{A}}}_{n}x)\rightarrow(\lambda_{1}\alpha x, \cdots \lambda_{n}\alpha x)\in E_{\lambda_{1},\cdots,\lambda_{n}},$ $x\in E$ .
Since the ring $0$ is commutative, $\alpha^{*}$ is well-defined and determines an endo-
morphism of the elliptic curve $E_{\lambda_{1},\cdots,\lambda_{n}}$ . It is easily verified that the corre-
spondence

$f^{*}:$ $0\ni\alpha\rightarrow\alpha^{*}\in \mathfrak{A}(E_{\lambda_{1},\cdots,\lambda_{n}})$

is an injective homomorphism. Now $\mathfrak{A}_{0}(E_{\lambda_{1},\cdots,\lambda_{n}})$ is isomorphic to $\mathfrak{A}_{0}(E)$ , and
consequently to $Q(\sqrt{-m})$ ; this implies that $C^{*}$ is surjective. We may identify
$\mathfrak{A}(E_{\lambda_{1}\ldots,\lambda_{n}})$ with $0$ by $f^{*}$ . Then $h_{\lambda_{1},\cdots,\lambda_{n}}$ is an o-homomorphism of $E$ on $E_{\lambda_{1},\cdots,\lambda_{n}^{1)}}$ .

Now we have the following
PROPOSITION 1. Let $E$ and $E^{\prime}$ be elliptic curves whose rings of endo-

morphisms are both isomorphic to the pricipal order $\mathfrak{o}$ in $Q(\sqrt{-m})$ . Suppose
that there is a homomorphism $h$ of $E$ onto $E^{\prime}$ . Then, for each endomorphism
$\mathcal{T}^{\prime}$ of $E^{\prime}$ (resp. $\lambda$ of $E$ ), we can find an endomorphism $\gamma$ of $E$ (resp. $\text{\‘{A}}^{\prime}$ of $E^{\prime}$)

so that $\gamma^{\prime}h=h\gamma$ (resp. $\lambda^{\prime}h=h\lambda$); such an endomorphism is uniquely determined.
The correspondence $\gamma^{\prime}\rightarrow\gamma$ (resp. $\lambda\rightarrow\lambda^{\prime}$) gives rise to an isomorphism of rings
of endomorphisms of $E$ and of $E^{\prime}$ . Moreover the above correspondence is
independent on the choice of $h$ .

PROOF. There is a homomorphism $h^{\prime}$ of $E^{\prime}$ onto $E$ such that $h^{\prime}h=n\delta_{E}$

1) Then, putting $\alpha=(\lambda_{1}$ , $\cdot$ .. , $\lambda_{n}),$ $h_{\lambda_{1},\cdots,\lambda_{n}}$ is an a-multiplication in [5] (cf. [5],
p. 52).
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and $hh^{\prime}=n\delta_{E},$ , where $n=v(h)$ and $\delta_{E}$ (resp. $\delta_{E^{\prime}}$) means the identity map of $E$

(resp. of $E^{\prime}$). For given $\gamma^{\prime}$ , we put $\gamma=\frac{1}{n}h^{\prime}\gamma^{\prime}h$ . It is easy to show that $\gamma$ is

integral over $Z$ and our assertions follow immediately.
COROLLARY 1. If we identify $\mathfrak{A}(E_{\lambda_{1},\cdots,\lambda_{n}})$ and $\mathfrak{A}(E_{\mu 1,\cdots,\mu\prime})$ with $\mathfrak{o}$ by $\zeta^{*}$ re-

spectively, every homomorphism of $E_{\lambda_{1},\cdots,\lambda n}$ on $E_{11,,/l}$ is an o-homomorphism.
PROOF. Let $\varphi$ be any homomorphism of $E_{\lambda_{1},\ldots,\lambda_{n}}$ on $E_{11,\cdots,1}:$ . Then $\varphi\circ h_{\lambda_{1},\cdots,\lambda_{n}}$

is a homomorphism of $E$ on $ E_{1_{1,,/f}}\ldots\iota$ . Since there exists an $\mathfrak{o}$ -homomorphism
$ h_{Z1,\cdots,f1}\iota$ of $E$ on $E_{t_{1}\cdots,t},,$ $\varphi\circ h_{\lambda_{1},\ldots,\lambda_{n}}$ is also an o-homomorphism by Prop. 1. But
the latter fact implies that $\varphi$ is an o-homomorphism.

COROLLARY 2. Assumtions being as in Prop. 1, let 3 be the kernel of $h$ .
Then we have $\lambda_{\partial}\subset \mathfrak{z}$ for every endomorphism $\lambda$ of $E$ .

Starting from $E_{\text{{\it \‘{A}}}_{1},\cdots,\lambda_{n}}$ in place of $E$ , we can define $(E_{\lambda_{1},\cdots,\lambda_{n}})_{\mu 1,,/l}$ , where
$\lambda_{i},$

$\mu_{j}$ are elements of $0$ . Then $(E_{\lambda_{1},\ldots,\lambda_{n}})_{/1,\ldots,1^{1}l}J$ is an elliptic curve $E_{\lambda_{1\mu 1},\lambda_{2}\mu_{1},\cdots,\lambda_{nll}}$

on the product of $nl$ copies of $E$ .
PROPOSITION $2^{2)}$ . $\iota$) $(h_{\lambda_{1},\cdots,\lambda_{n}})=Norm(\lambda_{1}, \cdots , \lambda_{n})$ .
PROOF. There exists an ideal $(\mu_{1}, \cdots , \mu_{l})$ in $0$ such that $(\lambda_{1}, \cdots , \lambda_{n})(\mu_{1}, \cdots , \mu_{l})$

$=(\gamma),$ $\gamma\in 0$ and that $(\nu(h_{\lambda_{1},\cdots,\lambda_{n}}), N(\mu_{1}, \cdots , \mu_{b}))=1$ . We consider the homo-
morphism:

$ h_{\mu_{1},\ldots,\mu_{l}\ddagger}^{\prime}E_{\lambda_{1},\ldots,\lambda_{n}}\rightarrow(E_{\lambda_{1},\cdots,\lambda_{n}})_{\beta 1,,/t}\iota$ .

Let $k$ be a field over which $E$ and each endomorphism are defined, and $x$ a
generic point of $E$ over $k$ . We can readily see that $k(\lambda_{1}\mu_{1}x, \lambda_{2}\mu_{1}x, \cdots \lambda_{n}\mu_{l}x)$

$=k(rx)$ . This implies that $\nu(h_{\alpha_{1,\cdots,1^{I}l}}^{\prime}\circ h_{\lambda_{1}\ldots.,\lambda_{n}})=\nu(\gamma)$ ; and, since $\nu(\gamma)=N(\gamma)$ , we
have $\nu(h_{\lambda_{1},\ldots,\lambda_{n}})\nu(h_{\mu_{1},\cdot\cdot,\mu_{l}}^{\prime})=N(\lambda_{1}, \cdots , \lambda_{n})N(\mu_{1}, \cdots , \mu_{l})$ . Since $\nu(h_{\lambda_{1},\ldots,\text{{\it \‘{A}}}_{n}})$ is prime to
$N(\mu_{1}, \cdots , \mu_{l}),$ $\nu(h_{\lambda_{1},\cdots,\lambda_{n}})$ divides $N(\lambda_{1}, \cdots , \lambda_{n})$ . Quite similarly $\nu(h_{\mu 1,\cdots,\mu l}^{\prime})$ also
divides $N(\mu_{1}$ , $\cdot$ .. , $\mu_{l})$ . Therefore we have $\nu(h_{\lambda_{1},\ldots,\lambda_{n}})=N(\lambda_{1}$ , $\cdot$ .. , $\lambda_{n})$ .

Let $k$ be a field over which $E$ and each endomorphism of $E$ are defined;
let $x$ be a generic point of $E$ over $k$ . If two ideals $(\lambda_{1}, \cdots , \lambda_{n}),$ $(\mu_{1}, \cdots , \mu_{l})$ are
equal, then $k(\lambda_{1}x, , \lambda_{n}x)=k(\mu_{1}x, , \mu_{l}x)$ ; and hence $E_{\lambda_{1},\cdots,\lambda_{n}}$ is isomorphic to
$E_{\mu_{1},\cdots,\mu l}$ . If $\gamma\neq 0$ is an element of $0$ , then $\gamma x$ is also an generic point of $E$ over
$k$ ; and hence $E_{\lambda_{1},\cdots,\lambda_{n}}$ is equal to $E_{\lambda_{1}7,\cdots,\lambda_{n}T}$ . We shall prove the following

PROPOSITION 3. $Hom(E_{\lambda_{1},\cdots,\lambda_{n}}, E_{1}1,\cdots,\mu\iota)$ is canonically isomorphic to $(\lambda_{1},$ $\cdots$ ,
$i_{n})(\mu_{1}, \cdots \mu_{l})^{-1}$ as o-modules. Moreover, if $h\in Hom(E_{\lambda_{1},\cdots,\lambda_{n}}, E_{l^{y}1,,,!l})$ corresponds
to $\alpha\in$ $(\lambda_{1}, \cdots , \lambda_{n})(\mu_{1}, \cdots , \mu_{l})^{-1}$ by this isomorphism, then $\nu(h)=N\alpha\cdot N(\mu_{1}, \cdots , \mu_{l})$

$\int N(\lambda_{1}, \cdots \lambda_{n})$ .
PROOF. We can find an element $\gamma$ in $0$ and an ideal $(\beta_{1}, , \beta_{s})$ so that

\langle $\lambda_{1},$ $\cdots$ , $\lambda_{n}$) $(\beta_{1}, \cdots , \beta_{s})=(\gamma\mu_{1}, \cdots , \gamma\mu_{l})$ . We put $E_{\lambda_{1},\ldots,\lambda_{n}}=E^{\prime}$ . Then the corre-
spondence: $(\gamma\mu_{1}x, \cdots , \gamma\mu_{l}x)\rightarrow(\beta_{1}(\lambda_{1}x, \cdots , \lambda_{n}x), \cdots , \beta_{S}(\lambda_{1}x, \cdots , \lambda_{n}x)),$ $x\in E$, defines

2) Prop. 2 is a special case of Prop. 10, Chap. II in [5]. For the convenience of
readers we reproduce the proof here.



