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Introduction.

Let A be a strongly elliptic partial differential operator of order 2m de-
fined in a domain D of R", and let us consider the Dirichlet problem for the
operator A-+AI, 2 being a complex number. Then we can define the fractional
power A~“ under a suitable condition on the spectrum of A. This operator
is continuous from L2(D) into itself, if Rea > 0. In the case where A is for-
mally self-adjoint, T. Kotake and M. S. Narasimhan have recently proved
that A~*(Re « > 0) has the kernel representation and moreover this kernel is
very regular. In this article, we want to prove the same result for not neces-
sarily self-adjoint operator.

In §1, we summerize some well-known facts on the Green operator attached
to the Dirichlet problem in the space L2(D), and impose a condition (C) on the
spectrum of A, In §2, we express weak solutions u e L% D) of the equation
Au+2u=f e LAD) by means of a parametrix (formula below), and we
also express the Green kernel K(&, x|2) of the operator A+l by using both
the parametrix and the Green operator G; ((2.13)). We should mention here
that these expressions have been obtained by H. G. Garnir in the case of meta-
harmonic functions [1I] and it has played a fundamental rdle in the study of
the Green kernel. In §2 and §3, we assumed the existence of such a para-
metrix E(x, & |4) with certain properties. The existence of such a parametrix
will be proved in §4.

The author wishes to express his thanks for Professor Mizohata, who sug-
gested the utilization of parametrix on this subject.

§1. Green operator G,.

We deal with the strongly elliptic partial differential operator of order
2m defined in a domain D (bounded or unbounded) of R”"
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1.1) A= Ax, 7‘1—) = 3 ay(x)(—(%y,

lyls2m

0\ 7 0 \1/ 0 \» 0 \»n
(o) =) Ge) G
The coefficients a,(x) are the functions of B(D), where D is a domain contain-
ing D. This condition for the boundedness may be too restrictive. But we
will not enter into the details of the spectral theory. The condition of strong
ellipticity
1.2) Re X a,()@)’' =7yly >, for all y< R™ (y:const.>0)

ivl=2m

where

is to be fulfilled uniformly in D. Frorﬁ 1.2) it follows Garding’s inequality
1.3) Re (Au, u)g—g—l\u 12, —7.llul?, for all u e D7H(D) (y,: real const.)
where 9%(D) is the completion of @(D) by the norm

lula={, 2 () utdr,

and (,) and | | denote the inner product and the norm in L2?(D) as usual.
Let 2 be a complex number. The operator A4 27 can be written

(1.4) A4 2T =[ 3(A+ A9 +Re 2|4 g (A— A9+ Tmd]
where A* is the formal adjoint operator of A. For the hermitian operator
(1.5) H= —éA(AjLA*)JrRel,

the condition is also satisfied by the same constant y. Hence, if Rel is
large enough, Garding inequality for H is

(1.6) (HTu, w) z.§_|| ull2, for all ue 9u(D).

Of course, (Fu, u) is majorated by C,|#|%. Therefore, the norm ~/(Hu, u) is
equivalent to |« |, We can define a new inner product (,)» and a norm by
(17) ([ITM, U) - (ur U)H! ” u ”H: \/(u; u)H_

in 9%(D). The structure of 97(D) is preserved invariant.
Since both A and A* are the differential operators of order 2m, there
exists a constant C, such that

‘([_Zliw(A_A*)'*’ImZ]“, v) ] <Clulglv|a for any u,ve 9%(D).

Therefore, the operator 4 defined by
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1.8) ([—Zli—(A—A*)—[—Iml]u, v) =, Va

is an hermitian continuous operator: 9D%(D)— D%(D). From and
(1.8) we have

1.9 (Au—+Au, v)= U+iHu, v)y, for any u,v e IRD),

and it is majorated by (A+Cyllu||zllv |z Hence the operator A+4Al: DE(D)
— 9'?(D) is continuous (D'7(D) is the dual space of 97(D)).

On the other hand, we can define a continuous linear operator C: 9'%(D)
— D%(D) by

{1.10) (f, v)=(Cf, vV)g, for any fe 2'%(D) and ve 9%(D).

