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We intend in this paper to generalize the theory of semisimple algebras
to the case where the domain of coefficients is a general commutative ring.
In the classical case, a semisimple algebra $A$ over a field $K$ is characterized
by one of the following three properties. 1) The direct sum of a finite number
of simple algebras. 2) Vanishing of the radical. 3) Complete reducibility of
every A-module. Each of these may be generalized in some manners to
algebras over a commutative ring $R$ . For instance, one may naturally call
an algebra $A$ over $R$ to be simple if any two-sided ideal of $A$ is of the form
$aA$ where $\mathfrak{a}$ is an ideal of $R$ . But, this definition seems to be too restrictive,
since an extension of a Dedekind domain is not necessarily simple in this
sense, even if it is unramified.

In this paper, we shall deal with the subject from the module-theoretical
point of view 3). An algebra $A$ over $R$ will be called left semisimple if any
extension of left A-modules

$0\rightarrow 1\psi_{1}$– $M_{2}\rightarrow M_{3}\rightarrow 0$ (exact),

with finitely generated $M_{8}$ , A-splits whenever it R-splits. In other words, $A$

is left semisimple if every finitely generated left module is $(A, R)$-projective
(Higman [9, 10], Hochschild [11]). We study in \S 1 some aspects of relative
homological algebra for later use even in somewhat more generalized formu-
lations than exactly needed, not pursueing, however, deeper results for its
own sake.

\S 2 deals with some basic properties of semisimple algebras. As in the
classical case, separable algebras form the most important class of semisimple
algebras. The theory of separable algebras over a ring is successfully devel-
oped by Azumaya [3] and Auslander and Goldman [2]. It turns out that
the relations of the separability with the semisimplicity in the classical case
remain hold in our general case, except that the question of separability of
central semisimple algebras is left open. In \S 3, we deal with the commuter
relations of semisimple subalgebras of a central separable algebra.
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If the base ring $R$ is an integral domain, having $K$ as its quotient field,
then a semisimple algebra $A$ over $R$ is imbedded as an R-order in a semisimple
algebra over $K$. Some results will be given in \S 4 of this case. For instance.
applying the results of Auslander and Goldman [1], we prove that an R-
projective semisimple order over an integrally closed Noetherian domain is a
maximal order.

Throughout this paper, all rings have unit elements, and modules are
unitary (unital). We say that an epimorphism (resp. monomorphism) $f:M\rightarrow N$

splits if $Kerf$ (resp. ${\rm Im} f$) is a direct summand.

\S 1. From relative homological algebra.

1.1. To begin with, we recall the basic notions introduced by Hochschild
[11]. Let $A$ and $B$ be rings, and $f$ a fixed unitary homomorphism $B\rightarrow A$ .
(For instance, $B$ is a subring of $A$ and $f$ the inclusion map.) A left A-module
$M$ is then viewed as a B-module via $c$ . A sequence of A-modules is $(A, B)$-exact
if it is exact and splits as a sequence of B-modules. An A-module $P$ is $(A, B)-$

projective if the functor $Hom_{A}(P, )$ maps every $(A, B)$-exact sequence into
an exact sequence, or equivalently, if the natural epimorphism $\epsilon;A\otimes_{B}P\rightarrow P$

defined by $\in(a\otimes x)=ax$ splits. An $(A, B)$-injective module $Q$ is defined simi-
larly by means of the functor $Hom_{A}( , Q)$ or of the natural monomorphism
$\epsilon;Q\rightarrow Hom_{B}(A, Q)$ defined by $\epsilon(x)(a)=ax$ . Let $M$ and $N$ be A-modules. Then.
an $(A, B)$-projective resolution of $M$ is a left complex $9=\{P_{n}\}$ of $(A, B)\sim$

projective modules with an augmentation $9\rightarrow M$, such that the sequence
$...-P_{n}\rightarrow P_{n-1}-\cdots\rightarrow P_{0}\rightarrow M\rightarrow 0$

is $(A, B)$-exact. An $(A, B)$-injective resolution of $N$ is a right complex $Q=\{Q^{n}\}$

of $(A, B)$-injective modules with an augmentation $N\rightarrow Q$ such that the sequence
$ 0\rightarrow N\rightarrow Q^{0}\rightarrow\cdots\rightarrow Q^{n-1}\rightarrow Q^{n}\rightarrow\cdots$

is exact. Now one introduces two sequences of the relative functors $Ext_{A,\theta}^{n}$

and $Tor_{n}^{A,B},$ $n=0,1,2$ , – : $Ext_{A,B}^{n}(M, N)$ is described as $H^{n}(Hom_{A}(9)N))$ , as
$H^{n}(Hom_{A}(M, Q))$ or as $H^{n}(Hom_{A}(9)Q))$ . Similarly, $Tor_{n}^{A,B}(L, M)=H_{n}(9)’\otimes_{A}N)$

$=H_{n}(M\otimes_{A}9))=H_{n}(\varphi^{\prime}\otimes_{A}\mathscr{L})$ , where $\mathscr{L}^{\prime}$ is an $(A, B)$-projective resolution of (a

right A-module) $L$ . Define relative dimensions as follows:

$\dim_{A,B}M\leqq n$ (resp. inj. $\dim_{A,B}N\leqq n$) if $Ext_{A,B}^{n+1}(M, N)=0$

for every A-module $N$ (resp. $M$).

$w$ . $\dim_{A,B}M\leqq n$ if $Tor_{\eta}^{A}\dotplus^{B}1(L, M)=0$ for every right A-module $L$ .
Further, set

$(*)$ 1. gl. $\dim(A, B)=\sup\dim_{A,B}M=\sup$ inj. $\dim_{A,B}N$ ,
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(t) $w$ . gl. $\dim(A, B)=\sup w$ . $\dim_{A,B}M=\sup w$ . $\dim_{A,B}L$ ,

$\sup$ being taken over all left modules $M,$ $N$ and right modules $L$ , respectively.
Let $M$ be the direct limit of a system of A-modules $M^{\nu}$ , and $\mathscr{L}P,$

$9^{\nu}$ be
the standard $(A, B)$-projective resolutions of $M,$ $M^{\nu}$ , respectively. 9 is defined
as follows: $P_{0}=A\otimes_{B}M,$ $\epsilon$ the natural epimorphism $P_{0}\rightarrow M$. Assume we have
defined P. and $d_{i}$ : $P_{i}\rightarrow P_{i-1},0\leqq i\leqq n$ , then we put $P_{n+1}=A\otimes_{B}Kerd_{n},$ $d_{n+1}$

$=the$ composition of $P_{n+1}\rightarrow Kerd_{n}$ with the inclusion $Kerd_{n}\rightarrow P_{n}$ . Similarly
for $\mathscr{L}P^{\nu}=\{P_{n}^{\nu}\}$ . Since the direct limit commutes with tensoring and preserves
the exactness, we have $\mathscr{L}=\rightarrow 1i\mathfrak{m}9$

) $\nu$ It follows that $Tor_{A,B}$ commutes with the
direct limit, and we have

PROPOSITION 1.1. The equality (t) holds when $M$ (resp. $L$) ranges over finitely
generated left (resp. right) A-modules.

