Some remarks to the preceding paper of Tsukamoto

By Ichiro SATAKE

(Received June 24 1961)

We are going to supplement the preceding paper of Tsukamoto (referred as [T]) in the following two points. In the first place, he has considered exclusively the anti-hermitian forms over a quaternion division algebra. applications, however, it is equally necessary to consider the case where the quaternion algebra splits over k. This case will be treated in $N^0 1$ of this In the second place, if G is the group of all automorphisms of an anti-hermitian space V over \mathfrak{D} (division), it is known that V is anisotropic, if and only if G (viewed as a linear algebraic group over k) has no 'unipotent' element, and in particular in the case of local fields, if and only if G (viewed as a topological group with respect to the natural topology) is compact (cf. [T, Theorem 7]). We shall show in N^0 2-4 that in the p-adic case (Case II in $\lceil T \rceil$) all the groups G corresponding to the anisotropic cases (listed in $\lceil T \rceil$) Theorem 3]) come from certain division algebras over k. More precisely, it will be shown, by virtue of the well-known isomorphisms between classical groups, that such a group G is always isogeneous to a multiplicative group $\Re^{(1)}$ consisting of the elements of reduced norm 1 in a certain division algebra \Re over k. The corresponding phenomena for other classical groups are wellknown or easily reduced to the known case. Throughout the paper, the notation and the terminology in [T] will be used freely.

1. In this paragraph, we assume that $\mathfrak D$ is a splitting quaternion algebra over k and fix once for all an isomorphism $i: \mathfrak D \to M_2(k)$. It is clear that if $i(\xi) = \begin{pmatrix} \xi_{11} & \xi_{12} \\ \xi_{21} & \xi_{22} \end{pmatrix}$, we have

(1)
$$i(\bar{\xi}) = \begin{pmatrix} \xi_{22} & -\xi_{12} \\ -\xi_{21} & \xi_{11} \end{pmatrix} = J^t i(\xi) J^{-1}, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Let ε_{ij} (i, j = 1, 2) denote the matrix units in \mathfrak{D} . Suppose that an n-dimensional vector space V over \mathfrak{D} (i. e. a \mathfrak{D} -module with a basis consisting of n elements) is given. If we put

$$V' = V arepsilon_{11}$$
 , $V'' = V arepsilon_{22}$,

it is clear that V', V'' are 2n-dimensional vector subspaces of V over k such that

(2)
$$V = V' + V''$$
 (direct sum)

and that the mapping $\varphi: x' \in V' \to x'' = x' \varepsilon_{12} \in V''$ is a linear isomorphism over k from V' onto V''. Conversely, let V be a 4n-dimensional vector space over k, V', V'' 2n-dimensional vector subspaces of V over k such that (2) holds and let φ be a linear isomorphism over k from V' onto V''. Then, defining the (right) operations of $\mathfrak D$ on V by

$$xarepsilon_{11}=x'$$
 , $xarepsilon_{12}=arphi(x')$, $xarepsilon_{21}=\dot{arphi}^{-1}(x'')$, $xarepsilon_{22}=x''$

for x=x'+x'' with $x'\in V'$, $x''\in V''$, one can verify immediately that V becomes an n-dimensional vector space over \mathfrak{D} . If (x_1',\cdots,x_{2n}') is a basis of V' over k, (x_1,\cdots,x_n) with $x_i=x_{2i-1}'+\varphi(x_{2i}')$ is a basis of V over \mathfrak{D} and vice versa. A linear transformation ρ of V over k is \mathfrak{D} -linear, if and only if ρ leaves the decomposition (2) invariant and, denoting by ρ' , ρ'' the restrictions of ρ on V', V'', respectively, we have $\rho'' \circ \varphi = \varphi \circ \rho'$. If $X=(\xi_{ij}) \in M_n(\mathfrak{D})$ is the matrix corresponding to a linear transformation ρ of V over \mathfrak{D} in the basis (x_1,\cdots,x_n) , then the matrix corresponding to ρ' in the basis (x_1',\cdots,x_{2n}') is given by $i(X)=(i(\xi_{ij}))$, which is a $2n\times 2n$ matrix obtained from X by replacing each element ξ_{ij} by $i(\xi_{ij})$. By definition, the reduced norm (from $M_n(\mathfrak{D})$ to k) N(X) of $X\in M_n(\mathfrak{D})$ is equal to $\det(i(X))$.