4 T. HAYASHIDA and M. NISHI

an isomorphism $\varphi$ of $E_{r\cdots,\tau\nu\iota}\mu 1$, on $E_{\beta_{1}^{\prime},\ldots,\beta_{S}}$ . Now let $h$ be a homomorphism:
$ E_{\lambda_{1},\ldots,\lambda_{n}}\ni$ $(\lambda_{1}x, \cdots , \lambda_{n}x)\rightarrow(\gamma\mu_{1}x^{\prime}, \cdots \gamma\mu_{l}x^{\prime})\in E_{\gamma\gamma_{\mathcal{U}}}\mu 1,\ldots.l$ Then $\varphi\circ h$ is a homo-
morphism of $E^{\prime}$ into $E^{\prime}\times\cdots\times E^{\prime}$ ; and the composed map of $\varphi\circ h$ and the
projection of $E^{\prime}\times\cdots\times E^{\prime}$ to the j-th factor gives rise to an endomorphism
$\alpha_{j}\in 0$ of $E^{\prime}$ . We have $\beta_{j}(\lambda_{1}x^{\prime}, \cdots , \lambda_{n}x^{\prime})=\alpha_{j}(\lambda_{1}x, \cdots , \lambda_{n}x)(j=1, \cdots , s)$ . This
determines an element $\alpha^{\prime}\in(\beta_{1}, \cdots \beta_{s})^{-1}$ such that $\alpha^{\prime}\beta_{j}=\alpha_{j}(j=1, \cdots , s)$ .
Thus we have $\varphi\circ h(\lambda_{1}x, \cdots , \lambda_{n}x)=(\alpha^{\prime}\beta_{1}(\lambda_{1}x, \cdots , \lambda_{n}x), \cdots , \alpha^{\prime}\beta_{S}(\lambda_{1}x, \cdots , \lambda_{n}x))$ ; hence
$h(\lambda_{1}x, \cdots , \lambda_{n}x)=(\alpha^{\prime}\gamma\mu_{1}x, \cdots , \alpha^{\prime}\gamma\mu_{l}x)$ . We put $\alpha=\alpha^{\prime}\gamma$ ; then $\alpha\in(\lambda_{1}, \cdots , \lambda_{n})(\mu_{1},$ $\cdots$ ,
$\mu_{l})^{-1}$ and $h(\lambda_{1}x, \cdots , \lambda_{n}x)=(\alpha\mu_{1}x, \cdots , \alpha\mu_{l}x)$ . Conversely it is clear that any
element $\alpha\in$ $(\lambda_{1}, \cdots , \lambda_{n})(\mu_{1}, \cdots , \mu_{l})^{-1}$ gives a homomorphism of $E_{\lambda_{1},\cdots.\lambda_{n}}$ in $E_{\mu 1,\cdots,\mu\iota}$

in the manner described above.
The rest of our proposition follows immediately from Prop. 2.
COROLLARY. $E_{\lambda_{1},\cdots,\lambda_{n}}$ is isomorphic to $E_{/1}z,\cdots,u_{l}$ if and only if there exists an

$\vee olement\alpha\in Q(\sqrt{-m})$ such that
$(\lambda_{1}, \cdots , \text{{\it \‘{A}}}_{n})=\alpha(\mu_{1}, \cdots , \mu_{l})$ [ideals].

PROOF3). “ If ” part is obvious. Let us consider the converse. We suppose
that there exists an isomorphism $h$ of $E_{\lambda_{1},\cdots,\lambda_{n}}$ to $E_{J_{1\nu t}},\cdots,$ ; we take $\alpha\in(\lambda_{1},$ $\cdots$ ,
$\lambda_{n})(\mu_{1}, \cdots , \mu_{l})^{\leftarrow 1}$ which corresponds to $h$ by the canonical isomorphism given in
Prop. 3. Then we see that $N\alpha N(\mu_{1}, \cdots , \mu_{l})=N(\lambda_{1}, \cdots , \lambda_{n})$ . Whence we obtain
$\alpha(\mu_{1}, \cdots \mu_{l})=(\lambda_{1}, \cdots \lambda_{n})$ .

PROPOSITION 4. (In this Proposition we assume that $m\neq 0.$) Let $E$ and $E^{\prime}$

be elliptic curves whose rings of endomorphisms are both isomorphic to the
principal order $0$ in $Q(\sqrt{-m})$ . We suppose that there is a homomorphism $h$

of $E$ onto $E^{\prime}$ . Then there exist a finite number of endomorphisms $\alpha_{1}$ , , $\alpha_{n}$

$\in 0$ of $E$ such that $E^{\prime}$ is isomorphic to $E_{\alpha_{1},\cdots,\alpha_{n}}$ .
PROOF. By Prop. 1 we can identify $0$ with $\mathfrak{A}(E)$ and $\mathfrak{A}(E^{\prime})$ respectively

so that $h$ is an $0$-homomorphism of $E$ on $E^{\gamma}$ . Then, in case that $h$ is separable,
we can apply Prop. 23 of [5]. On the other hand, when the characteristic $p$

of our geometry is positive, the correspondence: $x\rightarrow x^{p}$ is an automorphism
of the universal domain; this defines the ” p-th power ” $E^{p}$ of $E$ . According
to Deuring [1] (pp. 219-220), we see that there is an ideal $3=(\lambda_{1}$ , $\cdot$ .. , $\lambda_{\iota})$ in $0$

such that $E^{p}$ is isomorphic to $E_{\lambda_{1},\cdots,\lambda_{I}}$ . Combining these facts and noticing the
statement before Prop. 2, we can obtain our assertion.

It is well known that each ideal in $0$ can be generated by at most two
elements; if $(\lambda_{1}, \cdots , \lambda_{n})=(\alpha_{1}, \alpha_{2})$ , then $E_{\lambda_{1},\ldots,\lambda_{n}}$ is isomorphic to $E_{\alpha_{1},\alpha_{2}}$ . Let $\tau$

be an homomorphism of $E$ into $E_{a_{1},\alpha_{2}}$ . Then, by Prop. 3, we can find an
element $\gamma\in(\alpha_{1}, \alpha_{2})^{-1}$ so that $\tau$ is given by the correspondence

$\tau;E\ni x\rightarrow((\gamma\alpha_{1})x, (\gamma\alpha_{2})x)\in E_{a_{1},\alpha_{2}}$ .

3) For another proof we can apply Cor. 1 of our Prop. 1 and [5], Prop. 14.
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Now we consider an product $E\times E_{\alpha_{1},\alpha_{2}}$ . If $\lambda\in 0$ and $\mu\in(\alpha_{1}, \alpha_{2})^{-1}$ , then
$E_{\lambda,\mu\alpha_{1}.\mu\alpha_{2}}$ is an elliptic curve lying on $E\times E_{\alpha_{1},\alpha_{2}}$ . The above discussion enables
us to show the following

LEMMA 1’. For each elliptic curve $E^{\prime}$ lying on $E\times E_{\alpha 1\alpha_{2}}$ , there exist two
elements $\lambda\in 0$ and $\mu\in(\alpha_{1}, \alpha_{2})^{-1}$ such that $E^{\gamma}$ is a translation of $E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$ .

Proof is similar to that of Lemma 1.
In order to calculate intersection numbers of divisors on $E\times E_{\alpha_{1},a_{2}}$ we need

some lemmas4).