1.2. In this section we assume that $B$ is left Noetherian and $A$ is left
B-finitely generated. Let $M$ be a finitely generated left A-module. Then, all
modules in the exact sequences

$\epsilon$

$0\rightarrow M_{1}\rightarrow A\otimes_{B}M\rightarrow M\rightarrow 0$

$\epsilon$

$0\rightarrow M\rightarrow Hom_{B}(A,M)\rightarrow M^{1}\rightarrow 0$

are also finitely generated. Therefore $M$ is $(A, B)$-projective (resp. injective)
in the category of finitely generated A-modules if and only if it is $(A, B)-$

projective (resp. injective) in the above sense. Further, the relative projective
(resp. injective) dimension of a finitely generated module $M$ in the category
of finitely generated modules is identical with $\dim_{A,B}M$ (resp. inj. $\dim_{A,B}M$).

Assume that $\dim_{A,B}M\leqq n$ for every finitely generated module $M$. Let $N$

be a finitely generated module, and let
$0\rightarrow N\rightarrow Q^{0}\rightarrow Q^{1}\rightarrow\cdots\rightarrow Q^{n-1}\rightarrow N^{\prime}\rightarrow 0$

be an $(A, B)$-exact sequence such that $Q^{i}(i=0,1, \cdots , n-1)$ are $(A, B)$-injective
and $N^{\prime}$ is finitely generated. Then we have, by assumption,

$Ext_{A}^{1}$ , $B(M, N^{\prime})\cong Ext_{A,B}^{n+1}(M, N)=0$ .
But, as is remarked above, $N^{\prime}$ is then $(A, B)$-injective, and we have inj. $\dim_{A,B}N$

$\leqq n$ . Similarly, if inj. $\dim_{A,B}N\leqq n$ for every finitely generated module $N$,

then $\dim_{A,B}M\leqq n$ for every finitely generated module $M$. Hence we have

$\sup$ proj. $\dim_{A,B}M=\sup$ inj. $\dim_{A,B}N$

in the category of finitely generated modules. We shall denote this common
value by 1. gl. $\dim_{f}(A, B)$ .

1.3. Let us consider the homomorphism

$\sigma_{0}$ : $Hom_{B}(N, Q)\otimes_{A}M\rightarrow Hom_{B}(Hom_{A}(M, N),$ $Q$) $(_{A}M,N, Q_{B})$
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defined by

$\sigma_{0}(g\otimes m)(f)=g(f(m))$ , $m\in M$ , $g\in Hom_{B}(N, Q)$ , $f\in Hom_{A}(M, N)$ .
If $M=A\otimes_{B}M_{0},$ $\sigma_{0}$ becomes

$Hom_{B}(N, Q)\otimes_{B}M_{0}\rightarrow Hom_{B}(Hom_{B}(M_{0}, N),$ $Q$).

This is an isomorphism if $B$ is left Noetherian, $M_{0}$ is finitely generated and $Q$

is injective (Cartan-Eilenberg [4, Prop. VI 5. 3]). By a direct sum argument
we have

LEMMA. $\sigma_{0}$ is an isomorphism, if $B$ is left Noetherian, $M$ is both B-finitely
generated and $(A, B)$-projective, and $Q$ is B-injective.

Assume now $A$ is left B-finitely generated, and let 9 be the standard
\langle $A,$ $B$)-projective resolution of a finitely generated A-module $M$. Then every
$P_{n}$ is B-finitely generated, and we have by the above Lemma

$Hom_{B}(N, Q)\otimes_{A}9\cong Hom_{B}(Hom_{A}(9, N),$ $Q$).

Passing to the homology,

$Tor^{A,B}(Hom_{B}(N, Q),$ $M$) $\cong Hom_{B}(Ext_{A,B}(M, N),$ $Q$).

Hence we have
PROPOSITION 1.2. If $B$ is left Noetherian and $A$ is left B-finitely generated,

then for a finitely generated left A-module $M$, we have

$w$ . $\dim_{A,B}M=\dim_{A,B}M$ .
Applying Proposition 1.1, we obtain
PROPOSITION 1.3. Under the same assumptions as in Proposition 1.2, $we$

have
$w$ . gl. $\dim(A, B)=1$ . gl. $\dim_{f}(A, B)$ .

If $B$ is both left and right Noetherian and $A$ is both left and right B-finite,
then we have

1. gl. $\dim_{f}(A, B)=w$ . gl. $\dim(A, B)=r$ . gl. $\dim_{f}(A, B)$ .
We denote this common value by gl. $\dim_{f}(A, B)$ .

1.4. Let $R$ be a commutative Noetherian ring, and $A$ be an R-finitely
generated algebra over R. (A ring $A$ together with a unitary homomorphism
of $R$ into the center of $A$ is called an algebra over $R$ . The finite generation
of $A$ is in the module theoretical sense.) Let $S$ be a multiplicative system in
$R$ , and $R_{s}$ the quotient ring of $R$ with respect to S. As usual $A_{s}$ denotes
the algebra $R_{S}\otimes_{R}A$ over $R_{s}$, and similarly for modules.

Let $M$ be a finitely generated left A-module, and let $\mathscr{L}=\{P_{n}\}$ be an
\langle $A,$ $R$)-projective resolution of $M$ such that each $P_{n}$ is finitely generated.
$9_{s}=\{R_{s}\otimes P_{n}\}$ is then an $(A_{s}, R_{s})$-projective resolution of $M_{s}=R_{s}\otimes M$. As
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$P_{n}$ is finitely generated and $R_{s}$ is R-flat, we have for any left A-module $N$

$H(Hom_{A_{S}}(9_{S})N_{s}))\cong H(R_{s}\otimes Hom_{A}(\Omega)N))\cong R_{s}\otimes H(Hom_{A}(9)N))$ ,
$i$ . $e.$,

$Ext_{A_{S},R_{S}}(M_{s}, N_{s})\cong Ext_{A,R}(M, N)_{S}$ .
Conversely, let $M^{\prime}$ be an $A_{s}$-module. Let $M$ be an A-submodule of $M^{f}$ gen-
erated by a set of $A_{s}$-generators of $M^{\prime}$ , and define an epimorphism $f:R_{s}\otimes M$

$\rightarrow M^{\prime}$ by $f(\alpha^{\prime}\otimes x)=\alpha^{\prime}x$ . Assume $f(\sum\alpha_{i}^{\prime}\otimes x_{i})=\sum\alpha_{i}^{\prime}x_{i}=0$ . There exists $\xi\in S$

such that $\alpha_{i}^{\prime}=\alpha_{i}/\xi,$ $\alpha_{i}\in R$ , for every $i$ . Then we have $\sum\alpha_{i}^{\prime}\otimes x_{i}=1/\xi$

$\otimes\sum\alpha_{i}x_{i}=1/\xi\otimes\xi\Sigma\infty^{\gamma}x_{i}=0$ . This shows that $f$ is an isomorphism:
$M_{s}\cong M^{\prime}$ . The standard reasoning then yields

PROPOSITION 1.4. Let $A$ be an R-finitely generated algebra over a Noetherian
ring R. For a finilely generated A-module $M$, we have

$\dim_{A,R}M=\sup_{m}\dim_{A_{\mathfrak{m}},R_{\mathfrak{j}\mathfrak{n}}}M_{(\mathfrak{n}}$ ,

and for the global dimensions

gl. $\dim_{f}(A, R)=\sup_{\eta t}$ gl. $\dim_{f}(A_{\mathfrak{m}}, R_{\mathfrak{m}})$ ,

where $\mathfrak{m}$ ranges over all maximal ideals of $R$ .

\S 2. Semisimple algebras.