Now the definitions of an anti-hermitian form and the associated sesquilinear form given in $[T, \S 1]$ are valid in our case also. Let H be an anti-hermitian form on V and Φ the associated anti-hermitian sesquilinear form. We can write

(3)
$$i(H(x)) = \begin{pmatrix} Q(x) & Q''(x) \\ Q'(x) & -Q(x) \end{pmatrix},$$

$$i(\Phi(x,y)) = \begin{pmatrix} B_1(x,y) & \frac{1}{2}B''(x,y) \\ \frac{1}{2}B'(x,y) & B_2(x,y) \end{pmatrix}.$$

Then it can easily be verified that Q, Q', Q'' are quadratic forms on V over k, that B_1-B_2 , B', B'' are symmetric bilinear forms on $V\times V$ associated with Q, Q', Q'', respectively, and that they satisfy the following relations

$$Q'(x) = Q'(x'), Q''(x) = Q''(x''),$$

$$Q''(x'\varepsilon_{12}) = -Q'(x'),$$

$$Q(x) = -\frac{1}{2}B'(x', x''\varepsilon_{21}),$$

$$B_1(x, y) = -B_2(y, x) = -\frac{1}{2}B'(y', x''\varepsilon_{21})$$

for any x=x'+x'', y=y'+y'' with x', $y'\in V'$, x'', $y''\in V''$. Thus H is uniquely determined by any one of Q, Q', Q''. Conversely, suppose that a quadratic form Q' on V' over k is given. Then, defining Q, Q', Q'', B_1 , B_2 by (4) and H, Φ by (3), one can verify immediately that H becomes an anti-hermitian form on V over $\mathfrak D$ with the associated sesquilinear form Φ . Thus there exists a one-to-one correspondence between the anti-hermitian forms H on V over $\mathfrak D$ and the quadratic forms Q' on V' over k. If we denote again by H, Q' the matrices $(\Phi(x_i,x_j))\in M_n(\mathfrak D)$, $\left(\frac{1}{2}B'(x_i',x_j')\right)\in M_{2n}(k)$ corresponding to H, Q', respectively, we have from (3), (4)

(5)
$$Q' = (-J \ i(\Phi(x_i, x_j))) = -(J \otimes 1_n) \cdot i(H)^{1}.$$

It follows also that a linear transformation ρ of V over k is an automorphism of the anti-hermitian space V over \mathfrak{D} , if and only if it satisfies the following conditions. Namely, ρ leaves the decomposition (2) invariant and, denoting by ρ' , ρ'' the restrictions of ρ on V', V'', respectively, ρ' is an orthogonal transformation of V' with respect to Q' and $\rho'' \circ \varphi = \varphi \circ \rho'$. Thus the group G (resp. G^+) of all automorphisms (resp. automorphisms of reduced norm 1) of the anti-hermitian space V (with H) is isomorphic to the orthogonal group (resp. the special orthogonal group) of the corresponding quadratic space V' (with Q').

2. Now we return to the case where \mathfrak{D} is a division algebra and restrict ourselves to Case II. Our purpose here is to show that the group $G = G_n$ of the anisotropic space of dimension n = 1, 2, 3 in [T, Theorem 3] is isogeneous to $\Re^{(1)}$ with a suitable division algebra \Re .

First it is trivial that for V = V(c) $(c \nsim 1)$ we have

(6)
$$G_1 \cong k(\sqrt{c})^{(1)}.$$

Before we enter the considerations on G_2 , G_3 , we make some preliminary observations. Let $(1, \varepsilon_1, \varepsilon_2, \varepsilon_1 \varepsilon_2)$ be a basis of \mathfrak{D} over k such that $\varepsilon_1^2 = c_1$, $\varepsilon_2^2 = c_2$ with $c_1, c_2 \in k^*$ and $\varepsilon_1 \varepsilon_2 = -\varepsilon_2 \varepsilon_1$. Put

$$K_1 = k(\sqrt{c_1}), \quad K = k(\sqrt{c_1}, \sqrt{c_2}).$$

Then, identifying K_1 with the quadratic subfield $k(\varepsilon_1)$ in \mathfrak{D} , we may write $\mathfrak{D} = K_1 + \varepsilon_2 K_1$. This expression gives the following representation i of \mathfrak{D} into $M_2(K_1)$:

(7)
$$i(\xi) = \begin{pmatrix} \xi_0 + \xi_1 \sqrt{c_1} & c_2(\xi_2 + \xi_3 \sqrt{c_1}) \\ \xi_2 - \xi_3 \sqrt{c_1} & \xi_0 - \xi_1 \sqrt{c_1} \end{pmatrix}$$

for $\xi = \xi_0 + \varepsilon_1 \xi_1 + \varepsilon_2 \xi_2 + \varepsilon_1 \varepsilon_2 \xi_3 \in \mathfrak{D}$ with $\xi_i \in k$. The image $i(\mathfrak{D})$ is formed of all the matrices $Y \in M_2(K_1)$ such that

¹⁾ 1_n denotes the identity matrix of degree n.

$$\begin{pmatrix} 0 & c_2 \\ 1 & 0 \end{pmatrix} ar{Y} \begin{pmatrix} 0 & c_2 \\ 1 & 0 \end{pmatrix}^{-1} = Y$$
 ,

i.e. the matrices Y commuting with the following semilinear transformation of $K_1^2 = \left\{ y = \left(\begin{array}{c} \eta_1 \\ \eta_2 \end{array} \right) \mid \eta_1, \eta_2 \in K_1 \right\}$:

$$y \rightarrow \begin{pmatrix} 0 & c_2 \\ 1 & 0 \end{pmatrix} \bar{y}$$
.

Now let K' be any field containing K_1 and let $\mathfrak{D}^{K'}$ denote the algebra over K' obtained from \mathfrak{D} by the scalar extension K'/k. Then $\mathfrak{D}^{K'}$ is a splitting quaternion algebra over K' and the natural extension of i gives an isomorphism $\mathfrak{D}^{K'} \to M_2(K')$. Call further $G_n^{+K'}$ the group formed of all $X \in M_n(\mathfrak{D}^{K'})$ such that ${}^t \overline{X} H X = H$, N(X) = 1. Then, from what we have stated in N^0 1, the restriction on $G_n^{+K'}$ of the isomorphism i:

$$M_n(\mathfrak{D}^{K'}) \ni X = (\xi_{ij}) \rightarrow i(X) = (i(\xi_{ij})) \in M_{2n}(K')$$

gives the following isomorphism:

(8)
$$G_n^{+K'} \cong O_{2n}^+(K', Q')$$
,

Q' being given by (5). In view of the fact that $O_{2n}^+(K',Q')$ is an irreducible algebraic group, $G_n^{+K'}$ may be regarded as the algebraic group obtained from G_n^+ by the scalar extension K'/k.

Moreover, it is known that, for $X \in G_n$, the condition N(X) = 1 is automatically satisfied, so that (on considering only k-rational points) we have $G_n = G_n^{+2}$.

3. The case $\dim V=3$, $\delta(V)=1$. We choose the basis of $\mathfrak D$ in such a way that the condition $c_1c_2\not\sim 1$ is satisfied, in addition to the usual conditions $c_1\not\sim 1$, $c_2\notin N(k(\sqrt{c_1})^*)$. (This is possible, since we are in Case II.) Then we may assume that $V=V(c_1,c_2,c_1c_2)$, i.e. that V has an orthogonal basis (x_1,x_2,x_3) such that

(9)
$$H(x_1) = \varepsilon_1, \quad H(x_2) = \varepsilon_2, \quad H(x_3) = \gamma = \varepsilon_1 \gamma_1 + \varepsilon_2 \gamma_2 + \varepsilon_1 \varepsilon_2 \gamma_3$$
$$\text{with} \quad \gamma^2 = c_1 \gamma_1^2 + c_2 \gamma_2^2 - c_1 c_2 \gamma_3^2 = c_1 c_2.$$

Then we have from (5), (7)

²⁾ See [3, p. 197, Lemme 1].

which can also be written in the form $-Q' = {}^{t}PQ_{0}P$ in $K = k(\sqrt{c_1}, \sqrt{c_2})$ with

$$Q_0 = rac{1}{2} egin{pmatrix} 0 & 1 & & & & & \ 1 & 0 & & & & & \ & & 0 & -1 & & & \ & & -1 & 0 & & & \ & & & 0 & 1 \ & & & & 1 & 0 \ \end{pmatrix},$$

$$P = \begin{pmatrix} 1 & 0 & & & & & & & & & \\ 0 & 2\sqrt{c_1} & & & & & & & & & \\ & & 1 & \sqrt{c_2} & & & & & & & \\ & & 1 & -\sqrt{c_2} & & & & & & \\ & & & -\gamma_2 + \gamma_3\sqrt{c_1} & & (\gamma_1 + \sqrt{c_2})\sqrt{c_1} & & & & \\ & & & & & \frac{(-\gamma_1 + \sqrt{c_2})\sqrt{c_1}}{\gamma_2 - \gamma_3\sqrt{c_1}} \end{pmatrix}.$$
To (8) we get an isomorphism

Hence from (8) we get an isomorphism

(10)
$$G_3^{+K} \cong O_6^+(K, Q_0)$$
,

given by

$$G_3^{+K} \ni X \to Y = Pi(X)P^{-1} \in O_6^+(K, Q_0)$$
.