LEMMA 2. Let $\alpha,$ $\beta,$
$\gamma,$

$\delta$ be endomorphisms of $E$ , and $k$ a field over which
$\alpha,$ $\beta,$

$\gamma,$

$\delta$ are defined; $x$ and $y$ be independent generic points of $E$ over $k$ .
Assume that $\alpha\delta-\beta\gamma\neq 0$ . Then

$[k(x, y):k(\alpha x+\gamma y, \beta x+\delta y)]=N(\alpha\delta-\beta\gamma)$ .
PROOF. First we suppose that $\delta\neq 0$ . We calculate the degree of the ex-

tension $k(x, y)$ over $k((\alpha\delta-\beta\gamma)x, \beta x+\delta y)$ in two ways. Noticing that $k(x, \delta y)$

$=k(x, \beta x+\delta y)$ , we have
$[k(x, y):k((\alpha\delta-\beta\gamma)x, \beta x+\delta y)]$

$=[k(x, y) : k(x, \delta y)][k(x, \beta x+\delta y) : k((\alpha\delta-\beta\gamma)x, \beta x+\delta y)]$

$=N\delta N(\alpha\delta-\beta\gamma)$

in one way. On the other hand, if we put $\alpha x+\gamma y=u$ and $\beta x+\delta y=v$ , then
$\delta u-\gamma v=(\alpha\delta-\beta\gamma)x$ ; noticing $k(\delta u-\gamma v, v)=k(\delta u, v)$ , we have

$[k(x, y). k((\alpha\delta-\beta\gamma)x, \beta x+\delta y)]$

$=[k(x, y):k(\delta u-\gamma v, v)]$

$=[k(x, y) : k(u, v)][k(u, v) : k(\delta u, v)]$

$=[k(x, y):k(u, v)]N\delta$ .
Since $N\delta\neq 0$ , by comparing these two equalities, we obtain our assertion.

If $\delta=0$ , then $\gamma\neq 0$ and we can take $\gamma$ in place of $\delta$ .
In what follows the symbol (X, $Y$ ) means the intersection number of

divisors $X$ and $Y$ on $E\times E_{\alpha_{1},\alpha_{2}}$ .
LEMMA 3. $(E_{\lambda u\alpha_{1}.\mu\alpha_{2}}, E_{\xi.\eta\alpha_{1},\eta\alpha_{2}})=\frac{N(\lambda\eta-\mu\xi)N(\alpha_{1},\alpha_{2})}{N(\lambda,\mu\alpha_{1},\mu\alpha_{2})N(\xi,\eta\alpha_{1},\eta\alpha_{2})}$

PROOF. Since $E_{\lambda_{1},\cdots,\lambda_{n}}=E_{T\lambda_{1},\cdots,\gamma\lambda_{n}}$ for any $\gamma\neq 0,$ $\gamma\in 0$ , we may assume that
$\lambda,$

$\mu$ (resp. $\xi,$
$\eta$) in this formula are elements of $0$ , multiplying $\lambda,$

$\mu$ (resp. $\xi,$
$\eta$)

by a suitable non-zero element of $0$ if necessary.
Let $x$ and $y$ be independent generic points of $E$ over $k$ , where $k$ is a field

over which endomorphisms $\alpha_{1},$ $\alpha_{2},$
$\lambda,$

$\mu,$
$\xi,$

$\eta$ are defined. If $\lambda\eta-\mu\xi=0$ , then

4) Only Lemmas 2 and 3 are needed, and Propositions 5–9 are not necessary for
this object.
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$E_{\lambda,\mu\alpha_{1},\alpha\alpha_{3}}=E_{\xi,\eta\alpha_{1},\eta a_{2}}$ and our formula clearly holds. Hence we may assume
$\lambda\eta-\mu\xi\neq 0$ ; then we know by Lemma 2 that $\lambda x+\xi y$ and $\mu x+\eta y$ are algebra-
ically independent over $k$ . We have (cf. [6], Th. 4, Cor. 2)

$(E_{\lambda,\mu a_{1},fJ\alpha_{2}}, E_{\xi,\eta\alpha_{1},\eta a_{2}})$

$=[k(\lambda x, \mu\alpha_{1}x, \mu\alpha_{2}x, \xi y, \eta\alpha_{1}y, \eta\alpha_{2}y):k(\lambda x+\xi y, \alpha_{1}(\mu x+\eta y), \alpha_{2}(\mu x+\eta y))]$

$=\frac{[k(x,y):k(\lambda x+\xi y,\mu x+\eta y)][k(u):k(\alpha_{1}u,\alpha_{2}u)]}{[k(x):k(\grave{\text{{\it \‘{A}}}}x,\mu\alpha_{1}x,\mu\alpha_{2}x)][k(y):k(\xi y,\eta\alpha_{1}y,\eta\alpha_{2}y)]}$

where $u=\mu x+\eta y$ . Since $u$ is a generic point of $E$ over $k$ , our assertion follows
immediately from Lemma 2 and Prop. 2.

COROLLARY 1. $(E_{\lambda},,,, E_{\xi,\eta})=\frac{N(\lambda\eta-\mu\xi)}{N(\lambda,\mu)N(\xi,\eta)}$ .

COROLLARY 2. $E_{\lambda,//n_{1},,a_{2}}=E_{\lambda^{J},1^{\prime}\alpha_{1},/1^{\prime}\alpha_{2}}$ if and only if there exists an element
$\gamma\in Q(\sqrt{-m})$ such that $\lambda^{\prime}=\gamma\lambda,$ $\mu^{\prime}=\gamma\mu$ .

Our assertion follows immediately from Lemma 3.
By virtue of Prop. 3, we can see that each endomorphism of $E\times E_{a_{1},\alpha_{2}}$ is

given by the correspondence:

$(x, \alpha_{1}y, \alpha_{2}y)\rightarrow(\alpha x+\gamma y, \alpha_{1}(\beta x+\delta y),$ $\alpha_{2}(\beta x+\delta y))$ ,

where $\alpha$ and $\delta\in \mathfrak{o},$ $\beta\in(\alpha_{1}, \alpha_{2})^{-1},$ $\gamma\in(\alpha_{1}, \alpha_{2})$ . This endomorphism may be ex-

pressed by a matrix ( $\gamma\delta$ ).

PROPOSITION 5. $\nu$ ( $\beta\alpha$
$\delta\gamma)=N(\alpha\delta-\beta\gamma)$ .

PROOF. Let $x$ and $y$ be independent generic points of $E$ over $k$ , where $k$

is a field over which $E$ and each endomorphism are defined. Then, by definition,

the left hand side of our proposition is given by the degree [ $k(x, \alpha_{1}y, \alpha_{2}y)$ :
$k(\alpha x+\gamma y, \alpha_{1}\beta x+\alpha_{1}\delta y, \alpha_{2}\beta x+\alpha_{2}\delta y)]$ . If we multiply this number by [ $k(y)$ :
$k(\alpha_{1}y, \alpha_{2}y)]$ and divide the resulting number by $[k(x):k(\alpha x, \beta\alpha_{1}x, \beta\alpha_{2}x)][k(y)$ :
$k(\gamma y, \delta\alpha_{1}y, \delta\alpha_{2}y)]$ , then we obtain the intersection number $(E_{a,\beta\alpha_{1},\beta\alpha_{2}}, E_{\tau,\delta\alpha_{1},\delta\alpha_{2}})$ .
Our assertion follows immediately from Lemma 3 and Prop. 2.

COROLLARY. An endomorphism

$(_{\beta}^{\alpha}$ $\gamma\delta)$

of $E\times E_{\alpha_{1},\alpha_{2}}$ is an automorphism if and only if $\alpha\delta-\beta\gamma$ is a unit of $0$ .
PROPOSITION 6. For any $E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$ on $E\times E_{a_{1},\alpha_{2}}$ , there exists an $E_{\xi,\eta a_{1},\eta\alpha_{2}}$

such that $(E_{\lambda_{f}’\alpha_{1},/J\alpha_{2}}, E_{\xi^{\gamma}a_{1},\eta\alpha_{2}})=1$ .
PROOF. By virture of Lemma 3, we have only to show that there

exist $\xi,$ $\eta\in 0$ such that $(\lambda, \mu\alpha_{1}, \mu\alpha_{2})(\xi, \eta\alpha_{1}. \eta\alpha_{2})=(\lambda\eta-\mu\xi)(\alpha_{1}, \alpha_{2})$ . We put
$N(\lambda, \mu\alpha_{1}, \mu\alpha_{2})=n$ and $(\alpha_{1}, \alpha_{2})=\mathfrak{a}$ ; namely $(\lambda, \mu \mathfrak{a})(\overline{\lambda},\overline{\mu}\overline{\mathfrak{a}})=(\lambda\overline{\lambda},$ $\lambda\overline{\mu}\overline{\mathfrak{a}},\overline{\lambda}\mu \mathfrak{a},$ $\mu\overline{\mu}\mathfrak{a}\overline{\mathfrak{a}}\rangle$
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$=(n)$ . This means that there exist $\eta\in(\overline{\lambda},\overline{\mu}\overline{\mathfrak{a}})$ and $\xi\in(\overline{\lambda}\mathfrak{a},\overline{\mu}\overline{\mathfrak{a}}\mathfrak{a})$ such that
$\lambda\eta-\mu\xi=n$ . Then we have $(\xi, \eta \mathfrak{a})\subset(\overline{\lambda},\overline{\mu}\overline{\mathfrak{a}})\mathfrak{a}$ and hence $(\lambda, \mu \mathfrak{a})(\xi, \eta \mathfrak{a})\subset(\lambda\eta-\mu\xi)(\ddagger$ .
But the relation $(\lambda, \mu \mathfrak{a})(\xi, \eta \mathfrak{a})\supset(\lambda\eta-\mu\xi)\mathfrak{a}$ is obvious. Hence our assertion
follows.

