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§0. Introduction

Godel defined, in his paper [2], a quantifier-free system with primitive
recursive functionals of any finite type, named 7, and a transformation of
each formula in Heyting’s arithmetic (abbr.: HA) to a certain formula which
was called by Kreisel Godel’s interpretaion. Go6del’s interpretation of any
formula has the form

3@1 ot 3gamvsbl Vg[’nA(ngy oy Pms Sbl: Tty ¢n)r

where @, -+, @p, ¢, -+, ¢, are variables for functionals of higher type, in
general, and A(@,, -+, Pm; ¥4, =, ¢2) is a quantifier-free formula. It was proved
by Godel that if the original formula is provable in HA, then there exist
primitive recursive functionals ¢, .-+, @,, such that the formula

APy, ooy P gy oo, )

with free variables «, -+, @, is provable in 7.

Kreisel introduced further a system 7% obtained as follows. Let 7}
be the system obtained from 7" by adding the intuitionistic predicate calculus,
including the quantifications for functionals of any finite type, but excluding
the axiom of choice, and adding the mathematical induction for all formulas
of the extended notation. We obtain T° by adding to 7, the axiom schema

VoW, #) D IxVeWe, x(9))

representing a special case of the axiom of choice. Kreisel proved the theorem
which states that if a formula ADOWB is provable in T} and if the Godel’s
interpretations of 2 and B have the quantifier-free formulas

A(¢1:"';¢'1:"') and B(q)l’,...;gbl/’...)

as their kernels, respectively, then there exist primitive recursive functionals
@4, -, 9, -+ such that B(g,/,---; a,/,--+) is provable in T from A(gy, - ; ay, ),
where «,, ---, a,’, --- mean free variables for functionals.

In this paper, we shall introduce two new Gentzen-type sequential intui-
tionistic calculi S/ (strong system) and WJ (weak system). The above-men-
tioned system 7T will be renamed as QF (quantifier-free system) in the
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following.
The following diagram will show the situations of those systems:
S|]
il
T,
P
I/I]/] HA
T=QF

SJ is a real extension of T\° because /Vx7/ A(x)—3JxA(x) is not T,°provable
for all quantifier-free A(x), but is S/-provable for all such A(x) (cf. [5].

We shall define Godel’s interpretation ©¢ and quantifier-free veductions for
each sequence & in S/ and W/, appropriately. Then we show that the follow-
ing four conditions are equivalent to one another:

1) & is provable in SJ;

2) &€ is provable in SJ;

3) &€ is provable in WJ;

4) There exists a quantifier-free reduction of © which is provable in QF.

§1. Systems

1.0. Fundamental system

1.0.1. Type

As types we use only those given by the following 1) and 2).

1) 0 is a type.

2) If o and 7 are types, then o<{z) is a type.

We shall use the abbreviated notation ¢<{z,, 7, -+, T,> tO represent the type
0 {T) {7 *+ {Tu)-

1.0.2. DEeFINITION of ‘term’ (inductive definition)

1) 0 is a term of type O.

2) A free variable of type r is a term of type .

(Informally, each variable of type z represents an arbitrary functional of
type . Especially, each variable of type 0 means a non-negative integer.)

3) If £is a term of type 0, then # (which means informally #+1) is a
term of type O.

4) If f(a) is a term of type o and « is a free variable of type z, then
Apf(@) is a term of type o<{z), where ¢ is an arbitrary bound variable of type
7 not contained in f(«), and f(¢) means the result of substituting ¢ for «
throughout f(«).

5) If sis a term of type o{z) and ¢ is a term of type 7, then s{¢) is a
term of type o.
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6) If s is a term of type = and ¢ is a term of type z(0,z), then p[s, ]
is a term of type 7<0).
(The intended sense of pls,#] is the functional ¢ defined as

e =s, @)=Hx, ¢(x)),

where x represents all non-negative integers.)

7) The only terms are those given by 1)-6).

We shall use the abbreviated notation s<{#,1%, ---,#,> to represent the term
S<t1> <f2> <tn>;

By primitive recursive functional (abbr.: prf) we mean a term containing
no free variables. Each prf represents a primitive recursive functional in
Godel’s sense, informally. Conversely, for any primitive recursive functional
in Gddel’s sense, there exists at least one prf such that the latter represents
the former.

