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We are going to supplement the preceding paper of Tsukamoto (referred
as [T]) in the following two points. In the first place, he has considered ex-
clusively the anti-hermitian forms over a quaternion division algebra. For
applications, however, it is equally necessary to consider the case where the
guaternion algebra splits over 2. This case will be treated in N°1 of this
paper. In the second place, if G is the group of all automorphisms of an
anti-hermitian space V over D (division), it is known that V is anisotropic, if
and only if G (viewed as a linear algebraic group over %) has no ‘unipotent’
element, and in particular in the case of local fields, if and only if G (viewed
as a topological group with respect to the natural topology) is compact (cf.
[T, Theorem 7]). We shall show in N°2-4 that in the p-adic case (Case II
in [T all the groups G corresponding to the anisotropic cases (listed in [T,
Theorem 3]) come from certain division algebras over k. More precisely, it
will be shown, by virtue of the well-known isomorphisms between classical
groups, that such a group G is always isogeneous to a multiplicative group
KD consisting of the elements of reduced norm 1 in a certain division algebra
® over k. The corresponding phenomena for other classical groups are well-
known or easily reduced to the known case. Throughout the paper, the nota-
tion and the terminology in [T] will be used freely.

1. In this paragraph, we assume that ® is a splitting quaternion algebra

over k and fix once for all an isomorphism i: ®D— M,(k). It is clear that if

(&)= (g; f.) , we have

W i&=(_& ) =rior, 1= Tp)-

Let ¢;; (5,7 =1,2) denote the matrix units in ®. Suppose that an z-dimensional
vector space 7V over ® (i.e. a D-module with a basis consisting of z elements)
is given. If we put

V/ - V‘Sll ’ V” - V€22 ’

it is clear that V’, V" are 2un-dimensional vzctor subspaces of V over £ such
that
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)] V=V'+V” (direct sum)

and that the mapping ¢: x’ €V’ —x” =x'e;, V" is a linear isomorphism over
k from V7’ onto V”. Conversely, let V be a 4n-dimensional vector space over
k, V', V" 2n-dimensional vector subspaces of V" over k£ such that (2) holds and
let ¢ be a linear isomorphism over k& from ¥’ onto V”. Then, defining the
(right) operations of ® on V by

xen=x", xe, = @(x’),
X€g1 = ¢‘1(x”) s Xepp=2x"

for x=x’+x” with x’ €V’, x” V", one can verify immediately that ¥ be-
comes an zn-dimensional vector space over ®. If (x/, -, x,,") is a basis of V7
over &, (x,, -+, x,) With x;=x,;_,/+@(x,;") is a basis of V over ® and vice versa..
A linear transformation p of V over % is ®-linear, if and only if o leaves the
decomposition (2) invariant and, denoting by o/, o” the restrictions of p on
V', V", respectively, we have p”c@p=g.p’. If X=(£;;) € M,(D) is the matrix.
corresponding to a linear transformation o of V over ® in the basis (xy, -+, %,),
then the matrix corresponding to p’ in the basis (x,/, -+, %,,") is given by
(X)=(@(¢,;,), which is a 2%X2x matrix obtained from X by replacing each
element &;; by i(&;;). By definition, the reduced norm (from M,(D) to &) NX)
of Xe M,(D) is equal to det(i(X)).

Now the definitions of an anti-hermitian form and the associated sesqui-
linear form given in [T, §17 are valid in our case also. Let A be an anti-
hermitian form on V and @ the associated anti-hermitian sesquilinear form.
We can write

iCE () = (Q(x) Q”(x)) ’

R —Qx)
3

. Bl(x’ y) 7%"8”(% y)
0=\ 1 :
- B'®% ) By(x, ¥)

Then it can easily be verified that @, Q’, Q” are quadratic forms on ¥V over
k, that B,—B,, B’, B"” are symmetric bilinear forms on VXV associated with.
Q, @', Q”, respectively, and that they satisfy the following relations