REMARK. One can read in our proof that $E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$ is not unique; and that
the ideal class of $(\xi, \eta\alpha_{1}, \eta\alpha_{2})$ is uniquely determined; in fact $(\xi, \eta\alpha_{1}, \eta\alpha_{2})(\lambda$ ,
$\mu\alpha_{1},$ $\mu\alpha_{2}$) $\sim(\alpha_{1}, \alpha_{2})$ . Then Cor. of Prop. 3 shows that “ partners ”

$E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$ of
$E_{\lambda_{1}z\alpha_{1},\mu\alpha_{2}}$ are isomorphic to each other.

COROLLARY. For any $E_{\lambda_{1}\nu a_{1},\mu\alpha_{2}}$ on $E\times E_{\alpha_{1},a_{2}}$ , there exists an $E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$ such
that $E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}\times E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$ is isomorphic to $E\times E_{a_{1},\alpha_{2}}$ ; moreover the correspondence
is given as follows:

$E_{\lambda,g\ell\alpha_{1},\mu\alpha_{2}}\times E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}\ni(P, Q)-P+Q\in E\times E_{a_{1},\alpha_{2}}$ .

PROOF. This Corollary follows immediately from Prop. 6 and [6], Th 4,
Cor. 2; namely $E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$ in Prop. 6 has the desired property.

Here we shall give an example in which the assertion of Prop. 6 can not
be generalized to the case of $E\times E^{\prime}$ , where $E^{\prime}$ is isogenous to $E$ .

EXAMPLE5). Let $E$ be an elliptic curve such that the ring of endomorphisms
is isomorphic to the ring $Z$ of rational integers. Let $q$ be a prime which is
different from the characteristic of our universal domain; then the subgroup
of the points of $E$ whose orders are $q$ is a direct sum of cyclic groups $\partial_{1}$ and
$\mathfrak{z}_{2}$ of orders $q$ . There exist elliptic curves $E_{i}=E/\mathfrak{z}_{i}$ and separable homo-
morphisms $\lambda_{i}$ : $E\rightarrow E_{i}=E/\mathfrak{z}_{i}$ such that the kernels of $\lambda_{i}$ are $\mathfrak{z}_{i}(i=1,2)$ . We
can readily see that any homomorphism of $E$ to $E_{i}$ is written as $n\lambda_{i}$ , where
$n\in Z$. From this we can see that any abelian subvariety of dimension 1 on
$E_{1}\times E_{2}$ is a locus of a point $(m\lambda_{1}x, n\lambda_{2}x),$ $x\in E$ , where $m,$ $n\in Z$ and we may
suppose that $(m, n)=1$ ; we denote it by $E_{m\lambda_{1},n\lambda_{2}}$ , We take $E_{\lambda_{1},\lambda_{2}}$ . It is easy
to see that, for any $E_{m\lambda_{1},n\lambda_{2}}(m\neq n)$ , the intersection $E_{\lambda_{1},\lambda_{2}}\cap E_{m\lambda_{1}n\lambda_{2}}$ contains
other points than the origin $(0,0)$ .

PROPOSITION 7. Let $E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$ and $E_{\lambda}$ be elliptic curves on $E\times E_{a_{1},a_{2}}$ .
If there exists an homomorphism $\varphi$ of $E_{1,/\nu\alpha_{1},/1\alpha_{2}}$ onto $E_{\lambda^{\prime},\mu^{l}\alpha_{1},\mu^{l}\alpha_{2}}$ , then $\varphi$ can be
extended to an endomorphism of $E\times E_{a_{1},\alpha_{2}}$ .

PROOF. We take $E_{\xi,\eta a_{1},\eta\alpha_{2}}$ and $E_{\xi^{J},\eta’ a1,\eta^{\prime}\alpha_{2}}$ such that $E_{\lambda u\alpha_{1},\rho\alpha_{2}}\times E_{\xi,\eta a_{1*}\eta\alpha_{2}}$ and
$E_{\lambda^{J}\mu’\alpha_{1},,,\alpha_{2}}\times E_{\xi}$ are both isomorphic to $E\times E_{a_{1},a_{2}}$ . Since $E_{\xi,r?\alpha_{1},\eta\alpha_{2}}$ is
isogenous to $E_{\xi,\eta’\alpha_{1^{\gamma}},,’ a_{2}}$ , we can take an homomorphism $\psi$ of $E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$ onto
$E_{\xi^{\prime},\eta a_{1}.\eta\prime a_{2}}’$ . Then we obtain a homomorphism

$\varphi\times\psi:E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}\times E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}\rightarrow E_{\lambda,/x^{r}\alpha_{1},\mu^{\prime}\alpha_{2}}\times E_{\xi^{\prime},\eta^{\prime}\alpha_{1},\eta^{\prime}a_{2}}$ .

Since $E\times E_{a_{1},a_{2}}$ is isomorphic to either of two products, we obtain an extension
of $\varphi$ via. $\varphi\times\Phi$ .

5) This example is suggested by our friend S. Koizumi.
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PROPOSITION 8. Let $E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$ and $E_{\lambda}$ be elliptic curves on $E\times E_{\alpha_{1},\alpha_{2}}$ .
If there exisls an isomorphism $\varphi$ of $E_{\lambda.\mu\alpha_{1},\mu\alpha_{2}}$ onto $E_{\lambda}$ , then $\varphi$ can be
extended to an automorphism of $E\times E_{\alpha_{1}.\alpha_{2}}$ .

PROOF. Our assertion follows from Cor. of Prop. 3, Remark at the end of
Prop. 6, Cor. of Prop. 6, and our proof of Prop. 7.

We take a Z-basis (minimal basis) $\{1, \omega\}$ of $0$ , where $\omega=\sqrt{-m}$ if $m\equiv 1$

or 2 $(mod 4)$ and $\omega=\frac{1}{2}(1+\sqrt{-m})$ if $m\equiv 3(mod 4)$ ; then each element of $0$

can be written uniquely as a linear combination of 1, $\omega$ with coefficients in $Z$.
Let $\{\beta_{1}, \beta_{2}\}$ be a Z-basis of the ideal $(\alpha_{1}, \alpha_{2})^{-1}$ . Then $E_{1.\beta_{i}\alpha_{1},\beta t^{\alpha}2}$ are the graphs
of homomorphisms: $E\ni x\rightarrow(\beta_{i}\alpha_{1}x, \beta_{i}\alpha_{2}x)\in E_{\alpha_{1},\alpha_{2}},$ $(i=1,2)$ ; and $E_{1,0.0},$ $E_{0,\alpha_{1},\alpha_{2}}$

mean $E\chi O,$ $0\times E_{\alpha_{1},\alpha_{2}}$ respectively. According to [6], Th. 22, we know that
each divisor $X$ on $E\times E_{\alpha_{1},\alpha_{2}}$ is algebraically equivalent to a linear combination
of these elliptic curves; namely we have

(1) $X\equiv aE_{1,\beta_{1}\alpha_{1},\beta_{1}\alpha_{2}}+bE_{1,\beta_{2}\alpha_{1},\beta_{2}\alpha_{2}}+cE_{1,0,0}+dE_{0,\alpha_{1},\alpha_{2}}$

where coefficients are rational $integers^{6),7)}$ .
As (X, $E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$) is linear with respect to divisors $X$, it follows easily from

Lemma 3 that there exist rational integers $k,$ $1,$ $l\equiv 0(mod N(\alpha_{1}, \alpha_{2}))$ , and an
element $\alpha$ of the ideal $(\overline{\alpha_{1},\alpha_{2}})$ depending only on $X$ so that

(2) (X, $E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$) $=(k\xi\overline{\xi}+l\eta\overline{\eta}-\alpha\xi\overline{\eta}-\overline{\alpha}\overline{\xi}\eta)/N(\xi, \eta\alpha_{1}, \eta\alpha_{2})$

for all $E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$ . Moreover, as is easily verified, constants $k,$ $l$ and $\alpha$ are
uniquely determined when $X$ is given. Now it is convenient to attach a
matrix

$M(X)=\left(\begin{array}{ll}k & -\overline{\alpha}\\-\alpha & l\end{array}\right)$ , where $k\in Z,$ $l\in N(\alpha_{1}, \alpha_{2})Z,$ $\alpha\in(\overline{\alpha_{1},\alpha_{2}})$

to any divisor $X$ on $E\times E_{\alpha_{1},\alpha_{2}}$ . For an elliptic curve $E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$ on $E\times E_{\alpha_{1},\alpha_{2}}$ we
have

$M(E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}})=\frac{N(\alpha_{1},\alpha_{2})}{N(\lambda,\mu\alpha_{1},\mu\alpha_{2})}\left(\begin{array}{ll}\mu\overline{\mu} & -\lambda\overline{\mu}\\-\mu\overline{\lambda} & \lambda\overline{\lambda}\end{array}\right)$ .