Now, we can pose the Dirichlet problem as follows: For a given function
f() e 9'7(D) and a complex number 4, find a weak solution u(x) e 9%(D) of
the differential equation Au-+Au=f. If Rel is large enough, [1.9) and [(1.10)
show the existence of the unique solution u = {+14)"'Cf (as I is continuous
and hermitian, there eXists the continuous inverse operator (I+i%)™!: D%(D)
— 9P%(D)). Thus we define the Green operator

1.11) G;={U+190)7C,
if it exists. From (1.3) and (1.6), we get an equality

(112) 171 = L Gaf In+Re A=)l Gaf I

Consequently, we have an important estimate

1.13) | Gall czem, 2 = 1/(Re A—y,), for Rel> 71-

If D is bounded, the operator C is completely continuous operator: L%*(D)
— 9my(D). Therefore, G; is also completely continuous operator : L2(D)— L3(D).
Accordingly, G; is a meromorphic function of 4 and each pole of G, is an
eigenvalue of finite multiplicity.

For any complex number 4, we define the Green operator G, as follows:

DEFINITION. We say that the Green operator G, exists, if the equation
Au-+iu=f has the unique solution u € 9%:(D) for any f< 9%2(D). And we
denote this solution by G,f.

In such a case, =G, is a solution of the functional equation

(1.14) u+A—)Gu=G.f,

if Rec is large enough. Conversely, if the equation (1.14) has a solution

u € D%(D) for f € D'7(D), it satisfies Au-+Au=f. Hence these two equations
are equivalent.

In this article, we impose the following condition
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(C) there exists no spectrum on the half-line: 1=0.
In other words, there exists G, on the positive real axis. This condition is
essential for our definition of the fractional power in § 3.

§2. Expressions of solutions.

In this section we will obtain an expression of the weak solution in L2(D)
of the equation
@D A(x ) U= % a0~ ) u0)=10) & LD)
v|=2m
by means of parametrix. Let be a,(x) € (D), where D is an open set such
that DS D. The condition of ellipticity [1.2) is to be fulfilled u/niformly in D.

We denoted by A’:A’(x, —887) the transposed operator of A. Because we

only need the local expressions (expressions in a fixed compact set in D) of
weak solutions and of Green kernels, without loss of generality, we may sup-
pose that a,(x) = B(R™ and the uniform ellipticity holds in R™ as well.

Otherwise we may consider a new operator Z(x, 7%) instead of A as follows:

Let H be any compact setin Dand HS U, S U, S U, S U, <D (U, and U, are
compact). And we choose a function y(x) € D(U,) such that y(x)=1 on U,
and 0= y(x) =1. We define

A(x —4) =2@A(x 75 ) H1—x@)a—ar= 3 2w (4

V |=£2m
This operator A is equal to A in H and 4,(x) € B(R™), moreover the uniform
ellipticity holds in R™ Therefore, if we construct a parametrix of A, its
restriction to AX H is a parametrix of A.
Then, we assume the existence of the parametrix E of A (resp. E’ of A’)
having the following properties:
1) E (resp. E’) satisfies the equation

@2 A 3 ) B, §=00me— L5, ©

(resp. A’(x, %)E’(X, §)=0,—:—L'(x, £)

where L(x, &) (resp. L'(x, &) is a sufficiently smooth function of x in R”, de-
pending on the parameter & which runs through R".

i) E(x, &) (resp. E'(x, &) is semi-regular in x and & at the same time and
is infinitely differentiable in (x, &) outside of the diagonal 4, moreover, E(x, &)
€ B,,:(w) for any open set w (@ N4 =9).
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Let D, be any bounded open set such that D, D, and put
2.3) D, s={xe D;dis.(x, D,) <d} where 0 < d(fixed) < % dis. (0D, D).
Define

@4 aD=a|x) D, =1 for |x|<5/2, =0 for [x]|>0.
2.5) B(x) = Bp, () € D(D), =1 on a neighbourhood of D, 5.
2O O O =A(x )l —aa—0) Ex 1.

T O =45, L)) B &)1

By the hypothesis ii), @s(x, &) (resp. Djs(x, &) € B,,:(R"* X R™).
From now on, we denote the integral over R” or D by the dual form :

@), 20e= [ f(g@dx.