QMN=Q ("), Q=Q"x"),

@ Q'(x'e) = —Q'(x"),

Q(x) = —'%B/(x/, x”€21> K}

By(x,9) = —By(y, x) = —f%*B’(y’, x"€)
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for any x=x'+x", y=y'+y” with x/,v' €V, x”,y" «V”. Thus H is uniquely
determined by any one of @, @/, Q7. Conversely, suppose that a quadratic
form @’ on V’ over k is given. Then, defining @, Q’, @7, B,, B, by (4) and
H, ® by (3), one can verify immediately that /7 becomes an anti-hermitian form
on V over © with the associated sesquilinear form ®. Thus there exists a
one-to-one correspondence between the anti-hermitian forms A on V over ®
and the quadratic forms @’ on V’ over k. If we denote again by H, @’ the

matrices (D(x;, x;)) € M,(D), (-%—B’(xi’, xj’)) € M, (k) corresponding to H, @',
respectively, we have from (3), (4)

®) Q' =(—J (D(x;, x)) = —(JR 1) - i(H)V .

It follows also that a linear transformation p of ¥ over %k is an automorphism:
of the anti-hermitian space V over ®, if and only if it satisfies the following
conditions. Namely, p leaves the decomposition (2) invariant and, denoting by
o', p” the restrictions of p on V7, V”, respectively, p’ is an orthogonal trans-
formation of ¥’/ with respect to Q" and p” @ =¢-p’. Thus the group G (resp.
GY) of all automorphisms (resp. automorphisms of reduced novm 1) of the anti-

hevmitian space V (with H) is isomorphic to the orthogonal group (resp. the special
orthogonal group) of the corresponding quadratic space V' (with Q).

2. Now we return to the case where ® is a division algebra and restrict our-
selves to Case II. Our purpose here is to show that the group G =G, of the
anisotropic space of dimension #—=1,2,3 in [T, Theorem 37 is isogeneous to-
fK© with a suitable division algebra §.

First it is trivial that for V'=1V{(c) (c #»1) we have

(6) G = kVc)V.
Before we enter the considerations on G,, G,;, we make some preliminary

observations. Let (1, ¢, ¢,, €,6,) be a basis of ® over k£ such that ¢?2=c¢,, &*=c
with ¢, ¢, € k¥ and ¢,6, = —e,6,. Put

K. =k(NV¢,), K=k~c, Ve, ).
Then, identifying K, with the quadratic subfield k(¢;) in D, we may write
D=K,+eK,. This expression gives the following representation ; of ® into:
My(K,):

. EvEN e, clEaFEN )

7 (&)= (CoTV L CeleaT eV (1
™ © <‘52_“53\/C1 50“51\/01 )
for £ =&+ +ebte66, €D with &, =k The image (D) is formed of all
the matrices Y € M,(X,) such that

1) 1, denotes the identity matrix of degree .
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0 Cz e O 62( “1__‘
G o)¥QG o) =7
i.e. the matrices Y commuting with the following semilinear transformation

of Klzz{y:(:;;)lﬁlxﬂzeKl}:

= §)7-
Now let K’ be any field containing K, and let ®X denote the algebra over
K’ obtained from ® by the scalar extension K’/k. Then ©% is a splitting
quaternion algebra over K’ and the natural extension of i gives an isomor-
phism D% — M,(K’). Call further GiX¥ the group formed of all X & M, (D¥)
such that ‘XHX=H, N(X)=1. Then, from what we have stated in N°1,
the restriction on GAX of the isomorphism i7:

M(DF) 2 X= (i)~ i(X) = (&) € Meu(K')
gives the following isomorphism :
® G¥ = 05K, Q),
@’ being given by (5). In view of the fact that OF,(K’,Q’) is an irreducible
algebraic group, G;X may be regarded as the algebraic group obtained from
G} by the scalar extension K'/k.
Moreover, it is known that, for X = G,, the condition NMX)=1 is auto-

matically satisfied, so that (on considering only A-rational points) we have
G,=G; >.