As (X, $Y$ ) is linear with respect to $Y$, we can get the following formula:

(X, $Y$ ) $=(kl^{\gamma}+lk^{\gamma}-\alpha\overline{\alpha}^{\prime}-\overline{\alpha}\alpha^{\prime})/N(\alpha_{1}, \alpha_{2})$ , where $M(X)=\left(\begin{array}{ll}k & -\overline{\alpha}\\-\alpha & l\end{array}\right)$ and

$M(Y)=\left(\begin{array}{ll}k^{\prime} & -\overline{\alpha}^{\prime}\\-\alpha & l’\end{array}\right)$ . In particular, putting $X=Y$, we have

(3) $\frac{1}{2}(X, X)=(kl-\alpha\overline{\alpha})/N(\alpha_{1}, \alpha_{2})=\frac{\det M(X)}{N(\alpha_{1},\alpha_{2})}$ ,

6) In what follows we shall denote by $\equiv$ the algebraic equivalence.
7) Of course, we may take the graphs of homomorphisms of $E_{\alpha_{1}.a_{2}}$ onto $E$ , namely

$E_{\gamma_{1},a_{1},a_{2}},$ $E_{\gamma_{2},a_{1},\alpha_{2}}$ in stead of $E_{1,\rho_{i^{a_{1}}},\beta_{i}\alpha_{2}}(i=1,2)$ , where $\{\gamma_{1}, \gamma_{2}\}$ is a Z-basis of $(\alpha_{1}, \alpha_{2})$ .
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When $X$ is expressed in the form (1), we have

$M(X)=(-(a\beta+^{1}b\beta)N(\alpha_{1},\alpha_{2^{1}})(aN_{1}\beta+b_{2}N\beta_{2})N(\alpha, \alpha_{2})+d$ $-(a\overline{\beta}+b\overline{\beta})N(\alpha_{1},\alpha)(a+^{1}b+c)^{2}N(\alpha_{1},\alpha_{2})^{2})$ .

This implies in particular that to every matrix $M=\left(\begin{array}{ll}k & -\overline{\alpha}\\-\alpha & l\end{array}\right),$ $k\in Z$,

$\alpha\in(\overline{\alpha_{1},\alpha_{2}}),$ $l\in N(\alpha_{1}, \alpha_{2})Z$, there corresponds a divisor $X$ such that $M=M(X)$ .
We also know that $M(X)=M(Y)$ if and only if $X\equiv Y$.
LEMMA 4. Let $X$ be a divisor on $E\times E_{\alpha_{1},\alpha_{2}}$ such that (X, $X$ ) $=2$ . Then

we have $l(X)\geqq 1$ or otherwise $1(-X)\geqq 1$ , where $l(X)$ means the dimension of
the complete linear system $|X|$ determined by $X$.

PROOF. By virtue of the Riemann-Roch theorem on $E\times E_{\alpha_{1},\alpha_{2}}$ we know
that

$l(X)+l(-X)\geqq\chi(E\times E_{\alpha_{1},\alpha_{2}})-\chi_{E\times E_{\alpha 1,\alpha_{2}}}(-X)$ .
Since the arithmetic genus of an abelian variety is zero, we have $\chi(E\times E_{\alpha_{1},\alpha_{2}})$

$=0$ ; and further the virtual arithmetic genus $\chi_{B\times B\alpha_{1},\alpha_{2}}(-X)$ is equal to

$-\frac{1}{2}(X, X)$ (cf. [4]). Therefore we have

$l(X)+l(-X)\geqq 1$ .
This implies either $1(X)\geqq 1,$ $l(-X)=0$ or $1(X)=0,1(-X)\geqq 1$ .

The following lemma is due to Weil (cf. [7], Satz 2).

LEMMA (Weil). Let $A$ be an abelian variety of dimension 2, and $X$ be a
positive divisor on $A$ such that (X, $X$ ) $=2$ . Then, if $X$ is an irreducible curve,
then $X$ is a curve of genus 2 and $A$ is a Jacobian variety of $X$ ; if $X$ is not
irreducible, then there exist elliptic curves $E$ and $E^{\prime}$ on $A$ such that $X\equiv E+E^{;8)}$ .

LEMMA 5. Let $X$ be a positive divisor on $E\times E_{\alpha_{1},\alpha_{2}}$ such that (X, $X$ ) $=2$ .
Then $X$ is an irreducible curve if and only if (X, $E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$) $>1$ for all elliptic
curves on $E\times E_{\alpha_{1},\alpha_{2}}$ .

PROOF. First we suppose that $X$ is irreducible and that (X, $E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$) $=1$

for some $\lambda\in 0$ and $\mu\in(\alpha_{1}, \alpha_{2})^{-1}$ . Then, by virtue of Weil [6], Cor. 2, Th. 4,
we know that there is a birational transformation of $E\times E_{\alpha_{1},\alpha_{2}}$ onto $X\times E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$ .
This is a contradiction, because the dimension of the Picard variety of
$X\times E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$ is three (recall that genus of $X$ is 2).

Conversely if $X$ is not irreducible, then by Weil’s lemma there are elliptic
curves $E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$ and $E_{\lambda^{l},\mu^{J}\alpha_{1},\mu^{J}\alpha_{2}}$ such that $X\equiv E_{\lambda,\mu\alpha_{1,l\ell\alpha_{2}}}+E_{\lambda}$ . Since
(X, $X$ ) $=2$ we see that $(E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}, E_{\lambda^{\prime},\mu^{\prime}\alpha_{1},\mu^{J}\alpha_{2}})=1$ . This implies that (X, $E_{\lambda,\mu\alpha_{1},\mu\alpha_{2}}$)
$=1$ .

8) Notice that, if (X, $X$ ) $\neq 0$ , then $X$ is non-degenerate (cf. [3]).
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\S 2. Formulation of the problem.

We take a divisor $X$ on $E\times E_{n_{1},\alpha_{2}}$ such that (X, $X$ ) $=2$ . Put

$M(X)=\left(\begin{array}{ll}k & -\alpha\\-\alpha & l\end{array}\right)$ ;

then by (2), we have $k=(X, E_{1,0,0})$ . Since either $1(X)\geqq 1$ or $1(-X)\geqq 1$ by

Lemma 4, we can see that $l(X)\geqq 1$ if and only if $k>0(since-\frac{-\alpha\overline{\alpha}}{\alpha_{1},\alpha_{2})}N(kl$

$=\frac{1}{2}(X, X)=1$ , we have $k\neq 0)$ . By virtue of Weil’s lemma, and our Lemma

5, formulas (2) and (3), we have the following
CRITERION. Let $X$ be a divisor on $E\times E_{a_{1}.\sigma_{2}}$ such that

(4) $k>0$ , $kl-\alpha\overline{\alpha}=N(\alpha_{1}, \alpha_{2})$

where $M(X)=\left(\begin{array}{ll}k & -\overline{\alpha}\\-\alpha & l\end{array}\right)$ . If the equation

(5) $k\xi\overline{\xi}+l\eta\overline{\eta}-\alpha\xi\overline{\eta}-\overline{\alpha}\overline{\xi}\eta=N(\xi, \eta\alpha_{1}, \eta\alpha_{2})$

has a non-trivial solulion $\{\xi, \eta\}\neq\{0,0\}$ in $0$ , then there exists an elliptic curve
$E_{\xi,\eta’\alpha_{1},\gamma’\alpha_{2}}$ such that $X\equiv E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}+E_{\xi,\gamma’\alpha_{1},\eta’\alpha_{2}},$ $(E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}, E_{\xi,\gamma_{J}’ a_{1},\gamma’\alpha_{2}})=1$ ; and
otherwise there exists an irreducible curve $\theta$ of genus 2 on $E\times E_{c\iota_{1},r\downarrow 2}$ which is
linearly equivalent to $X$ so that $E\times E_{\cap 1\cap 2}$ is the Jacobian variety of $\theta$ .

\S 3. The case: $m=0$ . (The case without complex multiplications.)

We are now going to solve the equation (5) under the condition (4). First
we treat the case $m=0$ . In this case we may assume $\alpha_{1}=1,$ $\alpha_{2}=0,$ $\beta_{1}=1$ ,

$\beta_{2}=0,$ $b=0$ , and we have

$M(X)=\left(\begin{array}{ll}a+d & -a\\-a & a+c\end{array}\right)$ , where $X\equiv aE_{1,1}+cE_{1,0}+dE_{0,1}$ .

The conditions (4), (5) are written in the following form:

(4) $a+d>0$ , $ac+cd+da=1$

(5) $(a+d)x^{2}-2axy+(a+c)y^{2}=1$ .
It is easy to see that under the condition (4) the equation $(5^{\prime})$ has always so-
lutions in $Z$ (cf. $e$ . $g$ . $[2]$ , p. 160). Namely, in this case $E\times E$ can not be a
Jacobian variety.

\S 4. The case: $m>0$ . (The case with complex multiplications.)