We shall use the following lemma, which has been shown in a simple case
in [1, p. 66].

LEMMA. If u(x) be a weak solution = L?*(D) of the equation Au(x)=f(x)
e L*(D), the equality

@7 u(€) = a(x—8EE'(x, &), (). +<g5(x, &), u(x)),
holds as a distribution in D,, where
g5(x, &) = B){Ps(x, )+L(x, H)} .
In the same way, the equality
@7y V(&) = as(x—EE(x, £), g(1)22+<gs(x, £), v(%) =

holds in D, for a weak solution v(x) & L¥D) of the transposed equation A’v(x)
=gx) e L*D), where

g5(x, &) = B){Ds(x, E)+L(x, £)} .
Proor. Take a function ¢(§) € 9:(D,). Then,

@8) K BB (5, ), u(D) s, 9O
= K Bj(x, &), BUD =, 9O
= (B (x, ), ¢(©) Ve, HUD
= (A (15— K==, €, 96>, BN

By virtue of the semi-regularity of £’ in x,
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@8) = A" (x, T, &, 00, Bu)
)= CAS Bx &) 9)0s g

— (A (3, g s OB (5, €), 9(&) e, B

We can easily show that for x= D and ¢(x) € 9(D),

A (3, ) CE G ©), 980 = o)~ L'(x, &), (@)

Now we look at the last term of

@9) A (5 L) e HE G, €, 00, U,
We want to show that, taking into account of (2.1), this is equal to

(2.10) Kas(x—EE(x, £), J(0) D2y 9(E) D -

At first -we observe that the distribution (in x) {a;(x—&)E’'(x, &), ¢(§) )¢ is
infinitely differentiable by virtue of the semi-regularity of E’ in x. Moreover
this function has its support in the set D, s={x< D; dis.(x, D) <4}, because
for any x such that dis.(x, D,) >0, the support of the distribution (in &)
as(x—&)E'(x, §) and that of ¢(§) do not, meet. Taking into account of the
fact that B(x)=1 in a neighbourhood of D, ; we have
(2.9) Las(x—EE(x, &), p(&) e, Au(x) ),

= as(x—8E"(x, §), (&) De, J(X) o .
Since the distribution as(x—&)E’(x, &) defines a continuous bilinear form on
D(D)YXDe(D,), the last term is equal to (2.10). Finally we have
(2.8) = Cu(x), () >o—<LBOIL (%, &), u(X) Doy 9(€) e
—Las(x—8EE(x, &), [(X) Dz, ¢(©)Ds .

In the same way we can verify [2.7). Q.E.D.

The following expression is also a generalization of the formula obtained
in [1, p. 118].

PROPOSITION 1. [If the operator A has the Green operator G, G has a
kernel representation

GO =[ K& »fdx

where

(2.11) K, 0) = asx—OE'(x, &+ asn—0E@, %), 251, &)y
<G e 0. £501 )

in (§, x) € DX D,, where gs and g} are the same as in the preceding lemma.
Proor. If we substitute Gf for u in (2.7), we have
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(G XE) =as(x—OE'(x, £), /(1) >+ g5(x, £), (G )%) Dx
=< as(x—EE'(x, H)+ G’Egé(% 81, f(0)>,
for £ € D,, where G’ is the transposed operator: L}(D)— L2(D) of G defined
by {G'f, g> =</, Gg} G’ has the same operator norm as G. This gives
K€, 0) = as(x—8E)E'(x, O)+ ﬁ; Lgs(n, 6.

Let us show that the last term G’[g5(y, £)] is equal to
il

2.12) Cas(x—n)E(, 2, g5, E)>ﬂ+<C§vEga(C, 01, 851, 8-
Since this term is a weak solution v(x) of
A (x5 o =g305,8)
for any fixed & = D,, (2.7)’ is applicable,
ﬂq; Lg5(n, E)]= as(x—nE®, x), g5, &) >y +<gs(&, %), g’c[gé(v, 1.

By transposition of G’ into G, we get the desired formula. Q. E.D.