1.0.3. Formula

Our prime formulas are of the form s=¢, where s and ¢ are arbitrary
terms of the same type. The formulas are constructed, as usual, by the pro-
positional connectives A, V,/, D and by quantifiers V¢ and J¢ for every
type, starting from the prime formulas. We use A~ as the abbreviation of
ADB)ABDON).

1.0.4. Sequence

We shall use any sequence I' — 4, provided that

at most one formula of 4 contains quantifiers,
where I' and 4 mean the finite series (possibly void) of formulas in our sense,

respectively.
1.0.5. Schemata for ‘beginning sequence’
1 —t=t
(2 sS=t¢t—it=s
3) r=35,s=f—r=*¢
“@) s=t—s' =¢
'®) S1 =S, =t — 8. {t) =5, {ty
©) —Qef(e)<& =5®)
) —p[s, 110> =s
®) —pls, 13<r'> =t <r, oLs, t1<r))
¢ ¥ =0—
ao S'=F-s=t

In those schemata, 7, s, s, S,, 4, 1, £, mean arbitrary terms, especially s and
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t in (4), (9), and 7 in (8) are of type 0, and f(¥) means the result of sub-
stituting ¢ for ¢ throughout f(¢).

1.0.6. Inference

All schemata of inferences in Gentzen’s LK with the restriction that, in
applications of them, as their upper sequences and lower sequences only those

defined in 1.0.4. are admitted. (Cf. Gentzen [1]. See also Takeuti [6], for the
names of inferences.)

The following schemata of inferences are added:

. O, I'—4 . . I'— 4, %)
y left: ooy T =4 . right: 3 a0y
N oiene: T=A5@ ] gy .
PO TP A Ve e SR T—4

where ¢ is an arbitrary bound variable and # and « are an arbitrary term
and an arbitrary free variable of the same type as ¢, respectively, with the
restriction that « does not appear in the lower sequences.

1.0.7. Proof-figure

We use the proof-figure in tree form whose uppermost sequences are
beginning sequences defined in 1.0.5. We use the terminology ‘ provable’ as
usual.

1.1. System SJ

This system is obtained by adding the inferences represented by the
following schemata to the above fundamental system:

1) a.c. (axiom of choice):

I'— 4, Y393 (e, ¢)

= 4,390, 2(9))
2) ID:
I'— 4, N2 3pF(p)
I'— 4, 3pA D Fe)) °
where % is a universal prenex formula;
3 I7:

I' =4, 7 Yol (p)
I'— 4,39 7 W) ’

where % is a universal prenex formula;
4) s-ind.? (strong induction):

Iry—4,%0,5 §a,1{a b)), I',— 4, Fa',b)
1» Fz_)Aly Az’ %(sy I) ’

1) Our form of the inference of mathematical induction is equivalent to the usual
one. We take the present form according to Kreisel [4] And see also an appendix.
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where a is a free variable of type 0 and b is a series of free variables,
respectively, and ¢ and b do not occur in the lower sequence, s is an arbitrary
term of type 0 and t is a series of arbitrary terms of appropriate types. t is
a series of arbitrary terms of appropriate types, containing neither @ nor b.
1.2. System WJ
This system is obtained by adding the inferences named ‘w-ind. (weak

induction)’ to the fundamental system. A w-ind. is an s-ind. containing no
quantifiers. ’

1.3. System QF

This system is obtained from WJ by the following restriction:

The formulas of QF are all quantifier-free.

The consistency of QF can be reduced to that of the calculation procedure
of primitive recursive functionals in Godel’s sense [2].

§2. Godel’s interpretation

2.1. Godel’s interpretation of formula (cf. Godel [Z].
To each formula of S/ (or of WJ) we associate, as follows, a formula of
the form

@, - ApRVPy - VO, AP s Py P15 P0) s, =0

or, for short, AYyAQ, v), where A(,v) is quantifier-free. We call it Godel’s
interpretation of the original formula 2 and write it as A°.