2.1. We shall call an algebra $A$ over $R$ left semisimple if 1. gl. $\dim_{f}(A, R)$

$=0$ . This means that every finitely generated left A-module $M$ is $(A, R)-$

projective, namely, that there exists an A-homomorphism $\mu:M\rightarrow A\otimes_{R}M$ such
that $\pi\circ\mu=1_{M}$ , where $\pi$ is the canonical epimorphism $A\otimes_{R}M\rightarrow M$. The right
semisimplicity is defined similarly. If $A$ is left and right semisimple, we call
$A$ a semisimple algebra. If $R$ is a semisimple ring in the classical sense, then
the relative projectivity means the absolute projectivity, and a left (or right)

semisimple algebra over $R$ in our sense is nothing but a semisimple algebra
in the classical sense.

If $A$ is R-flat, and left semisimple over $R$ , we have by Hochschild [12]

1. gl. $\dim A\leqq g1$ . $\dim R$ .
It follows, in particular, that an R-flat left semisimple algebra over a hereditary
ring $R$ is left hereditary.

Concerning Noetherian rings, we have
THEOREM 2.1. If $R$ is Noetherian and $A$ is an R-finitely generated algebra

over $R$ , then $A$ is left semisimple over $R$ if and only if il is right semisimple.
This follows immediately from Proposition 1.3.
PROPOSITION 2.2. Under the same assumptions as in Proposition 2.1, $A$ is
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semisimple over $R$ if and only if every finitely generated left (or right) A-module
is $(A, R)$-injective.

This is clear from \S 1.2.
2.2. As usual, an algebra $A$ over $R$ is considered as an $A^{e}=A\otimes_{R}$ $A^{}$ -

module, where $A^{0}$ is an anti-isomorphic copy of $A$ . Now $A$ is called separable
(Auslander-Goldman [2]) if $A$ is $A^{e}$-projective, or equivalently, if the $A^{e_{-}}$

epimorphism $\varphi:A^{e}\rightarrow A$ defined by $a\otimes b^{9}\rightarrow ab$ splits, $i$ . $e.$ , if there exists $\Sigma u_{i}$

$\otimes v_{i}^{o}\in A^{e}$ satisfying $\Sigma u_{i}v_{i}=1$ and such that

$(*)$ $\Sigma au_{i}\otimes v_{i}^{o}=\Sigma u_{i}\otimes(v_{i}a)^{o}$ for every $a\in A$ .
It is to be noted that $A$ is separable if and only if $A$ is $(A^{e}, R)$-projective, since
the sequence $0\rightarrow Ker\varphi\rightarrow A^{e}\rightarrow A\rightarrow 0$ splits in the category of R-modules.

PROPOSITION 2.3. $\Lambda$ separable algebra is semisimple.
PROOF. For any left A-module $M$, we have a commutative diagram

$ A^{e}\otimes_{A}M\varphi\otimes 1\rightarrow$

$A\otimes M$

$ ll\iota$ 11
$\pi$

$ A\otimes_{R}M\rightarrow$ $M$

where the isomorphism $f$ is defined by $f((a\otimes b^{o})\otimes x)=a\otimes bx$ . If $\psi$ is an $A^{e_{-}}$

homomorphism $A\rightarrow A^{e}$ , such that $\varphi^{o}\psi=1_{A}$ , then $\psi\otimes 1$ gives rise to an A-
homomorphism $\mu:M\rightarrow A\otimes_{R}M$ such that $\pi\circ\mu=1_{M}$ (explicitly $\mu(x)=\Sigma u_{i}\otimes v_{i}x$).

Hence $A$ is left semisimple. Similarly $A$ is right semisimple. $q$ . $e$ . $d$ .
Let $T$ be a two-sided A-module. Then $Hom_{A^{e}}(A, T)$ is naturally identified

with $T^{A}=$ { $x\in T|ax=xa$ for every $a\in A$ }. If $A$ is separable, then $\psi$ : $A\rightarrow A^{e}$

yields $Hom_{A^{e}}(A^{e}, T)\rightarrow Hom_{A^{e}}(A, T),$ $i$ . $e.$ , an R-contraction $t:T\rightarrow T^{A}$ . Explicitly
$t(x)=\Sigma u_{i}xv_{i}$ . If 2 is a left (resp. right) operator domain of the left (resp.

right) A-module $T$, then $T^{A}$ is an $\Omega$ -submodule, and $t$ becomes an $\Omega$ -homomor-
phism.

If, in particular, $T=Hom_{R}(M, N)$ , where $M$ and $N$ are left A-modules,
then we have the mean $t:Hom_{R}(M, N)\rightarrow Hom_{A}(M, N)$ defined by

$t(g)=\Sigma u_{i}\circ gov_{i}$ , $g\in Hom_{R}(M, N)$ .
$t$ is an R-homomorphism such that

i) $t(g)=g$ for $g\in Hom_{A}(M, N)$ ,
ii) $t(g\circ f)=t(g)\circ f$ , $t(h\circ g)=h\circ t(g)$ for $f\in Hom_{A}(L, M)$ ,

$h\in Hom_{A}(N, P)$ .
For example, the A-homomorphism $\mu$ in the Proof of Proposition 2.3 is $t(\mu_{0})$ ,

where $\mu_{0}\in Hom_{R}(M, A\otimes_{R}M)$ is defined by $\mu_{0}(x)=1\otimes x$. If $\Omega$ is an operator
domain of the A-modules $M$ and $N$, and $g$ is an $\Omega$ -homomorphism, then $t(g)$

is also an $\Omega$ -homomorphism.



410 A. HATTORI

REMARK. The mean $t$ may be interpreted as the composition

$Hom_{R}(M, N)\rightarrow Hom_{A}(A\otimes_{R}M, N)\rightarrow Hom_{A}(M, N)$ ,

where the first arrow is the usual natural isomorphism, and the second is
$Hom(\mu, 1_{N}),$ $\mu$ being as above. In this way, the mean $t$ can be defined for a
finitely generated left A-module $M$ and a left A-module $N$, when $A$ is a left
semisimple algebra over R. $t$ satisfies then i) and the second identity of ii),

but not necessarily the first of ii).

2.3. We now study the behavior of semisimple algebras in the tensor
products and the coefficient ring extensions.

PROPOSITION 2.4. If $A$ is an R-finitely generated separable algebra over $R$

and $B$ is a left (resp. right) semisimple algebra over $R^{\prime}$ , where $R^{\prime}$ is a commuta-
tive algebra over $R$ , then $A\otimes_{R}B$ is left (resp. right) semisimple over $R^{\prime}$ .

PROOF. A finitely generated left $A\otimes B$-module $M$ is also finitely generated
as a left B-module. By assumption, there is a B-homomorphism $\mu_{1}$ : $M\rightarrow B\otimes_{R!}M$

satisfying $\pi_{1}\circ\mu_{1}=1_{M}$ , where $\pi_{1}$ is the natural epimorphism $B\otimes_{R},M\rightarrow M$. Let
$\iota$ be the B-homomorphism $B\otimes_{R^{\prime}}M\rightarrow A\otimes_{R}B\otimes_{R},M$ defined by $f(y)=1\otimes y,$ $y\in B$

$\otimes_{R},M$. Set the mean $\mu=t(\ell\circ\mu_{1})$ with respect to the separable algebra $A$ over
R. $\mu$ is then an $(A\otimes_{R}B)$-homomorphism satisfying $\pi\circ\mu=1_{M}$ , where $\pi$ is the
natural epimorphism $(A\otimes_{R}B)\otimes_{R^{l}}M\rightarrow M$.