REMARK. Both (2.11) and (2.11’) are expressions of the Green kernel. But
we use the former because it is more favourable than the latter when we want
to investigate the regularity (especially in x) of the kernel. That is to say,
if we construct E and E’ satisfying the conditions i) and ii), the second term
of (2.12) is sufficiently smooth with respect to the parameter x, and as to the
first term, the smoothness (in %) of g5(y, &) is propagated to the smoothness
(in x) of (as(x—n)E(, x), g5(n, §)>, by virtue of the semi-regularity of E.

Finally, let us apply our formula (2.11) to the operator A+ Al (of course
we assume the properties of parametrix): Let us donote

Cai=1(A(x, 5 ) FAI G = | K&, 21 Df(dx,
then we have®
@13) K& x| D= asc—OE( £ D+ sy —DEG. 1 2, 2501, €1 Dy
HGilaoC, %1 D, £5(7, €12,

1) Using L and @5 (resp. L’ and @’5), we define g5 (resp. g’s) as follows:
0 .
(A(x 2 )+ DB €1 D =00 e—L(5, 1 D)

03w 10 =(A(5 ) + BT~ as(x—EYE(x, §1 D1,
8o(x, E| ) =Bx){Ps(x, E| ) +L(x, | D}, ete.
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§3. Fractional power of A.

Under the condition (C) on the spectrum of A imposed in §1, we define
the fractional power A=® (Rea > 0) of A by the integral
G A=t (2 A+ AR,

T Jp
where the path I' of integration consists of three parts; the positive real
axis (from oo to p (0 < p <« 1)), the circle | 2|=p (from 2=p to 2=p in the
negative sense) and the positive real axis (from p to co). (—A)~® is equal to
its principal value on the negative real axis. By the estimate (1.13) of the
norm of (A-+A)"'1=G,, the integral converges and defines a continuous
linear operator : L2(D)— L*D).

In order to prove the kernel representation of the operator A~% we need
precise informations on E(x, £|2). As we shall show later, we can construct
explicitely a family of parametrix E(x, £ | 2) for the operator A-+4I. Then what
is essential is to elucidate, for such E(x, &]| A), its behavior with respect to 4,
when 4 tends to infinity. Let us state '

PROPOSITION 2. For any given non-negative integer p, we can construct a
family of parametrix E(x, &|2) (depending continuously on (§,2) € R*xI") hav-
ing the following properties:

When A runs through the path of integration,

@A°) AL(x, §|A) remains bounded in BL(R"XR™),

(2°) AE(x,&|A) remains bounded in B, (w) where w is an arbitrary open
set such that @ S R"XR"—4 (4 is the diagonal set of R™"XR"),

(B°) AE(x, &§|2) belongs to DF M1 and remains bounded in DF;H*,

(4°) the mappings

(3.2) (&) € DL ALE(x, 1 D), 0(6) ) € EX
and
3.3 P(x) € DEHnEIE ALE(, § | A), Px) )z EEE

are equi-continuous for any positive integer k. Moreover, these mappings de-
pend continuously on A.

We can similarly construct E’(x, &| 2) satisfying this proposition.

The proof of this proposition will be given in the next section.

COROLLARY. If we construct E and E’ such that both L, x| ) € B2, and
L'(p, €| 2) € BPH2142 gre bounded, then, from the definitions of g; and gjin
the footnote 1), it follows

(5°) g5, &1 A) remains bounded in DF*AD) with all its derwatives
in €& up to order p.
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(6°) g5, x| A) remains bounded in DYD) (a fortiori in LD)) with all its
derivatives in x up to order p.
(7°) (AGLgxC, x| D], g5, E| )Y, =EL:(D,XD,) remains bounded as 2
¢~

tends to infinity.

(8°) Take any compact set HS D and a bounded open set w (@ S D). Sup-
pose that HIYwSD, (see §2). Then (g5, &R, p(&)): € D22+ D) and
<ZCG,1[g,;(C, x| D1, g5, E1A), 0€)):ry € ENw) remain bounded respectively if

-7

©(&) run through any bounded set in D(H).

(9°) Let wbeasin (8°). Then {x(), g5, &), = EXw) remains bounded
if x(n) is in any bounded set in Dy(D).