Case I. First we shall consider the case in which the ideal $(\alpha_{1}, \alpha_{2})\subset 0$ is
not principal. We put $k=2$ ; and take an element $\alpha$ in the ideal $(\overline{\alpha_{1},\alpha_{2}})$ such
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that the ideal $\mathfrak{B}\subset 0$ defined by $(\overline{\alpha})=(\alpha_{1}, \alpha_{2})\mathfrak{B}$ , is prime to 2; then the condition
$kl-\alpha\overline{\alpha}=N(\alpha_{1}, \alpha_{2})$ determines a number $l\in N(\alpha_{1}, \alpha_{2})Z$. Let $X$ be a divisor
on $E\times E_{\alpha_{1},\alpha_{2}}$ such that

$M(X)=\left(\begin{array}{ll}2 & -\overline{\alpha}\\-\alpha & l\end{array}\right)$ .

Since $(\mathfrak{B}, 2)=1$ , we have $N(\overline{\alpha}, 2\alpha_{1},2\alpha_{2})=N(\alpha_{1}, \alpha_{2})$ , and the following relations
holds (cf. Preliminaries):

(6) $2X\equiv E_{1,0,0}+E_{\overline{a},2\alpha_{1},2a_{2}}$ .
Now we shall show that (X, $E_{\xi,\eta\alpha_{1},\eta a_{2}}$) $>1$ for all elliptic curves $E_{\xi,\eta a_{1},\eta a_{2}}$ .

Suppose there is an elliptic curve $E_{\xi,\eta\alpha_{1},\eta a_{2}}$ such that (X, $E_{\xi,\eta a_{1},\eta\alpha_{2}}$) $=1$ . Then
(6) implies $(E_{1,0,0}, E_{\xi,\eta\alpha_{1},\eta\alpha_{2}})+(E_{\overline{\alpha},2\alpha_{1},2\alpha_{2}}, E_{\xi,\eta\alpha_{1},\eta\alpha_{2}})=2$ . If $(E_{1,0,0}, E_{\xi,\eta\alpha_{1},\eta\alpha_{2}})=0$ ,

then we have $E_{1,0,0}=E_{\xi,\eta a_{1},\gamma\alpha_{2}}$ by Lemma 3, so that $(E_{\overline{a},2a_{1},2\alpha_{2}}, E_{1,0,0})=2$ . On
the other hand, by our construction we have (X, $X$ ) $=2$ , which means $(E_{\overline{\alpha},2\alpha_{1},2\alpha_{2}}$ ,
$E_{1,0,0})=4$ . This is a contradiction. Similarly we know that $(E_{\overline{a},2\alpha_{1},2\alpha_{2}}, E_{\xi,\eta\alpha_{1},\eta\alpha_{2}})$

can not be zero. Hence we must have $(E_{1,0,0}, E_{\xi,\eta\alpha_{1},\eta\alpha_{2}})=(E_{\overline{a},z\alpha_{1},2\alpha_{2}}, E_{\xi,\eta a_{1},\eta a_{2}})=1$ .
Then by Remark of Prop. 6, ideals $(1, 0,0)$ and $(\overline{\alpha}, 2\alpha_{1},2\alpha_{2})$ belong to the same
ideal class. But we have $(\overline{\alpha}, 2\alpha_{1},2\alpha_{2})=(\mathfrak{B}, 2)(\alpha_{1}, \alpha_{2})=(\alpha_{1}, \alpha_{2})$ and the ideal
$(\alpha_{1}, \alpha_{2})$ is not principal by our assumption. This is a contradiction. Thus we
know that (X, $E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$) $>1$ for all elliptic curves $E_{\xi,\eta\alpha_{1},\eta\alpha_{2}}$ on $E\times E_{c\iota_{1},\alpha_{2}}$ .

Case II. We shall treat the case in which $(\alpha_{1}, \alpha_{2})$ is a principal ideal. In
this case we may assume, without loss of generality, that $\alpha_{1}=1,$ $\alpha_{2}=0$ (cf.

Cor. of Prop. 3). Since $E_{1,0}$ is isomorphic to $E$ , we may consider $E\times E$ in place
of $E\times E_{1,0}$ . (And $E_{\lambda,\mu}$ in place of $ E_{\lambda_{10}},,,\cdot$)

Let $k,$ $l$ be rational integers and $\alpha$ be an element of $0$ such that $k>0$ ,

$kl-\alpha\overline{\alpha}=1$ ; and $X$ be a divisor on $E\times E$ with $M(X)=\left(\begin{array}{ll}k & -\overline{\alpha}\\-\alpha & l\end{array}\right)$ . We have
similarly as in case I the following relation

$kX\equiv E_{1,0}+E_{\overline{a},k}$ .

First we shall test the value $k=2$ . Suppose there exists an elliptic curve $E_{\xi,r_{/}}$

such that (X, $E_{\xi,\eta}$) $=1$ . Then we have $(E_{1,0}, E_{\xi,\eta})+(E_{\overline{a},2}, E_{\xi,\eta})=2$ . We easily
see as in case I, that neither $(E_{1,0}, E_{\xi,r_{/}})$ nor $(E_{\overline{a},2}, E_{\xi,\eta})$ can be zero. Hence we
must have $(E_{1,0}, E_{\xi,r_{/}})=(E_{n2}-,, E_{\xi,\eta})=1$ . Then by Remark of Prop. 6, $(\xi, \eta)$ must
be a principal ideal; therefore we may assume $(\xi, \eta)=\mathfrak{o}$ , multiplying a suitable
non-zero element $\gamma\in Q(\sqrt{-m})$ to $\xi$ and $\eta$ , if necessary. Then by Cor. 1 of
Lemma 3 we know that $\eta$ and $ 2\xi-\overline{\alpha}\eta$ are units of $0$ ; this means that $\alpha$ must
be congruent to a unit of $\mathfrak{o}$ modulo 2. We can conclude from this that if we
can find $\alpha$ so that $\alpha\overline{\alpha}+1\equiv 0(mod 2)$ and that $\alpha$ is not congruent to a unit
modulo 2, then we can find $l\in Z$ such that $21-\alpha\overline{\alpha}=1$ and for such values of
$\alpha$ and 1 the equation $2\xi\overline{\xi}+l\eta\overline{\eta}-\alpha\xi\overline{\eta}-\overline{\alpha}\overline{\xi}\eta=N(\xi, \eta)$ has no solution $\{\xi, \eta\}\neq\{0,0\}$

in $0$ . Such $\alpha$ exists in the following cases:
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$\alpha=1+\sqrt{-m}$ if $m\equiv 2(mod 4)$

$\alpha=\sqrt{-m}$ if $m\equiv 1(mod 4),$ $m>1$

$\alpha=\frac{1}{2}(\pm 1+\sqrt{-m})$ if $m\equiv 3(mod 8),$ $m>3$ .

To treat the case: $m\equiv 7(mod 8)$ , we put $k=8$ . Let $\alpha$ be an element of
$0$ such that $\alpha\overline{\alpha}+1\equiv 0(mod 8);X$ be a divisor such that

$M(X)=\left(\begin{array}{ll}8 & -\overline{\alpha}\\-\alpha & l\end{array}\right)$ , where $l=\frac{1}{8}(\alpha\overline{\alpha}+1)$ .

We have (X, $X$) $=2$ and $8X\equiv E_{1,0}+E_{\overline{\alpha},8}$ . Suppose there exists an elliptic curve
$E_{\xi,\eta}$ such that (X, $E_{\xi,\eta}$) $=1$ . Then the above relation gives

\langle 7) $(E_{1,0}, E_{\xi,\eta})+(E_{\overline{\alpha},8}, E_{\xi,\eta})=8$ .
We can find ideals $a,$ $b$ in $0$ so that $(\eta)=(\xi, \eta)\mathfrak{a}$ and $(8\xi-\overline{\alpha}\eta)=(\xi, \eta)\mathfrak{b}$ respec-
tively; by Cor. 1 of Lemma 3, (7) can be written in the following form:

$Na+Nb=8$ .
Similarly as in preceding cases we see that neither $(E_{1,0}, E_{\xi,\eta})$ nor $(E_{\overline{\alpha},8}, E_{\xi,\eta})$

can be zero; this implies that neither $\eta$ nor $ 8\xi-\overline{\alpha}\eta$ can be zero. We put
$\gamma=N\mathfrak{a}/\eta$ . Then we have $(\gamma\xi, \gamma\eta)=\overline{\mathfrak{a}}$. Therefore taking $\gamma\xi,$

$\gamma\eta$ in place of $\xi$ ,
$\eta$ , if necessary, we may suppose that $(\xi, \eta)=\overline{\mathfrak{a}},$ $\eta=N\mathfrak{a}$ . Now we can write
the condition for the existence of $E_{\xi,\eta}$ such that (X, $E_{\xi,\eta}$) $=1$ in the following
form:
(8) $N(8\xi-\overline{\alpha}\eta)=\eta(8-\eta)>0$ , $N(\xi, \eta)=\eta;\xi,$ $\eta\in 0$ .