As is remarked above, $A$ is separable if $A$ is $(A^{e}, R)$-projective. Hence
we have

THEOREM 2.5. An R-finitely generated algebra $A$ over $R$ is separable if and
only if $A^{e}$ is left (or right) semisimple over $R$ .

PROPOSITION 2.6. Let $A$ be an algebra over $R$ , and $R^{\prime}$ be a commutative
algebra over R. Then, the algebra $R^{\prime}\otimes_{R}A$ over $R^{\prime}$ is left semisimple, if one of
the following conditions is satisfied.

a) $A$ is a separable algebra over $R$ .
b) $A$ is left semisimple over $R$ , and $R^{\prime}$ is an R-finitely generated separable

algebra over $R$ .
PROOF. The case a) is essentially a special case of Proposition 2.4, since,

for $B=R^{\prime},$ $\pi_{1}$ ; $B\otimes_{R^{\prime}}M\rightarrow M$ is the identity. (In this case, $R^{\prime}\otimes_{R}A$ is separable
over $R^{\prime}$ (Auslander-Goldman [2, Cor. 1.6]).) Under the assumption b), $A\otimes R$ ‘

is left semisimple over $R$ by the same proposition, and a fortiori left semi-
simple over $R^{\prime}$ .

PROPOSITION 2.7. If $A$ is left semisimple over $R$ , then $A/(\ddagger A$ is left semi-
simple over $R/\mathfrak{a}$ , where $a$ is an ideal of $R$ .

PROOF. This is clear, since a finitely generated $A/\alpha A$-module $M$ is finitely
generated as an A-module, and the natural map $A/\mathfrak{a}A\otimes M\rightarrow M$ coincides with
the natural map $A\otimes M\rightarrow M$.
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PROPOSITION 2.8. Let $A$ be an algebra over $R$ and $B$ an algebra over $R^{\prime}$ ,

where $R^{\prime}$ is a commutative algebra over R. Assume that there exists a finitely
generated left B-module $N$ which has an R-direct summand $N_{0}$ isomorphic to $R$ .
Then, if $A\otimes_{R}B$ is left semisimple over $R^{\prime},$ $A$ is left semisimple over $R$ .

PROOF. Let $M$ be a finitely generated left A-module and $\pi$ be the natural
epimorphism $A\otimes M\rightarrow M.$ $M\otimes_{R}N$ is a finitely generated left $(A\otimes B)$-module,
and $\pi\otimes 1:A\otimes M\otimes N\rightarrow M\otimes NR^{\prime}$-splits. By the semisimplicity of $A\otimes B$,

there exists an $A\otimes B$-homomorphism $\mu^{\prime}$ : $M\otimes N\rightarrow A\otimes M\otimes N$ such that $(\pi\otimes 1)$

$\circ\mu^{\prime}=1_{M\otimes N}$ . Now, let $\alpha:R\rightarrow N$ and $\beta:N\rightarrow R$ be R-homomorphisms such that
$\beta\circ\alpha=1_{R}$ . Define $\mu$ : $M\rightarrow A\otimes M$ by the commutativity of the diagram

$M\otimes N\rightarrow^{\mu^{\prime}}A\otimes M\otimes N$

$\uparrow 1\otimes\alpha_{\mu}$
$\downarrow 1\otimes\beta$

$M=M\otimes R\rightarrow A\otimes M\otimes R=A\otimes M$

Then, $\mu$ is an A-homomorphism, and it is easy to see $\pi\circ\mu=1_{M}$ .
REMARK. If a B-module $N$ has an R-direct summand $N_{0}$ isomorphic to

$R$ , then $\ell;R\rightarrow B$ is a monomorphism. But the converse is not true. Example:
$R=ring$ of rational integers, $B=field$ of rational numbers.

COROLLARY 2.9. Let $R^{\prime}$ be a commutative ring containing $R$ , and assume
that $R$ is an R-direct summand of $R^{\prime}$ . Then, an algebra $A$ over $R$ is left semi-
simple, if $R^{\prime}\otimes A$ is left semisimple over $R^{\prime}$ .

Now we prove two criterions for separability.
PROPOSITION 2.10. If $R$ is a Noetherian ring such that $R/\mathfrak{m}$ is perfect for

every maximal ideal $\mathfrak{m}$ , then an R-finitely generated semisimple algebra $A$ over
$R$ is separable.

PROOF. $A/\mathfrak{m}A$ is semisimple over $R/m$ by Proposition 2.7, and therefore
is separable by the perfectness of $R/\mathfrak{m}$ . Our proposition now follows from
Auslander-Goldman [2, Th. 4.7].

THEOREM 2.11. An R-finitely generated algebra $A$ over a Noetherian ring
$R$ is separable if and only if $S\otimes_{R}A$ is left (or right) semisimple over $S$ for every
R-finitely generated extension ring $S$ of $R$ .

The ‘ only if ‘ part is clear by Proposition 2.6. To prove the converse,
we need

LEMMA. Let $R$ be a commutative ring, $\mathfrak{m}$ a maximal ideal of $R$ and $K=R/\mathfrak{m}$ .
For any extension field $L$ of $K$ of a finite degree, there exists an R-finitely
generated extension ring $S$ of $R$ such that $S/\mathfrak{m}S\cong L$ .

PROOF. By way of the induction, we may assume $L=K(\alpha)$ , a simple
extension. Let $\varphi(X)=X^{n}+\cdots\in K[X]$ be the minimal polynomial of $\alpha$ over
$K$. Take $f(X)=X^{n}+\cdots\in R[X]$ such that $\varphi(X)=f(X)mod \mathfrak{m}[X]$ , and set
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$S=R[X]/(f(X))$ . Then we see immediately $S/\mathfrak{m}S\cong R[X]/(\mathfrak{m}[X]+(f(X)))$

cr $K[X]/(f(X))\cong L$ .
Proof of the ‘ if ‘ part of Theorem 2.11. With the same notations as above,

we have $L\otimes_{K}A/\mathfrak{m}A\cong S/\mathfrak{m}S\otimes_{K}A/\mathfrak{m}A\cong(S\otimes_{R}A)/\mathfrak{m}(S\otimes_{R}A)$ . If $S\otimes_{R}A$ is left
(say) semisimple over $S,$ $L\otimes_{K}A/\mathfrak{m}A$ is semisimple over $L$ by Proposition 2.7.
If this is the case for every finite extension $L$ of $K,$ $ A/\mathfrak{m}\Lambda$ must be separable
over $K=R/\mathfrak{m}$ . If, besides, this is the case for every maximal ideal $\mathfrak{n}\tau$ of $R,$ $A$

must be separable over $R$ by Auslander-Goldman [2, Th. 4.7].

2.4. Let $S$ be a multiplicative system in $R$ , and $R_{s}$ be the ring of quo-
tients of $R$ with respect to $S$ . For an algebra $A$ over $R,$ $A_{s}$ denotes the algebra
$R_{s}\otimes A$ over $R_{s}$ .