THEOREM. The operator A= (Re a >0) has a kernel representation

@4 (A=F)@) = | K, 0ftddx, for all ()< LXD)
where the kernel
@5) KOG, =] (—DKE x| D

is very regular (cf. L. Schwartz [4]): more precisely

1) K&, x) is infinitely differentiable in (€, x) € DXD—A.

ii) This kernel maps continuously D,(D) into €:(D) and E4(D) into D(D)
and moveover, if f(x)=&L(D) is infinitely differentiable in an open set, then
{KE, x), f(X) )5 is also infinitely differentiable there (in &).

REMARK. We can verify that the mappings

(3.6 P(x) € DEPIAD) — K 9(E, 1), 900, € EXD)
and
3.7 ¢(§) € DEPID) — LK, x), p(6)): € EXD)

are continuous for any integer 2=0.
PROOF OF THE THEOREM. In view of (2.13), the right hand side of (3.5)
consists of three terms

K@E, 0= 3

(=0
S g oy FE xdi
where, for (x, &) € D, xD,—4 (D, is any compact set contained in D),
F.(&, x| D)= 2as(x—EE'(x, £ 1 D),

F &, x| D=as(p—x)E®, x| ), g/, §| D>y,
and

Fy€, x| 2>:<2£;[ga(i, x| D], 850, 100y,

(the definitions of g; and g} are given in the footnote 1)).
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At first we investigate the differentiability of the kernel. If we construct
E and E’ such that both L(, x| € B2, and L/(y, §|A) € Bpn2+E are
bounded, then each term Fy(¢, x| A) € $2.(K) remains bounded and depends
continuously on 4, where K is any compact set in D,xD,—4. To show this,
we use repeatedly (1°)~(9°) of the Prop. 2 and its Cor.

In fact, the boundedness of F\(&, x| 4) € B,,:(K) (a fortiori &€ 8% (K)) fol-
lows immediately from (2°) of Prop. 2.

Concerning Fy(&, x| 4), this is, by (4°) and (5°), bounded and p-times con-
tinuously differentiable &€2(D))-valued function of &< D,, namely, F,(&, x| 1)
€ &2 (D, % D,) remains bounded.

And Fy(&, x| 2) is bounded in &2 :(D,XD,) by (7 ).

Consequently, F;(&, x| 2)68&3@(]() remain bounded. Hence, because of the
summability of (—2)~%/2, the integral [3.5) converges in %% .(K). Since the
integer p=0 and the compact set K < D, xD,—4 S DxD—4 are arbitrary, this
integral converges in &,,:(DxD—4).

Next, we prove the semi-regularities, that is, the continuities of the map-
pings and (3.7). Take any compact set HS D and a bounded open set
w (w < D). Suppose that H\V @ & D, (see §2). It is enough to show that each
of

(&) € QENH) - F(E, x| D), p€)): €€w) 1=1,2,3)
and v
() € DA H) - F(E, x| ), () )z ECH@) (=1, 2, 3)
is equi-continuous. For this, we apply the Prop. 2 and its Cor. for some p=k.
For i =1, it is trivial by (4°) of Prop. 2.
Then
&)=< Fy€, x| ), 9(&)):

= (Ras(n—EQ, x| 2), {g:(, | D), () dedy
is equi-continuous because of (8°).
Next,
D) =6, x| D, ¢
= (Aas(n—DEQ), x| D), $) s, 8507, & [ DDy

is equi-continuous. From (4°), if we put y(n)=<2asy—xE®, x| ), ¢(x)>
this is bounded in D§D)SDy(D). Then by (9°), (F.& x|A), ¢(x)Ds
=), g5, 1 D>y EXw) is bounded.
Finally for 1=3.
PE) = Fy(&, x| D), ¢(€) )

= <Zc§§[ga(C, x| A1, <81, 12, (&) Dy

is equi-continuous by (8°).
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Quite similarly, ¢(x)— (Fy(&, x| ), ¢(x)), is equi-continuous.

Because HS D and @ & D are arbitrary, the semi-regularities have been
proved. We have shown that the kernel K(&, x) is regular and infinitely
differentiable outside of the diagonal. Consequently, this kernel is very
regular., Q.E.D.