1) If A is quantifier-free, then ¢ is .

2) If NG is FVyA(, v) and A, y) is quantifier-free, then (7 is JVx
7 AR, 3<0).

3) If A is FxVyAle,v), BY is F'Vy'BE’,y"), and A, y) and B{E’,y’) are
quantifier-free, then (A AB), AV B)Y and ADB)¢ are

eI Vovy (A, M A B/, 9,
T VYV ((x =0 A A, 1) V (x # 0 A BE', 97))
and
FuFVevy' (A, 3<x Y 2) D B, v),

respectively.

4) If Fa)f is JVyF (e, 9) and F(a,t,v) is quantifier-free, then (VoF(p))¢
and (JeB(p))F are

BVEVYF(p,3<p,9) and JohVyF(p,t,Y),
respectively.
Especially, formulas expressed as %V 8B in 3) should #not be quantifier-free.

THEOREM 1. Godel’s interpretation of a formula is S-equivalent to the
original formula, i.e. for each formula D the formula ‘
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DE~D
is provable in SJ.

The proof of this theorem will be carried out by the mathematical induc-
tion on the number of the logical symbols in D.

0) The case where ® is quantifier-free. The theorem holds evidently.
1) The case where the outermost logical symbol of ® is . Let ® be
ADB and let A% and B be JVyA(e, vy) and F'Vy’ BE',y'), respectively. We
can see that (A DW)® is S/-equivalent to N DBWE by the S/-equivalence of the
following formulas, which is almost clear from the fact that A(,Y) and
B({’,y’) are quantifier-free:
VAR, 9) D I'VY BG,Y),
V(Y9 A(x, ) D I'Vy' B&', v')),
Ve’ (Vy A, 9) DVY BE, v)),
VeI Vy (V9 A, ) D B&', v)),
V3 Vy'3y(A, 9) D BE, v)),
VeI IoVy (AR, o<y’ ) D BE', v)),
FsFuVeVy (A, uz, vy’ ) D BGLE, ).

By the induction hypothesis, A DOWB¢ is SJ-equivalent to A DY, so is the
formula (A D B)°.

2) The case where the outermost logical symbol of ® is 7. The treat-
ment is similar to 1).

3) The other cases. The treatments are almost clear.
2.2. Godel’s interpretation of sequence
Godel’s interpretation of a sequence

QIUQIz:"'x?Im—_)SBUSBzy"';’SBn (m,ng())
is defined to be the sequence

9’[?; SH2G" Tty QI%-)%%", ’SBg, e :%g'

§3. Main theorems

DEFINITION. Let

aglvt)lAl(gl’ Y)1): ] HngDmA(gmf t)m)—’ 9; auVDB(u; ”); !

be Godel’s interpretation of an arbitrary sequence @ of SJ, and ® and 4 be
the series of some quantifier-free formulas (the formula JuVoB(u, v) may also
be quantifier-free). Let 8,---,8, and t be m-+1 finite series of arbitrary
terms, respectively, of appropriate types which do not contain any free vari-
able except ones occurring in &,1{,, ---, {» and g be the series of free variables,
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respectively, of appropriate types, not contained in & and { be the series of
all free variables belonging to any one of {,, ---, f». Then we call any sequence
of the form

€] AFu8:<H 60D, -+, An(im 8 <1, 82)— 6, B(<TD, 9), 4

a quantifier-free reduction of &,

THEOREM 2. If @ sequence © is SJ-provable, then theve exists at least one
QF-provable quantifier-free veduction of ©.

COROLLARY. Let the quantifier-free reduction in Theorem 2 be of the form
(1). If © does not contain free variables, then 8, ---,8, and t are the series of
prfs, respectively.

PROOF OF THEOREM 2. Mathematical induction on the number of infer-
ences in the proof-figure of &>.

1. When & is a beginning sequence, the quantifier-free reduction of & is
© itself, and it is QF-provable, i.e. it is also a beginning sequence of QF.