3. The case dimVV'=3, 6(V)=1. We choose the basis of ® in such a way
that the condition c,c,# 1 is satisfied, in addition to the usual conditions ¢, »¢ 1,
c2 & N(B(V ¢, Y¥). (This is possible, since we are in Case II.) Then we may
assume that V=7V(c, ¢, cicy), i.€e. that V' has an orthogonal basis (x, xs, %3)
such that

© Hx)=c¢,, Hx)=¢,, Hx)=7=c¢1,F67r+€87Ts
with  r2=cir 2 4cori—cicars® =ciCs -
Then we have from (5), (7)
0 e
Ve, 0
. —1 0
—Q'= 0 ¢ )
—re Ve, river
7’1’\/81. Cz(rz‘i’rs\/a

2) See [3, p. 197, Lemme 17.
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which can also be written in the form —Q’'='PQ,P in K=k c¢,,V¢,) with

0 1
10
0 —1
%= -1 0 ’
0 1
10
/1 0
0 24/¢;
1 Ve,
P= 1 —Ve,

—rotrsVe, (Ve )Ve

1
72_7'3\/01 s/

Hence from (8) we get an isomorphism
(10) Gi* = O{(K, Qv),
given by
Gi¥ =2 X—Y=P(X)P'=OiK,Q,) .

On the other hand, by a canonical isomorphism between classical groups
(4], [6]), we have the isomorphism
an 0i (K, Q)= L/L,,
where

L={} )| 1€ K* UcsGL(K), det U=},

Ly=1{@221) |1 K*} = K*,
the mapping from L onto Of (K, Q,) being given by

Lo, U)—Y=2"U® < 0{(K,Qy,

where U® denotes the representation of U by the bivectors, indexed as
(Esy Eauy E1sy Euu, Evus Eg)- [N,/]:) is clearly a group isogeneous to the special linear
group SL,(K). Combining the two isomorphisms [10), we get an isomor-
phism f from LN/Z0 onto G;¥ given by
12) SR, UY=i*Q P UPP).

Now we have to determine the subgroup of E/Ijo corresponding to Gy
itself under the isomorphism Call o,  the Galois automorphisms of K/k
such that Ve, = —Ve,, Ve, "=V, Ve " =vVe,, Ve, "= —+vc,. Then, for any
element & in ®%, we have
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ie=(] &ier(] &), =iy

Therefore, the subgroup of O¥(K, Q,) corresponding to G, under the isomor-
phism is formed of all Y O}(X, Q,) such that

Ca Yaca—l = Cz'yvrc'r—‘1 =Y ’

where
0 ¢
10
0 ¢
C,=P 10 P’
0 ¢
10
0 —cy/2V ¢, 3
2v¢, 0
Ve, 0
- 0 —oe, g
0 Ve (ri+aes)
—co/ Ve (ritvVes) 0
10
01
0 1
C.=PP "= 10
0 —7: Vel
(-7'2‘11‘7’3\/2'7)‘1 0

Moreover, according to the general principle yielding the isomorphism [11).
the semilinear transformations y—C»°, y—Cxy" of K¢ should also come from
certain semilinear transformations of K% In fact, we can write

24 ¢, 1
C,=- ¥ po, Cc=—" D@,
ri+ve, ro—rsVer
where
0 ey
Dd - 2\/5 )
1 0
0 Vo)
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0 _72_{‘73\/;
1 0
De= 0o -1
re—rsvVe, 0

Thus we see that the semilinear transformations x— D,x’, x— D.x" of K* give
rise, up to scalar factors, to the above semilinear transformations of K¢ We
also get the relations

SQ, UY =%, D,U’Ds™),

S, Uy =f%, DU D:™)

13)

for all 1, U) = L.