As is remarked in \S 1.4, an $A_{s}$-module $M^{\prime}$ is isomorphic to $M_{s}=R_{s}\otimes M$,

where $M$ is an A-module, and if $M^{\prime}$ is finitely generated then $M$ may be
chosen to be finitely generated. Since $M_{s}$ is $(A_{s}, R_{s})$-projective if $M$ is $(A, R)-$

projective, $A_{s}$ is left semisimple over $R_{s}$ if $A$ is left semisimple over $R$ . In
particular, we have

PROPOSITION 2.12. Let $\mathfrak{p}$ be a prime ideal of R. If $A$ is left semisimple
over $R$ , then $A_{\mathfrak{p}}=R_{\mathfrak{p}}\otimes A$ is left $se\uparrow nisimple$ over $A_{\mathfrak{p}}$ .

PROPOSITION 2.13. $IJ$ $A$ is left semisimple over an integral domain $R$ , then
the rational hull $A_{K}=K\otimes A$ is semisimple over the quotient field $K$ of $R$ .

Finally, we have by Proposition 1.4
THEOREM 2.14. An R-finitely generated algebra $A$ over a Noetherian ring

$R$ is semisimple over $R$ , if and only if $A_{1}$ is semisimpJe over $R_{\mathfrak{n}}$ for every
maximal ideal $\mathfrak{n}\tau$ of $R$ .

\S 3. Semisimple subalgebras of a central separable algebra.

3.1. Let $A$ be an algebra over $R$ , and $B$ a subalgebra of A. $A$ is con-
sidered as a left $B\otimes A^{o}$ -module in the natural way, where $A^{0}$ is an inverse-
isomorphic copy of $A$ corresponding to the right multiplications. We denote
by $\phi$ the $B\otimes A^{o}$ -epimorphism $B\otimes A^{o}\rightarrow A$ defined by $\phi(b\otimes a^{o})=ba$ . For an
$B\otimes A^{o}$ -module (i. e., a left B- and right A-module) $T,$ $Hom_{B\otimes A^{O}}(A, T)$ is iso-
morphic to the submodule $T^{B}=$ { $x\in T|bx=xb$ for every $b\in B$ } of $T$, and is
identified to it.

Now assume that $A$ is $B\otimes A^{o}$ -projective. Then, the sequence $ 0\rightarrow Ker\phi$

$\rightarrow B\otimes A^{o}\rightarrow A\rightarrow 0$ splits, and we have a contraction
$t:T(=Hom_{B\S A^{\circ}}(B\otimes A^{o}, T))\rightarrow T^{B}(=Hom_{B\otimes A^{\theta}}(A, T))$ .

If, in particular, we take $T=A$ , then $T^{B}=$ the commuter of $B$ in $A$ , and we
have

PROPOSITION 3.1. If $A$ is left $B\otimes A^{o}$ -projective, where $B$ is a subalgebra of
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$A$ , then the commuterC of $B$ in $A$ is a direct summand of A regarded as a left
C-module.

If $B=A$ , this proposition reduces to Auslander-Goldman [2, Prop. 1.2].
Similarly as there, it follows immediately

COROLLARY 3.2. For a right ideal $\mathfrak{r}$ of $C$ , we have $\mathfrak{r}A\cap C=\mathfrak{r}$ .
3.2. Let $A$ be a central separable $algebr^{\backslash }a$ over $R$ , where central means

$R=the$ center of $A$ . By Auslander-Goldman [2, Th. 2.1], $A$ is a finitely gener-
ated R-projective module, the homomorphism

$\tau_{A}$ ; $Hom_{A^{e}}(A, A^{e})\otimes A\rightarrow A^{e}$

defined by $\tau_{A}(f\otimes x)=f(x)$ is surjective, and the homomorphism

$\eta:A\otimes A^{O}\rightarrow Hom_{R}(A, A)$

defined by $\eta(a\otimes b^{o})(x)=(a\otimes b^{O})(x)=axb$ is an isomorphism.
Let $B$ be a subalgebra of $A$ , and $Cbe$ the commuter of $B$ . As in [2, \S 2],

we consider the following commutative diagram
$\zeta\otimes 1$

$Hom_{B\Theta A^{\circ}}(A, B\otimes A^{o})\otimes_{C}A\rightarrow Hom_{c}(A, C)\otimes_{c}A$

$\downarrow\tau_{B}$ $\downarrow\lambda$

$\eta$

$B\otimes A^{o}$ $\rightarrow Hom_{c}(A, A)$

where $A$ is considered as a left $B\otimes A^{O}-$ and left C-module, and $\tau_{B},$
$\zeta,$

$\lambda$ are
defined by $\tau_{B}(g\otimes x)=g(x),$ $\zeta(g)(a)=r_{/}(g(1))(a)=g(1)(a)(\in C)$ , and $\lambda(\alpha\otimes a)(x)$

$=\alpha(x)a$ , respectively.
PROPOSITION 3.3. Let $B$ be a subalgebra of a central separable algebra $A$

over $R$ , and $C$ its commuter. Assume further that $B$ is a left B-direct summand
of A. Then, $\eta$ : $B\otimes A^{o}\rightarrow Hom_{c}(A, A)$ is an isomorphism, $A$ is left C-projective,
and $B$ is the commuter of $C$ .

PROOF. Let $\gamma$ be a left B-projection $A\rightarrow B$ . If $f_{i}\in Hom_{A^{e}}(A, A^{e})$ and
$a_{i}\in A$ are such that $\tau_{A}(\sum f_{i}\otimes a_{i})=\Sigma f_{i}(a_{i})=1\otimes 1^{o}$ , then $g_{i}=(\gamma\otimes 1)\circ f_{i}$

$\in Hom_{B\Theta A^{o}}(A, B\otimes A^{o})$ satisfy $\sum g_{i}(a_{i})=(\gamma\otimes 1)\Sigma f_{i}(a_{i})=1\otimes 1^{o}$ . Hence the
homomorphism $\tau_{B}$ is surjective, and the first two assertions of Proposition 3.3
are immediate consequences of Auslander-Goldman [1, Th. A.2]. To see the
last assertion, let $a$ be in the commuter of $C$ . Then $\eta(a\otimes 1^{o})$ is in $Hom_{c}(A, A)$

$=\eta(B\otimes A^{o})$ . Hence $a\otimes 1\in B\otimes A^{o}$ . As $R$ is a direct summand of A, we
have $a\in B$, as desired.

REMARK. If a separable algebra $A$ is left C-projective, where $C$ is a sub-
algebra of $A$ , then $A$ is left $C\otimes A^{o}$ -projective. For, let $\pi$ be the $C\otimes A^{o}-$

homomorphism $C\otimes A^{o}\rightarrow A$ defined by $c\otimes a^{o}\rightarrow ca$ . If $A$ is C-projective, there
exists a C-homomorphism $\mu$ : $A\rightarrow C\otimes A^{o}$ such that $\pi\circ\mu=identity$ . Take the
mean $\mu^{*}=t(\mu)$ of $\mu$ with respect to the right multiplications of $A$ , explicitly



414 A. HATTORI

$\mu^{*}(x)=\sum(1\otimes v_{i}^{o})\mu(xu_{i})$ , where $u_{i}$ and $v_{i}$ are as in \S 2.2. $\mu^{*}$ is a $C\otimes A^{o}$ -homo-
morphism $A\rightarrow C\otimes A^{o}$ , such that $\pi\circ\mu^{*}=identity$ , and $A$ is $C\otimes A^{o}$ -projective.

3.3. Concerning semisimplicity, we have
PROPOSITION 3.4. Let $B$ be a subalgebra of $A$ , and $C$ the commuter of $B$.

If $B\otimes A^{o}$ is right semisimple and $A$ is left $B\otimes A^{o}$ -projective as $weu$ as left C-
projective, then $C$ is left semisimple.