Since $\eta>0$ and $8-\eta>0$ , we have $1\leqq\eta\leqq 7$ . First we consider the case

when $\eta$ is odd. We put $ 8\xi-\overline{\alpha}\eta=x+y\omega$ , where $x,$ $y\in Z$, and $\omega=\frac{1}{2}(1+\sqrt{-m})$ ;

we then have $x^{2}+xy+\frac{1}{4}(1+m)y^{2}=\eta(8-\eta)\equiv 1(mod 2)$ . From this we know

that $y$ must be even. Therefore we have

$(x+\frac{y}{2})^{2}+m(\frac{y}{2})^{2}+(\eta-4)^{2}=16$ ;

and, if $m\geqq 23$ (namely if $m\neq 7,15$), we can conclude that $y=0$ . But this is
impossible since $(\eta-4)^{2}=1$ or 9. Thus we see that if $m\geqq 23,$

$\eta$ can not be odd.

Second we consider the case: $\eta=2$ or 6. We put $\frac{1}{2}(8\xi-\overline{\alpha}\eta)=x+y\omega$ ;

then we have $x^{2}+xy+\frac{1}{4}(1+m)y^{2}=3$ ; multiplying both sides by 4 we have
$(2x+\mathcal{Y})^{2}+my^{2}=12$ . If $m\geqq 23$, this equation is unsolvable; namely $\eta$ can not
be 2 nor 6.

Finally we consider the case $\eta=4$ . From the first equation of (8) we have
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$N(2\xi-\overline{\alpha})=1$ ; this implies $2\xi-\overline{\alpha}=\pm 1$ . Combining this with the second equa-
tion of (8), we get $N(\alpha\pm 1)\equiv 0(mod 16)$ .

Therefore we can conclude that if we can find $\alpha$ so that $\alpha\overline{\alpha}+1\equiv 0(mod 8)$ ,

and $\pm(\alpha+\overline{\alpha})\not\equiv\alpha\overline{\alpha}+1(mod 16)$ , then we can find $l\in Z$ such that $81-\alpha\overline{\alpha}=1$

and for such values of $\alpha$ and 1 the equation $8\xi\overline{\xi}+l\eta\overline{\eta}-\alpha\xi\overline{\eta}-\overline{\alpha}\overline{\xi}\eta=N(\xi, \eta)$ has
no solution $\{\xi, \eta\}\neq\{0,0\}$ in $0$ , provided $m\neq 7,15$ . Now we can easily see that

$\alpha=\pm\sqrt{-m},$ $4\pm 3\sqrt{-m}$ when $m\equiv 7(mod 16)$

$\alpha=\pm 3\sqrt{-m}$ , $4\pm\sqrt{-m}$ when $m\equiv-1(mod 16)$

satisfy the required conditions. Namely, if $m\equiv 7(mod 8)$ and $m\geqq 23$ , then
there exists a divisor $X$ on $E\times E$ such that (X, $X$ ) $=2$ and (X, $E_{\xi,\eta}$) $>1$ for
all $E_{\xi,\eta}$ .

Our problem is settled except when $m$ is 1, 3, 7 or 15. In these cases we
shall show that

(5) $k\xi\overline{\xi}+l\eta\overline{\eta}-\alpha\xi\overline{\eta}-\overline{\alpha}\overline{\xi}\eta=N(\xi, \eta)$

has a solution $\{\xi, \eta\}\neq\{0,0\}$ whenever $k,$ $l\in Z,$ $\alpha\in 0$ satisfy the condition

(4) $k>0$ , $kl-\alpha\overline{\alpha}=1$ .
Put $\xi=x+y\omega,$ $\eta=z+u\omega(x, y, z, u\in Z)j$ then the left hand side of (5)

becomes a positive definite quadratic form with real coefficients in four vari-
ables $x,$ $y,$ $z$ and $u$ . We denote its discriminant by $\Delta$ ; then it is easy to see
that $\Delta=D^{2}/16$, where $D$ means the discriminant of the imaginary quadratic

field $Q(\sqrt{-m})$ . By virtue of Theorem 106 in Dickson’s book [2], p. 185, the
minimum of this quadratic form is not greater than $\sqrt[4]{4\Delta}$. Since $\sqrt[4]{4\Delta}$

$=\sqrt{|D|}/2$ , we can see that the minimum is 1 when $m$ is 1, 3, or 7, and that
the minimum is 1 or 2 when $m$ is 15.

A pair $\{\xi, \eta\}$ of elements in $\mathfrak{v}$ for which the left hand side of $(5^{\prime})$ takes
the minimum 1 gives a solution of (5), because $N(\xi, \eta)=1$ for such a pair
$\{\xi, \eta\}$ . Now we shall consider the case when the minimum is 2. If $N(\xi, \eta)=2$ ,

then clearly $\{\xi, \eta\}$ is a solution of (5). Suppose that $N(\xi, \eta)=1$ . This implies
that $(\xi, \eta)=1$ . Then we can find $\lambda,$

$\mu\in 0$ so that $\xi\lambda-\eta\mu=1$ ; and we have

( $\frac{\overline{\xi}}{\mu}$
$\frac{\eta\overline}{\lambda}$ ) $(-\alpha k$ $-\overline{\alpha_{l}})\left(\begin{array}{ll}\xi & \mu\\\eta & \lambda\end{array}\right)=\left(\begin{array}{ll}2 & -\overline{\alpha}_{1}\\-\alpha_{1} & l_{1}\end{array}\right)$ $\alpha_{1}\in 0$ , $l_{1}\in Z$ ,

$21_{1}-\alpha_{1}\overline{\alpha}_{1}=1$
’ namely $N\alpha_{1}\equiv 1(mod 2)$ . Since $m=15$ , this means that $\alpha_{1}\equiv 1$

$(mod 2)$ ; we can put $\alpha_{1}=1+2\beta$ , where $\beta\in 0$ . Again we have

$\left(\begin{array}{ll}1 & 0\\\beta & 1\end{array}\right)\left(\begin{array}{ll}2 & -\overline{\alpha}_{1}\\-\alpha_{1} & 1\end{array}\right)\left(\begin{array}{ll}1 & \beta\\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & -1\\-1 & l_{2}\end{array}\right)$ .

Since $2l_{2}-1=1$ , we have $l_{2}=1$ . This implies that the minimum of the left
hand side of (5) must be 1; this is a contradiction. Namely this case can
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not happen.
Thus we have the following
THEOREM. Let $E$ and $E^{\prime}$ be elliptic curves whose rings of endomorphisms

$\mathfrak{A}(E)$ and $\mathfrak{A}(E^{\prime})$ are both isomorphic to the principal order $0$ of an imaginary
quadratic field $Q(\sqrt{-m})$ . Suppose there exist a finite number of elements

$\lambda_{1},$ $\cdots$ , $\lambda_{n}$ of $\mathfrak{A}(E)$ such that $E^{\prime}$ is isomorphic to $E_{\lambda_{1},\cdots,\lambda_{n}}$ . Then the product $E\times E^{\prime}$

can not be a Jacobian variety when $E^{\prime}$ is isomorphic to $E$ and $m$ is equal to
one of $0,1,3,7$ and 15. In all other cases there exist curves of genus two,
with the self intersection number 2, on $E\times E^{\prime}$ ; in other words $E\times E^{\gamma}$ is a
Jacobian variety of some curve of genus 2.

\S 5. The number of classes of curves of genus $2$ on $E\times E_{\alpha_{1},\alpha_{2}}$ .
Assumptions for $E$ being the same, we suppose that $E\chi E_{\alpha_{1},\alpha_{2}}$ is the

Jacobian variety of an irreducible curve $X$ and also that of another irreducible
curve $X^{l},$ $X$ and $x/$ being on $E\times E_{\alpha_{1},\alpha_{2}}$ . According to the theorem of Torelli
\langle cf. [7]) we can say that $X$ and $X^{\prime}$ are birationally equivalent to each other
if and only if there exists an automorphism $\Lambda ofE\times E_{\alpha_{1},\alpha_{2}}$ such that X’ $\equiv\Lambda^{-1}(X)$ .
Now there arises naturally a problem to find out the number of classes of
curves of genus 2 on $E\times E_{\alpha_{1},\alpha_{2}}$ modulo birational equivalence. We are going
to show that this number is finite.

We denote by $G$ the group of all matrices $\left(\begin{array}{ll}p & r\\q & s\end{array}\right)$ whose entries sarisfy

the conditions: $p$ and $s\in 0,$ $r\in(\alpha_{1}, \alpha_{2}),$ $q\in(\alpha_{1}, \alpha_{2})^{-1}$ and $ps-qr$ is a unit of $0$ .
We can write an automorphism $\Lambda$ of $E\times E_{\alpha_{1},\alpha_{2}}$ by an element $\left(\begin{array}{ll}p & \gamma\\ q & s\end{array}\right)$ of $G$

[(cf. Cor. of Prop. 5). Then we can easily see that $M(\Lambda^{-1}X)=(_{\overline{r}}^{\overline{p}}$
$\overline{\frac{q}{s}})M(X)\left(\begin{array}{ll}p & r\\q & s\end{array}\right)$ ;

the condition $x/\equiv\Lambda^{-1}(X)$ is expressed by the relation

$M(X^{\prime})=(\overline{\overline{r}}p$
$\overline{\frac{q}{s}})M(X)\left(\begin{array}{ll}p & r\\q & s\end{array}\right)$ .