Now, if one considers the subgroup of GL(K) formed of all the elements
U in GL(K) commuting with the semilinear transformations x— Dsx’, x— D",
i.e. such that D, U’D, = D.U*D.* = U, it turns out that this group consists
of the matrices of the following form

Co _(Tz“Ts\/E)(lr _‘]ﬁ'\”/&{za 2—\\//%@'3”
. Ve, ri—ves =
& < ?\/Cl < 2(7’2 7’3\/01)
1D e 5 I \/02 (7’2‘“7’3\/01 )
’ ’ ’ Ve (rVes)
{s (72—73\/67)C2T ://2\1 <71+\/62 )Cl Codr

This is nothing other than a representation in K of an element {={,4+®,{,
+w,{,+w:{; in an algebra ® of dimension 16 over % defined as follows :

D= K+w, K+w,K+w, K,
(15)
[ ®,* = — 2+7’3\/E, OIES —“]2‘"(7'1‘}‘\/2';) s
_~r3\/2‘?) ’

W, = W,® =w
W) = W1W, \/ (7'1'1“\/02) (72
e, =7", @, W, =7’ for K.

with 1 Ve, (ra—rsVer)

Therefore we have ®% = M(K), and, if we put
(16) L={Q,0)|2€k*, =D*, #() =2},

# denoting the reduced norm from D to k, it is easy to see that L may be
regarded as the algebraic group obtained from L by the scalar extension K/&.
As the rational homomorphism- f (defined over K) commutes with the Galois
automorphisms of K/k operating on GiX and on L, by (13), fis in fact defined
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over k, and thus maps the set of k-rational points of L/L, onto G, Since

fozK*, it follows from the Theorem 90 of Hilbert that any k-rational coset

modulo L, contains a k-rational representative. Therefore, putting
LOZ{(Z2,X)lek*}gk*:

we finally conclude that f induces the isomorphism

an Gs=L/L,,

which is a rational isomorphism defined over 2 The fact that D is a division
algebra follows either directly or from the fact that ®* contains no unipotent
element. L/L, is clearly isogeneous to D1 — {Ce@]ﬁ({):l}.

REMARK. In the case dimV' =3, 6(V)~ 1, we can choose the basis of D
and V in such a way that

&
18 H———( 0 —1 )
1 0

Then, proceeding quite similarly as above, we conclude that under the isomor-
phism (12) we have
19) Gs=L/L,,
where
L={Q, U)|2€k*, UcsGL(K,), 'UDU=2D, det U= 22}

1
—Cy
. (,'2
with D= 0 7: y
Cy
_ G2
N \/Cl 0

Ly={%211)| A= k*}.

4. The case dimV =2, 8(V)» 1. Taking suitable basis of ® and V, we may
assume, in the notation of N°3, that 6(V)~c¢,, V="V(c,, cic,) and

(20) a=(§ ).

Hence G, can be identified with the subgroup of G; for V(c,, ¢, ¢,¢2) consisting
of those elements X which leave x, fixed, i.e. of the form

1 0 0
(3"
0



Remarks to the preceding paper of Tsukamoto 409

Therefore, under the isomorphism [(I7), we have f(1,{) =G, for X, eL, if
and only if the matrix (14) corresponding to ¢ is of the form
aA) B .
u=(, 0. ),  detU,=detU,=2,
i.e. if and only if
=¢ 4w/, €D =Ktw K,
C01+T+(72“73\/E)C11+f =41.

Here it is clear that ®, is a quaternion division algebra over K, and that,
denoting by #, the reduced norm from ®, to K,, we have

n({)= C01+r+(7’2—73\/CT)C11“ .
Thus we obtain the isomorphism
G,= L/k*,
L={ne®*|n)<k*}.
L/k* is clearly isogeneous to D,V = {n D, |n,(n)=1}.

2D

REMARK. In the case dim V=2, 8(V)~1, we may assume that

0 —1
2 i=(9 ).
Then it follows either directly or by a similar argument as above starting
from the case dim¥V =3, 8(V)* 1, that we have

Gz = L/LO ’
@23) L={¢ Y)I£eD* YeGLKk), n(§)=detY},
Lo={Q& 1) | A€ k*}.

L/L, is clearly isogeneous to DX SL,(k).
University of Tokyo
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