COROLLARY. For any complex number o« (not necessarily Re a > 0), the
operator A~ has a very regular kernel K(&, x), moreover, this kernel is an
entire function of a outside of the diagonal 4.

PrROOF. Let be Rea <0 and h be an integer >0 such that Rea-+4>0.
For any ¢(x) € 9(D), A~“¢(£) is written as follows:

39 A () = A HA)E)
= (K@, ), A(x, ) P

This expression has a sense for any ¢(x) € €«(D). Therefore, the regularities
of the operator A~% are evident from the preceding theorem.
If the support of ¢(x) does not contain the point & we have

A=A (x, %)hK @H(E, %), P s -

Hence A~* is represented by a kernel

(39) Ko, 0= A(x, 2 ) K, )

outside of the diagonal 4. Let us show the analyticity in a. If Re a >0, the
summability of

—(= " log (~DK(E, x| D= ((~D~KE, x| D}

in &,:(DXxD—4) has been already proved. Therefore, a— K@, x)
€E,,:(DxD—4) is holomorphic in the half plane Re @ >0, and moreover, in
view of (3.9), this is entire. Q.E.D.

§4. Proof of Proposition 2.

Now we construct a family of parametrix satisfying Prop. 2 according to
[3]. In this section we regard & not as an independent variable but as a
parameter which runs through R®, and A is another parameter as before. We
use the space £2° (s: any integer) of distributions

“4.1) 028 = {f(x) € S ; x’f(x) € 9Y'(R™ for all multi-index »=0}.

% is a Fréchet space. We know some properties of £°, that is to say,
(@) if s> s, the inclusion mapping: 2°— 2% is continuous.



Kernel representation of the fractional power 363

(b) The mapping: f(x)—xf(x) ¢=1,2, ---,n) from £° into £ is con-
tinuous.

(c) Themapping: f(x)— aii f(x) ¢0=1,2,--,n) from £° into £2°-* is con-
tinuous.

(d) The mapping: (a(x), f(x))— a(x)f(x) from BxXL° into £° is continuous..

(e) If w is an open set in R™ and 0<& @, the restriction mapping: f(x)
—fo(x) from £¢ into B(w) is continuous.

(f) If the Fourier image S(y) of S& &% is a continuous function of y and
aA+ly D"*“"( aay >V3(y)e.632 for all y =0, the mapping: f(x)—Sxf(x) from Q%
into 2% is continuous. More exactly, if we introduce the Fréchet space.
#° (0: any integer) of distributions

~ 0

[/ — /. g+l
U2 Fr=(Sesy; A+ (5
the mapping: (S, f(x)) —S*f(x) from B°xQ° into 2%+ is continuous.

(g) (Sobolev) The inclusion mapping: Q21+l @* ig continuous,
(for the proof of these see [3].

>V§(y) e 3y for all multi-index y =0},

We define
43 P(17;5) = 3 a@(e) +142,
0 0 \” 0\
A Q(x gpi8)= 3 (@@-altOH5) — B atd(gy) +1
. 0 -1 . 1 oi<z,y>
(45) | fo(Eiz):P(Slx:__a}“) 5.70— (zﬁ)n fP(EIZ,zy) dy;
@6 F10=P(512;2) " Q(x L 1 8) 1D, i=1,2, -, and
A7) B I D= lfiE D HE D]

Then we have
@8 {A(x L) DB e D=0e Qv 55 ) 1D],

where ¢, is the translation operator: . e(x)]=¢(x—§). We prove step by
step that (2°), (3°) and (4°) of Prop. 2 are fulfilled by this E(x, £ | A) whatever
j may be, and that (1°).is satisfied if we take j=2[n/2]-+1-+2m--p.