2. Induction steps:

Case 1: & is the lower sequence of a contraction:

D,PD,I'—4
D,I—4

Let ©F be FVyD(z,v) and | and Y) be series of free variables, respectively.
By the induction hypothesis, a quantifier-free reduction of the upper sequence,
2 D(, 8. <1, 92) DT, 8:<1, §7), I'* — 4%,
is QF-provable. We can show that there is a series of terms t such that the
sequences

€)) 7 D, 8, <1, 92)— D(§, t {1, 5 ) ~D(1, 8:<1, ),

and

@ D(1, 8<% 92)— D, e <1 92) ~ D(, 8.<1, 52)

are both QF-provable. From (2), (3) and (4) we can show that the sequence
D, e, 90), I'* — 4%,

which is a quantifier-free reduction of &, is QF-provable.
Case 2: & is the lower sequence of a cut:

I‘l_)AIJ@ @,I‘z““)AZ
Ir,r,—4,4, )

By the induction hypothesis, quantifier-free reductions of the upper
sequences,

2) It is sufficient to prove the theorem for the cases in which the terms of &, .-,
2, and t may contain some free variables not occurring in &.
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®) I¥—4f, DE <, 8)
and
© D(, 8,<1, ), I's — 45,

are QF-provable. As 8, (%)) and {, and &,({j,%’) and g are of the same types,
respectively, we can substitute 8<h) for | and &¢<¥§, %> for g. The resulting
sequences

GP) I'F*— 43, D(8,<67,8,{8,{9>,97)
and
Ch) D(3,<h ), 8,8, <4, §D), I'F* — 45F*

are QF-provable. By (5’) and (6’), we obtain a quantifier-free reduction of &,
which is QF-provable.

Case 3: & is the lower sequence of an VYo, left:

D, I'—4
Vois(e), I'—4

Let (@) be FVyF(a,r, h), where a is a free variable of the same type
as . By the induction hypothesis a quantifier-free reduction of the upper
sequence,

) F(@,1,8KF00), ' — 4%,
is QF-provable. Then the sequence
an F(t,6{t>,88<27, h7), ¥ — 4%%,

is QF-provable, where g is an arbitrary series of free variables not contained
in (7), of appropriate types. From (7’) we have a QF-provabble quantifier-free
reduction of &,

F(Aulvt{g, H, 6 Audvt{g, §7, 8{g{ Auioe{g, 52, §)), [ — 4%%
Case 4: © is the lower sequence of an V¢, right:

_I'—=4,Fa)
I'— 4,Ye3(p) *
By the induction hypothesis a quantifier-free reduction of the upper
sequence,
®) I'*— 4, Fa, 3(a)$>, 9),
is QF-provable. Write Aup(&@)uj)) as 8, (if 8 expresses the series of terms
S1, -+ » Sp, then we use the abbreviated notation Augp(2(¢)(u)) for the series of
terms Aud@(s,(@)u)), .-+, Aude(si{e)Xuy)). Then the quantifier-free reduction of
G,
I'*— 4, F(a, 8<% a>,98),
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is QF-provable.

Case 5: & is the lower sequence of an a.c., an 3D or an 37/.

As Godel’s interpretations of the upper sequences and of the lower
sequences in these cases have just the same forms, respectively, we can take
the same terms with those assumed for the upper sequences.

Case 6: & is the lower sequence of an s-ind.:

I'—4, 80,56 ¥a, 1K), I— 4, Fa',b)
r,Ir,—4,4,%(,t) ’

Let §(e, 5)¢ be JVyF(a, b, 1, 9). By the induction hypothesis, quantifier-free
reductions of the upper sequences

© I — 4F, F(0,5,8,(6)(H>, 0
and
(10) F(a’ If<a, b>! T’ ‘32(“’ E)<T; f)l: g>)x Fék - Aéks F(a/’ B: g3(0: B)(Y: f)1>y g)

are QF-provable. We write the series of terms
pLAup(E,() ), Axguon(@s(x, 1< <% up, v, 1), w3)]

as {,,
Axuy(ted 2, 1, 9, h:2)
as 1,
Axup(rd x, 1))
as ty,
Axuptot(&,(x, W< x, tdx, 1), b, 0 ), 10, 9))
as &,, and