Now we consider an equivalence relation

$M\sim($ $\frac{\overline{p}}{r}$

$\frac{q\overline}{s}$ ) $M\left(\begin{array}{ll}p & r\\q & s\end{array}\right)$ , $\left(\begin{array}{ll}p & r\\q & s\end{array}\right)\in G$ ,

in the set of matrices $M=\left(\begin{array}{ll}k & -\overline{\alpha}\\-\alpha & l\end{array}\right)$ , where $k\in Z,$ $\alpha\in(\overline{\alpha_{1},\alpha_{2}}),$ $l\in N(\alpha_{1}, \alpha_{2})$

. $Z,$ $k>0$ and $\det M=kl-\alpha\overline{\alpha}=N(\alpha_{1}, \alpha_{2})$ ; and we shall show that the number
of equivalence classes is finite. (It is clear that this includes the assertion
mentioned $above^{9)}.$)

9) We can see that the number of classes of divisors $X$ such that $X\equiv E^{\prime}+E^{\prime\prime}$ ,
\langle $E^{\gamma},$ $E^{\prime\prime}$ ) $=1$ , is equal to the number of pairs $\{C^{\prime}, C^{\prime\prime}\}$ of ideal classes such that the
product $C^{\prime}C^{\prime\prime}$ contains the ideal $(\alpha_{1}, \alpha_{2})$ .
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We put $\xi=x+y\omega$ , $\eta=z\beta_{1}+u\beta_{2}$ , where $x,$ $y,$ $z,$ $u\in Z$ and $\{\beta_{1}, \beta_{2}\}$ is a
Z-basis of the ideal $(\alpha_{1}, \alpha_{2})^{-}$ ; then the left hand side of (5) becomes a positive
definite quadratic form in four variables $x,$ $y,$ $z,$ $u$ with real coefficients. Its
discriminant is equal to $D^{2}/16$ and hence depends only on $m$ . This implies
that the minimum $k_{0}$ of $k\xi\overline{\xi}+l\eta\overline{\eta}-\alpha\xi\overline{\eta}-\overline{\alpha}\overline{\xi}\eta(\xi\in 0, \eta\in(\alpha_{1}, \alpha_{2})^{-1})$ does not
exceed a constant depending only on $m$ (cf. Minkowski’s well-known theorem
on a convex body and lattice points; or Dickson [2] loc. cit.). Now we can
choose and fix an integral ideal $\mathfrak{a}_{j}$ with the smallest norm out of each ideal
class $C_{j}$ of $0,$ $j=1$ , $\cdot$ , $h$ , where $h$ is the number of ideal classes. Again we
choose and fix $\gamma_{j}\in 0$ and $\delta_{j}\in(\alpha_{1}, \alpha_{2})^{-1}$ such that $(\gamma_{j}, \delta_{\grave{J}}\alpha_{1}, \delta_{j}\alpha_{2})=\mathfrak{a}_{j}$ for each
$j,$ $1\leqq j\leqq h$ .

Suppose that $\xi=\xi_{0}\in \mathfrak{d},$ $\eta=\eta_{0}\in(\alpha_{1}, \alpha_{2})^{-1}$ give the minimum $k_{0}$ of $k\xi\overline{\xi}+l\eta\overline{\eta}$

$-\alpha\xi\overline{\eta}-\overline{\alpha}\overline{\xi}\eta$ . Then there exist a number $j,$ $1\leqq j\leqq h$ , and an element
$\gamma\in Q(\sqrt{-m}),$ $\gamma\neq 0$ , such that $(\gamma\xi_{0}, \gamma\eta_{0}\alpha_{1}, \gamma\eta_{0}\alpha_{2})=\mathfrak{a}_{j}$ ; since $\xi=\gamma\xi_{0},$ $\eta=\gamma\eta_{0}$ give
the value $ k_{0}N\gamma$ of $ k\xi\overline{\xi}+l\eta\overline{\eta}-\alpha\xi\overline{\eta}-\overline{\alpha}\overline{\xi}\eta$ , it follows from definitions of $k_{0}$ and $\mathfrak{a}_{j}$

that $N\gamma=1$ . Hence we may assume that $(\xi_{0}, \eta_{0}\alpha_{1}, \eta_{0}\alpha_{2})=\mathfrak{a}_{j}$ , taking $\gamma\xi_{0},$
$\gamma\eta_{0}$

in place of $\xi_{0},$
$\eta_{0}$ , if necessary. Then we have $(\gamma_{j}, \delta_{f}\alpha_{1}, \delta_{j}\alpha_{2})=(\xi_{0}, \eta_{0}\alpha_{1}, \eta_{0}\alpha_{2})$ .

Therefore there exists an isomorphism $\varphi:(\gamma_{j}x, \delta_{j}\alpha_{1}x, \delta_{j}\alpha_{2}x)\rightarrow(\xi_{0}x, \eta_{0}\alpha_{1}x, \eta_{0}\alpha_{2}x)$ ,
$x\in E$ , of $E_{\gamma_{j}\delta_{j^{\alpha_{1}}},\delta_{j^{\alpha_{2}}}}$ on $E_{\xi_{0},\eta 0\alpha_{1},\eta 0^{\alpha}2}$ ; and by Prop. 8, $\varphi$ can be extended to an
automorphism of $E\times E_{a_{1},\alpha_{2}}$ . Therefore there exists a matrix $P\in G$ such that

$\left(\begin{array}{l}\xi_{0}\\\eta_{0}\end{array}\right)=P(_{\delta_{j}}^{r_{J}})$ . Hence we have

$(\overline{\gamma}_{j}, \overline{\delta}_{j}){}^{t}\overline{P}\left(\begin{array}{ll}k & -\overline{\alpha}\\-\alpha & l\end{array}\right)P(_{\delta_{j}^{j}}^{\gamma})=k_{0}$ .

We choose and fix $\lambda_{j}\in 0,$ $\mu_{j}\in(\alpha_{1}, \alpha_{2})$ such that $\gamma_{j}\lambda_{\mapsto}\delta_{j}\mu_{j}=N\mathfrak{a}_{j}$ . Again we
choose and fix a set of representatives $\sigma_{1},$

$\cdots$ , $\sigma_{t}$ of $0$ modulo $k_{0}(\alpha_{1}, \alpha_{2})$ . Then
we can find an element $\beta\in(\alpha_{1}, \alpha_{2})$ so that

$\left(\begin{array}{ll}1 & 0\\\overline{\beta} & 1\end{array}\right)\left(\begin{array}{ll}\overline{\gamma}_{j} & \underline{\delta}_{j}\\\overline{\mu}_{j} & \lambda_{j}\end{array}\right){}^{t}\overline{P}\left(\begin{array}{ll}k & -\overline{\alpha}\\-\alpha & l\end{array}\right)P$ ( $\delta_{j}^{j}\gamma$
$\lambda_{j}\mu_{j)(}01$ $\beta 1)=\left(\begin{array}{ll}k_{0} & -\overline{\alpha}_{0}\\-\alpha_{0} & l_{0}\end{array}\right)$ ,

where $-\overline{\alpha}_{0}$ is one of $\sigma_{i}’ s$ .

Now, denoting ( $\mu_{j}\lambda_{j}$ ) by $\Lambda_{j}$ , the double coset $G\Lambda_{j}G$ can be divided into
right cosets:

(9) $G\Lambda_{j}G=\sum_{i}GR_{i}$ .

We shall show that the number of these right cosets is finite. In fact this
number is equal to the index $[G:\Lambda_{j}^{-1}G\Lambda_{j}\cap G]$ ; and if we denote by $\Gamma(N\mathfrak{a}_{j})$ the

set of elements $\left(\begin{array}{ll}p & r\\q & s\end{array}\right)$ of $G$ such that $p\equiv s\equiv 1(mod Na_{j}),$ $r\equiv 0(mod (\alpha_{1}$ ,

$\alpha_{2})N\mathfrak{a}_{j}),$ $q\equiv 0(mod (\alpha_{1}, \alpha_{2})^{-1}N\mathfrak{a}_{j})$ , then $\Gamma(N\mathfrak{a}_{j})$ is a (normal) subgroup of finite
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index of $G$ , and contained in $\Lambda_{j}^{-1}G\Lambda_{j}$ ; this implies that the number of right
cosets in (9) is finite.

Thus we can find a matrix $Q$ in $G$ so that

${}^{t}\overline{Q}\left(\begin{array}{ll}k & -\overline{\alpha}\\-\alpha & l\end{array}\right)Q={}^{t}\overline{R}_{i}^{-1}\left(\begin{array}{ll}k_{0} & -\overline{\alpha}_{0}\\-\alpha_{0} & l_{0}\end{array}\right)R_{i}^{-1}$ .

Since the number of matrices appearing in the right hand side is finite, the
proof is completed.

Ochanomizu University
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