PROOF. For a finitely generated left C-module $M$, set $(B\otimes A^{o})^{B}\otimes_{C}M$,

where $(B\otimes A^{o})^{B}=Hom_{B\otimes A^{\circ}}(A, B\otimes A^{o})$ is a right $B\otimes A^{O}-$ and right C-module.
As $A$ is left $B\otimes A^{o}$ -projective, $(B\otimes A^{o})^{B}$ is a right direct summand of $B\otimes A^{o}$ ,

and $(B\otimes A^{o})^{B}\otimes_{C}M$ is finitely generated as a right $B\otimes A^{o}$ -module. Further-
more, tensoring with the left $B\otimes A^{o}$ -and C-module $A$ , we have C-isomorphisms
$((B\otimes A^{O})^{B}\otimes_{C}M)\otimes_{B}a_{A}\circ A\cong((B\otimes A^{o})^{B}\otimes_{B\otimes A^{\circ}}A)\otimes_{c}M\cong C\otimes_{c}M\cong M$ (cf. Aus-
lander-Goldman [1, Prop. A.4]). As $B\otimes A^{o}$ is right semisimple, $(B\otimes A^{o})^{B}\otimes_{C}M$

is a direct summand of $((B\otimes A^{o})^{B}\otimes_{C}M)\otimes(B\otimes A^{o})$ . Tensoring with $A$ over
$B\otimes A^{o}$ , we see that $M$ is a C-direct summand of $((B\otimes A^{o})^{B}\otimes_{C}M)\otimes A$ . But,
the latter module is $(C, R)$-projective, since $A$ is left C-projective. Hence $M$

is also $(C, R)$-projective, and $C$ is left semisimple.
Let $A$ be a central separable algebra over $R$ . Let $C$ (resp. $R$) denote the

set of subalgebras $B$ of $A$ such that $A$ is left (resp. right) B-projective and
$B$ is a left (resp. right) B-direct summand of $A$ . Further, let $S_{l}$ (resp. $S_{r}$) be
the set of left (resp. right) semisimple subalgebras $B$ which are R-direct
summands of $A$ (or, equivalently, left (resp. right) B-direct summands of $A$).

If $B\in S_{l}$ , then $A$ is left $(B, R)$-projective as well as R-projective, hence $A$ is
left B-projective. It follows that $S_{\iota}\subset x$ . Similarly, we have $ S_{r}\subset\Re$ . If,
finally, we denote by $S$ the set of (both left and right) semisimple subalgebras
which are R-direct summands of $A$ , then it is clear that $S=S_{l\cap}S_{r}=(S_{l}\cap\Re)$

$\cap(S_{r}\cap\rightarrow C)$ . With these notations, we summarize the above discussions in the
following

THEOREM 3.5. The formation of the commuter $B\rightarrow V(B)$ in the set of sub-
algebras of a central separable algebra $A$ over $R$ provides $a$ one-to-one corre-
spondence of $X$ to itself (resp. Sl to itself) such that $V^{2}=identity$ . In $X\cap R$ ,
$V$ yields $a$ one-to-one correspondence of $S_{l}\cap 9\mathfrak{i}$ to $S_{r}\cap\rightarrow C$ , and, in particular, of
$S$ to itself.

REMARK. If $B$ is a left semisimple subalgebra of an R-finite separable
algebra $A$ , and if $B$ is a $B\otimes B^{O}$ -direct summand of $A$ , then $B$ is also separable.
Indeed, since $B\otimes A^{o}$ is left semisimple, $B\otimes A^{o}$ -epimorphism $B\otimes A^{o}\rightarrow A$ splits,
and there exist $b_{i}\in B$ and $a_{i}\in A$ such that $\sum b_{i}a_{i}=1$ and $\sum bb_{i}\otimes a_{i^{o}}=\sum b_{i}$

$\otimes(a_{i}b)^{o}$ for every $b\in B$ . Now, let $\gamma$ be a $B\otimes B^{O}$ -projection $A\rightarrow B$, and put
$a_{i^{\prime}}=\gamma(a_{i})\in B$ . Then, we have $\sum b_{i}a_{i}^{\prime}=1$ and $\Sigma bb_{i}\otimes a_{i}^{\prime}=\Sigma b_{i}\otimes(a_{i^{\prime}}b)^{o}$ for every
$b\in B$ . This shows that $B$ is separable.
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\S 4. Semisimple orders.

4.1. Let $R$ be an integral domain, and $K$ its quotient field. If $A$ is an
R-finitely generated, torsion free left semisimple algebra over $R$, then the
rational hull $\mathfrak{A}=A_{K}=A\otimes_{R}K$ is a semisimple algebra of a finite rank over $K$,

and $A$ is canonically imbedded in $\mathfrak{A}$ as an R-order (Deuring [6], Auslander-
Goldman [1]).

In this section 4.1, we assume that $R$ is a Pr\"ufer domain. This means
that every finitely generated torsion free R-module is R-projective (Cartan-

Eilenberg [4]). Now, let $M$ be a finitely generated A-module, and consider
the $\mathfrak{A}$-space $M_{K}=M\otimes_{R}K$ If $M=M_{1}\oplus M_{2}$ , then obviously $M_{K}=M_{1_{K}}\oplus M_{2_{K}}$ .
Conversely, there holds

PROPOSITION 4.1. Let $M$ be a finitely generated R-torsion free A-module.
For any $\mathfrak{A}$-subspace $U$ of $M_{K}$, there exists a direct sum decomposition $M=M_{1}\oplus M_{a}$

such that $M_{1_{K}}=U$.
PROOF. Let $M_{1}=M_{\cap}U,$ $M$ being canonically imbedded in $M_{K}$ . Then

$M/M_{1}$ is R-finitely generated and torsion free, whence R-projective. Since $A$

is R-semisimple, it is A-projective. Hence we have a direct sum decompositioIr
$M=M_{1}\oplus M_{2}$ . It is clear that $M_{1_{K}}=U$.

Applying this to $M=A$ , we have
COROLLARY 4.2. For any left ideal I of $\mathfrak{A}$, there exists a direct sum decom-

position $A=I\oplus J$, such that $I_{K}=I$ .
This means that if $e$ is an idempotent in $\mathfrak{A}$, then there exists an idem-

potent $e^{\prime}$ in $A_{\cap}\mathfrak{A}e$ such that $\lambda e=ae^{\prime}$ for some $\lambda\neq 0$ in $R$ and $a$ in $A$ . It
follows immediately $e^{\prime}e=e^{\prime}$ , and $ee^{\prime}=e$ . If $e$ is central, we have $e=e^{\prime}\in A$ .
Thus, we obtain

THEOREM 4.3. $A$ contains all central idempotents of $\mathfrak{A}$ . If $\mathfrak{A}=\mathfrak{A}_{1}\oplus\cdots\oplus \mathfrak{A}_{r}$

be the decomposition of $\mathfrak{A}$ into the direct sum of simple algebras, then
$ A=A_{1}\oplus$ $\oplus A_{r}$ , where $A_{i}=A\cap \mathfrak{A}_{i},$ $\mathfrak{A}_{i}=A_{i_{K}}$ , and At are left semisimple over
$R(i=1, \cdots, r)$ .

The study of left semisimple algebra $A$ over a Pr\"ufer domain is therefore
reduced to the case where ax is simple. We shall call $A$ in this case a left
simple algebra over $R$ , though this nomination seems somewhat unsuitable.