Axuy(8,{x, 11,9, 5, 9))

as &. Substitute 1,{a,1<a, 6),g)> for f of the sequence in Then we see
from (9) and that the sequences

(1) ¥ — 4%, F(0,5,1,0,5,¢), )
and
(12) F(a, t,{a, b, 0>, 1:{a, 1:4a, b, 8, 3o<a, b, ), 3<a, b, ¢), I'F*

- A;k*’ F(a/} B:’;O<a,7 b; g>’ g)

are QF-provable. Taking and as the upper sequences of a w-ind.,
the sequence

TF, T — 4%, 4%, F(s,1,15(s, 1,85, 8)

is QF-provable, from which we have a quantifier-free reduction of &,
¥ - 48y, F(s, 4, 1<, 1, 5,50, 8)

which is QF-provable.
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The other cases are treated similarly.

Thus is proved.

THEOREM 3. SJ is consistent.

Proor. If the empty sequence — were S/-provable, then it should be
QF-provable by Theorem 2, contradicting the consistency of QF (cf. 1.3.).

THEOREM 4. If one of the quantifier-free reductions of & is QF-provable,
then &9 is W]-provable.

ProoF. Note that if a quantifier-free reduction of & is QF-provable,
then it is W/-provable and also that {;, .-, {,. and g in Theorem 2 are different
from those free variables which appear in &. Then the proof goes quite
easily.

THEOREM 5. If &¢ is W]-provable, then & is S/-provable.

This is obvious by [Theorem 1.

THEOREM 6. [f &¢ is W]-provable, then there exists a quantifier-free rveduc-
tion of © which is QF-provable.

This theorem is obvious by Theorems 5 and 2, but it is also proved
directly using the following Theorem:

Any proof-figure of W] can be transformed to a normal form in which any
cut infevence has a quantifier-free formula as the cut-formula.

Now, by this theorem, a proof-figure of &¢ can be transformed to a normal
form, in which all inferences of propositional calculus used concern solely
with the quantifier-free formulas. By these arguments, the proof of Theorem
6 can be carried out by the mathematical induction on the number of infer-
ences occurring in the normal proof-figure of &°€.

University of Tokyo

Appendix

PROOF of the proposition that a w-ind. is equivalent in QF to an ordinary

induction,
I'—4,80) &), I',— 4, &a’)
Fl:rz’—)dlydz’@(s) ’

where the free variable a, of type 0, does not occur in the lower sequence
and s is an arbitrary term of type 0. The same holds in W/ (and also in SJ).

It is clear that an ordinary induction is a special w-ind. So we will prove
the converse. Consider a w-ind. of the form

I-‘l_)Al) %(O’ B): F(a) r<a; B>), 1—‘2—->A2’ %(a/’ B)
Flyrz—*dp Azy %(3’ 1) ’

and assume that the upper sequences
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¢)) r,—4,,%Q0,5)
and
¢)) ¥, 1{a,53), I',— 4,, (@', b)

are QF-provable. Write the term

2y(plt, 2xdurds — x, ud{s~y>)

as p, where s—y means s—y if s=y and 0 if s <=y, informally (cf. [3]). Then
the sequences obtained from (1) and (2) by substituting p{0) and p{a’) for b,
respectively, i.e.,

€ I'y— 4, 30, 5<0)
and
(4) %(ax r( a, p< (Z’>>), Fz - Azx %(d’, p< a,>)

are QF-provable. By (4) and the QF-provable sequence
a' < s—pay=1{a,pa’>)

we see that the sequence

() a' =5, F@,9{ar), I';— 4, Fa', p{a’))

is QF-provable. By (3) and (5) we have that the sequences
) I'i—4,0=s2%0,p<03)

and

™ a=sDa,pKay), I'y,— 4y, a’ = s DFa',p{a’))

are QF-provable, respectively. Taking the sequences (6) and (7) as the upper
sequences, we have that, by an ordinary induction, the sequence

® I',I',—4,,4, s<sDF(s, p{s))
is QF-provable. Then by (8) and the QF-provable sequence
—p(s)=t,

the lower sequence of the w-ind. above,

1"1, Fz"’An Az; %(sx O
is QF-provable.
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