-1 .
(A) For ¢g=0 or 1, the mapping P(S [ 2; %) e L(§28, Q5r2ma-0) {5 equi-
continuous of order A-¢, namely, there exist constants Csq,, >0 for all multi-
index y, such that
v 0 \! < ~q u
@9 1xP(E12: 5) 00 gpma-prin = Cagsd™ 2 150D

Susy -@it”“
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holds for all ¢(x) = 2°. And this mapping is infinitely differentiable in (&, 1)
e R*xI'. This means that Z‘QP(EIZ; %)glremains bounded in the space

Prma—o

PrOOF. It is evident in view of (f). However, we give the proof because
this is an important part of our paper.
We can write by Plancherel,

19P(612; 5) S gyama-grom
a \ D
( 9y ) P(SQDI(/%} ) 1)

<const. 3 [1P,(812;3) L4y ae (—fy)#@mrdy

0=psy

2

dy

é COHSt.f (1+] y ])2s+2lvl+4m(1—q)

=const. X (sup|P,E12; )2 || xe(x) |2

0=p=sy &Y g)sL-’;lllI
0\ 1
. — |Vi—ti+2m(1—-
where P,(&|2; )= (14| y y-turema-o ( 3y ) PETA; )

Now (0/0y)"~#(1/P) is expressed by the sum of a finite number of the terms:
(polynomial in y of order <2m(j—1)—|v|+|pD/P!, j=1,2,---, where the
polynomial does not contain A and its coefficients = $,. We put for 21>1, A/
=my/2. Then, |P|=ReP=y|y ™ +2=2{r|y |"+1}, where y' =y/2/. We
see that the polynomial is majorated by const.(1-+4]y |)mU-D-w+&" g for-
tiori, this is majorated by const. (1--|y’ [)¥myU-D-viti&igramG-D-vi+&l - Hence
sguzg) | P(&|4; )| is estimated by const. 2’72 = const. 1~%

Since the reasoning is the same for its derivatives in (¢, 1), we omit it.
The repeated use of (A) yields:

(4.10) (| 2) € Q-aatrmd-ori (g=0 or 1)
remains bounded with all its derivatives in & and depends continuously on A
because ¢ € Q- t/21-1,
(2°) and (3°) of Prop. 2 follow immediately from this.
(1°) follows from (4.8)
J
Lix, g1 D=7 Q% 53 6) /€1 D]

taking account of _
v 0 v/ : v v 0
(L) (&) 1me1n=ef (L) (Z—2) (0l £ 8)rie 19}]

(B) Proof of (4°): As A9/,(&|2) is bounded in Q-["/21+20-om-1 with all its
derivatives in &,
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A1) [l E| A =QA—4)"2Y(E| D (@ =[n/2]+1+mlg—1); ¢=0 or 1)
is bounded in #% with all its derivatives in & Let us show that
(4.12) Az LfE I DT, 8)De = A=)V S, x—x" | D), p(x—%") D2
for any ¢(§) € 92142 'We consider a dual form for ¥(x) &%”
(4.13) ¥ (), 2%zL[E 1 D], ¢E)Ds

=LFx+8E), A& 1 D Dsr 06Dz

=K+, A=A i(x, 1 DDar ¢();

=L A=A U (x+8), [(x, E1 D Da, 9(E) e -
Since, (1 —=4)*"¥ (x+8) =A—4)"¥ (x+8),

(A1) =¥ (x+8), A—4"{fi(x, E 1 DY)} Dz -

We regard ¥'(x+&) as a distribution in & translated by —x, namely ¥(x+§&)
=7,[¥(&] Then,

(413)=<¥(©), r.LA—4)"{fi(x, E | D} Dz,
=¥, A—dJ"<filx, E—x| D), pE—D) oz .

Consequently,

U@), 2%z LFE1 DT, (E)D2s
=< (&), A—4)V{fx, E—x| ), 9(E—X)D)e
This shows [4.12). By Leibniz, the boundedness of
A—=d)¥ L, =5 | ), p(x—%")D s

- IV|+I§I§Z(1’C”’U'<<;3@;> wfi(X/’ x=x ] A, (%>V¢<x—xl)>m,

in &% is obvious.
Similarly we have for ¢(x) € 9ht2n/21+2

AT LfE N DT, P02 =filx, §1 0, A=A P(x+8) e .

Its boundedness in &% is also obvious.
These mappings are continuous in A because fy(x, £|2) € 8% (and all its
derivatives in &) are continuous.
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