REMARK. Proposition 4.1 is valid also under the assumptions that $R$ is
a Dedekind domain, $A$ is an R-finitely generated, torsionfree hereditary algebra
over $R$ , and $M$ is a finitely generated A-projective module (Auslander-Goldman
[1, Prop. 2.8]).

4.2. We still assume that $R$ is a Pr\"ufer domain, and $A$ is an R-finitely
generated torsionfree left semisimple algebra over $R$ . As is mentioned in the
Proof of Proposition 4.1, a finitely generated torsionfree A-module is A-projec-
tive. In particular, all finitely generated left ideals of $A$ are A-projective.
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In other words, $A$ is a left semihereditary ring.
REMARK. We introduced in [8] the notions of torsionfree modules and

torsion modules over a general ring. A projective module is always torsion-
free. In the present case, conversely, every finitely generated A-torsionfree
module, being R-torsionfree, is A-projective. We do not know whether all
left semihereditary rings enjoy this last property.

If $A$ is simple and commutative, then $A$ is an integral domain, because a
simple commutative algebra over a field is a field. Hence $A$ is also a Pr\"ufer
domain. Similarly, if $R$ is a Dedekind domain, an R-finitely generated tor-
sionfree simple commutative algebra over $R$ is also a Dedekind domain. We
shall call a Dedekind domain $S$ containing $R$ weakly unramified over $R$ if $S$ is
R-finitely generated and every prime ideal $\mathfrak{p}$ of $R$ decomposes in $S$ in the form
$\mathfrak{p}s=\mathfrak{P}_{1}\cdots \mathfrak{P}_{g}$ , where $\mathfrak{P}_{i}$ are different primes in $S$ .

PROPOSITION 4.4. Let $R$ be a Dedekind domain and $S$ a commutative algebra
over $R$ which is R-finitely generated and torsionfree. Then $S$ is semisimple over
$R$ if and only if $S$ is a direct sum of a finite number of weakly unramified
Dedekind domains over $R$ .

PROOF. By the facts mentioned above, it suffices to prove that, on assum-
ing $S$ to be a Dedekind domain, $S$ is semisimple if and only if it is weakly
unramified. If $S$ is semisimple, then $S/PS$ is semisimple over $R/\mathfrak{p}$ . Hence there
are prime ideals $\mathfrak{P}_{1},$ $\cdots$ , $\mathfrak{P}_{g}$ of $S$ such that $\mathfrak{p}s=\mathfrak{P}_{1}\cap\cdots\cap \mathfrak{P}_{g}=\mathfrak{P}_{1}\cdots \mathfrak{P}_{g}$ . Con-
versely, we assume that $S$ is weakly unramified. By the elementary divisor
theory over $S$, a finitely generated module over $S$ is a direct sum of a pro-
jective module and (a finite number of) torsion modules of type $S/\mathfrak{P}^{e}(\mathfrak{P}$ a
prime in S) (cf. $e$ . $g$ . Chevalley [5]). We have therefore to prove that $S/\mathfrak{P}^{e}$ is
$(S, R)$-projective. Let $\mathfrak{p}=\mathfrak{P}\cap R,$ $R$ being canonically imbedded in $S$, and put
$\mathfrak{p}s=\mathfrak{P}\mathfrak{Q}$ . Then we have $(\mathfrak{P}, \mathfrak{Q})=1$ by assumption. Let $a\in S$ be such that
$a\in \mathfrak{Q}^{e},$ $a\not\in \mathfrak{P}$ . There exists $b\in S$ such that $ab\equiv 1mod \mathfrak{P}^{e}$ . If we denote the
residue class of $bmod \mathfrak{P}^{e}$ by $\overline{b}$, we have $\mathfrak{P}^{e}(a\otimes\overline{b})=0$ in $S\otimes S/\mathfrak{P}^{e}$ . Indeed, if
$x\in \mathfrak{P}^{e}$ then $xa\in \mathfrak{P}^{e}\mathfrak{Q}^{e}=\mathfrak{p}^{e}s$ ; hence $xa=\Sigma s_{i}y_{i},$ $s_{i}\in S,$ $y_{i}\in \mathfrak{p}^{e}$ , and we have
$x(a\otimes\overline{b})=\sum s_{i}\otimes y_{i}\overline{b}=\sum s_{i}\otimes\overline{y_{i}\ell’}=0$ . We can therefore define an S-homomor-
phism $\mu$ : $S/\mathfrak{P}^{e}\rightarrow S\otimes S/\mathfrak{P}^{e}$ by $1\rightarrow a\otimes\overline{b}$ . Clearly the composition of $\mu$ with the
natural homomorphism $S\otimes S/\mathfrak{P}^{e}\rightarrow S/\mathfrak{P}^{e}$ is the identity. Hence $S/\mathfrak{P}^{e}$ is $(S, R)-$

projective.
THEOREM 4.5. Let $A$ be a finitely generated torsionfree simple algebra over

a Dedekind domain R. Then the center $C$ of $A$ is a simple (i. e., weakly unramified)

Dedekind domain over $R$ .
PROOF. We first prove that $C$ is a Dedekind domain. Let $\mathfrak{A}=A_{K},$ $K$ being

the quotient field of $R$ and $Z$ the center of $\mathfrak{A}$ . $Z$ is an extension field of finite
degree over $K$, and $C=Z_{\cap}A$ . It suffices therefore to show that all those
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elements of $Z$ which are integral over $R$ are contained in $A$ (cf. $e$ . $g$ . Zariski-
Samuel [13, p. 281]). Since $A=\cap A_{\mathfrak{p}},$ $\mathfrak{p}$ running over all prime ideals of $R$ ,
and since $A_{\mathfrak{p}}$ is simple over $R_{\mathfrak{p}}$ , our problem may be reduced to the $\mathfrak{p}$ -local
cases. Thus, we assume that $R$ is a discrete valuation ring of rank 1 with
the maximal ideal $\mathfrak{p}=(\pi)$ . Assume that an element $z=\pi^{-\underline{o}}a(e>0,$ $a\in A$ ,
$a\not\in\pi A)$ in $Z$ is integral over $R$ . Then, there exists a certain number $f\geqq 0$

such that $\pi^{f}z^{k}\in A$ , for all $k=1,2,$ $\cdots$ . Taking $k$ large enough, we have
$a^{k}\in\pi A$ . But, as $A/\pi A$ is semisimple over $R/(\pi),$ $A/\pi A$ contains no central
nilpotent element other than $0$ . Thus, we have $a\in\pi A$ , a contradiction.

Finally, $C/\mathfrak{p}C$ is a central subalgebra of the semisimple algebra $A/\mathfrak{p}A$ over
$R/\mathfrak{p}$ , so that it is also semisimple. If follows that $\mathfrak{p}$ decomposes in the form
$\mathfrak{p}C=\mathfrak{P}_{1}\cdots \mathfrak{P}_{g}$ , and $C$ is weakly unramified over $R$ .

4.3. We now pass to the problem of maximality of semisimple orders,
and we begin with the local study. So, let $\mathfrak{o}$ be a local ring with the maximal
ideal $\mathfrak{m}$ .

LEMMA. Let $A$ be an o-finitely generated semisimple $alg$ebra over $\mathfrak{o}$ . Then,
the radical of $A$ is $\mathfrak{m}A$ , and $A$ has only a finite number of maximal two-sided
ideals.

PROOF. If a maximal left ideal I of $A$ does not contain $\mathfrak{m}A$ , then $A=\mathfrak{m}A+I$ .
As $A$ is o-finite, we would have $A=I$ . Hence $I\supset \mathfrak{m}A$ . On the other hand, as
$A/\mathfrak{m}A$ is a semisimple algebra over the field $0/\mathfrak{m}$ , there exist maximal ideals

$\mathfrak{M}_{i},$ $i=1$ , $\cdot$ .. , $g$, such that $\mathfrak{m}A=\cap \mathfrak{M}_{i}$ . It follows that $\mathfrak{m}A$ coincides with the
radical of $A$ . Furthermore, any maximal two-sided ideal $\mathfrak{M}$ of $A$ contains $\mathfrak{m}A$ ,

and therefore is identical with one of $\mathfrak{M}_{i}’ s$ .
Now, we assume that $\mathfrak{o}$ is a local domain, and the maximal ideal $\mathfrak{m}$ is

principal $\mathfrak{m}=t\mathfrak{o}$ . We shall consider the m-adic completion $\hat{A}$ of a semisimple
o-order $A$ . Assume that the semisimple algebra $A/\mathfrak{m}A$ over $0/\mathfrak{m}$ has $g$ simple
components, and let $\mathfrak{M}_{i},$ $i=1,$ $\cdots$ , $g$, be maximal two-sided ideals of $A$ such
that

$\cap \mathfrak{M}_{i}=\mathfrak{m}A$ , $\mathfrak{M}_{i}+\bigcap_{j\neq i}\mathfrak{M}_{j}=A$ , $i=1,$ $\cdots$ $g$ .

Further, let the identity of the simple component $\bigcap_{\# i}\mathfrak{M}_{j}/\mathfrak{m}A$ be the residue
class of $e_{i}$ modulo $\mathfrak{m}A(e_{i}\in A)$ . We have

$e_{i}\in \mathfrak{M}_{j}(j\neq i)$ , $e_{i}\mathfrak{M}_{i}\subset \mathfrak{m}A$ , $e_{i}e_{j}\equiv\delta_{ij}e_{i}mod \mathfrak{m}A$ .

We shall show that
$A/\mathfrak{m}^{n}A\cong A/\mathfrak{M}_{1}^{n}\oplus\cdots\oplus A/\mathfrak{M}_{g}^{n}$ , $n=1,2,$ $\cdots$

by induction on $n$ . For $n=1$ , this is clear. Let $n>1$ .
i) $\cap \mathfrak{M}_{i}^{n}=\mathfrak{m}^{n}A$ . By the induction-hypothesis, $a\in\cap \mathfrak{M}_{i}^{n}(\subset\cap \mathfrak{M}_{i}^{n-1})$ may

$be$ written as $a=t^{n-1}b,$ $b\in A$ . Then, $t^{n-J}be_{i}\in \mathfrak{M}_{i}^{n}e_{i}\subset t\mathfrak{M}_{i}^{n-1}$ . It follows that
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$t^{n-2}be_{i}\in \mathfrak{M}_{i}^{n-1}$ . Since $b\equiv be_{i}mod \mathfrak{M}_{i}$ , we have $t^{n-2}b\equiv t^{n-2}be_{i}$ mod $M_{i}\mathfrak{m}^{n-2}$ and $a$

fortiori $t^{n-2}b\equiv t^{n-2}be_{i}\equiv 0mod \mathfrak{M}_{i}^{n-1}$ . $i$ being arbitrary, we have $t^{n-2}b\in\cap \mathfrak{M}_{i}^{n-1}$

$=t^{n-1}A$ . Hence, we have $b\in tA$ , so that $a\in t^{n}A$ .
ii) We must solve $x\equiv a_{i}mod \mathfrak{M}_{i}^{n},$ $i=1$ , $\cdot$ , $g$, for arbitrarily given $a_{i}^{\prime}s$ .

If $\mathfrak{M}_{i}^{n}+\bigcap_{j\neq i}$ My $=A$ for every $i$ , let $1=u_{i}+v_{i},$ $u_{i}\in \mathfrak{M}_{i}^{n},$

$v_{i}\in\bigcap_{j\neq i}\mathfrak{M}_{j}^{n}$ . Then $x=\Sigma v_{i}a_{i}$

will give a solution. Suppose that $\mathfrak{M}_{i}^{n}+\bigcap_{J\neq i}\mathfrak{M}_{j}^{n}$ is not identical with $A$ for

some $i$ . Then, it is contained in some maximal two-sided ideal of $A$ , say $\mathfrak{M}_{k}$ .
If $k\neq i$, then we would have $e_{k}^{n}\in \mathfrak{M}_{i}^{n}\subset M_{k}$ , which is impossible. If $k=i$ , then
$e_{i}^{n}\in\bigcap_{j\neq i}\mathfrak{M}_{j}^{n}\subset \mathfrak{M}_{i}$ , which is also impossible. Hence we must have $\mathfrak{M}_{i}^{n}+\bigcap_{J\neq i}\mathfrak{M}_{j}^{n}=A$

for all $i$ .
As the diagram

$A/\mathfrak{m}^{n}A$ $\cong A/\mathfrak{M}_{1}^{n}\oplus\cdots\oplus A/\mathfrak{M}_{g}^{n}$

$ A/\mathfrak{m}^{n+1}A\cong A/^{1}\mathfrak{M}_{1}^{n+1}\oplus\uparrow|\uparrow\ldots\oplus A/\mathfrak{M}_{g}^{n+1}\uparrow$

is commutative, where the vertical maps are natural homomorphisms, we may
pass to the completion, and we have

$\varliminf A/\mathfrak{m}^{n}A\cong\varliminf A/\mathfrak{M}_{1}^{n}\oplus\cdots\oplus\varliminf A/\mathfrak{M}_{g}^{n}$ .
Thus, we have a direct sum decomposition of the m-adic completion of $A$ :
$(*)$ $\hat{A}\cong A_{1}\oplus\cdots\oplus A_{g}$ .
Using this, we shall prove

THEOREM 4.6. Let $R$ be an integrally closed Noetherian domain, $K$ its
quotient field, and $\mathfrak{A}$ a central simple algebra over K. Then, an R-order $A$ in $\mathfrak{A}$

which is R-projective and semisimple over $R$ is a maximal order.
PROOF. By Auslander-Goldman [1, Th. 1.5] and \S 2.4, we may localize the

problem by minimal primes of $R$ . So we assume that $R$ is a discrete valuation
ring $0$ of rank 1, $\mathfrak{A}$ is a central simple algebra over $K$, the quotient field of
$0$ , and $A$ is an semisimple o-order in $\mathfrak{A}$ . Let $\hat{\mathfrak{o}},\hat{K},\hat{A}$ , be the m-adic completions
of $0,$ $K,$ $A$ , respectively. Then, we have by $(*)$

$\mathfrak{A}\otimes_{K}\hat{K}=A\otimes_{0}\hat{K}=\hat{A}\otimes_{0}\wedge\hat{K}=A_{1}\otimes_{\grave{0}}\hat{K}\oplus\cdots\oplus A_{g}\otimes_{0}\wedge\hat{K}$ .
But, as $\mathfrak{A}$ is central simple, $g$ must be 1. This shows that $\mathfrak{m}A$ is the unique
maximal two-sided ideal of $A$ . Since $A$ is hereditary, it follows from Auslander-
Goldman [1, Th. 2.3] that $A$ is maximal, as desired.
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