On the other hand, by a canonical isomorphism between classical groups ([4], [6]), we have the isomorphism

(11)
$$O_6^+(K, Q_0) \cong \widetilde{L}/\widetilde{L}_0$$
,

where

$$\begin{split} \widetilde{L} &= \{ (\lambda,\,U) \mid \lambda \in K^*, \ U \in GL_4(K), \ \det \, U = \lambda^2 \} \ , \\ \widetilde{L}_0 &= \{ (\lambda^2,\,\lambda 1_4) \mid \lambda \in K^* \} \cong K^* \ , \end{split}$$

the mapping from \widetilde{L} onto $O_6^+(K,Q_0)$ being given by

$$\widetilde{L}$$
 \ni $(\lambda,\,U)$ $ightarrow$ Y $=$ $\lambda^{-1}U^{(2)}$ \in $O_6^+(K,Q_0)$,

where $U^{(2)}$ denotes the representation of U by the bivectors, indexed as $(\xi_{12}, \xi_{34}, \xi_{13}, \xi_{24}, \xi_{14}, \xi_{23})$. $\widetilde{L}/\widetilde{L}_0$ is clearly a group isogeneous to the special linear group $SL_4(K)$. Combining the two isomorphisms (10), (11), we get an isomorphism f from $\widetilde{L}/\widetilde{L}_0$ onto G_3^{+K} given by

(12)
$$f(\lambda, U) = i^{-1}(\lambda^{-1}P^{-1}U^{(2)}P).$$

Now we have to determine the subgroup of $\widetilde{L}/\widetilde{L}_0$ corresponding to G_3 itself under the isomorphism (12). Call σ , τ the Galois automorphisms of K/ksuch that $\sqrt{\overline{c_1}}^{\sigma} = -\sqrt{\overline{c_1}}$, $\sqrt{\overline{c_2}}^{\sigma} = \sqrt{\overline{c_2}}$, $\sqrt{\overline{c_1}}^{\tau} = \sqrt{\overline{c_1}}$, $\sqrt{\overline{c_2}}^{\tau} = -\sqrt{\overline{c_2}}$. Then, for any element ξ in \mathfrak{D}^{K} , we have

$$i(\xi^{\sigma}) = \begin{pmatrix} 0 & c_2 \\ 1 & 0 \end{pmatrix} i(\xi)^{\sigma} \begin{pmatrix} 0 & c_2 \\ 1 & 0 \end{pmatrix}^{-1}, \quad i(\xi^{\tau}) = i(\xi)^{\tau}.$$

Therefore, the subgroup of $O_6^+(K,Q_0)$ corresponding to G_3 under the isomorphism (10) is formed of all $Y \in O_6^+(K,Q_0)$ such that

$$C_{\sigma}Y^{\sigma}C_{\sigma}^{-1} = C_{\tau}Y^{\tau}C_{\tau}^{-1} = Y$$

where

Moreover, according to the general principle yielding the isomorphism (11), the semilinear transformations $y \to C_{\sigma} y^{\sigma}$, $y \to C_{\tau} y^{\tau}$ of K^{ϵ} should also come from certain semilinear transformations of K^{4} . In fact, we can write

$$C_{\sigma} = \frac{2\sqrt{c_2}}{\gamma_1 + \sqrt{c_2}} D_{\sigma^{(2)}}, \quad C_{\tau} = \frac{1}{\gamma_2 - \gamma_3 \sqrt{c_1}} D_{\tau^{(2)}},$$

where

$$D_{\sigma}\!=\!\!\left(egin{array}{cccc} & -rac{ au_1\!+\!\sqrt{c_2}}{2} & 0 \ & 0 & rac{\sqrt{c_2}}{2\sqrt{c_1}} \ 0 & rac{\sqrt{c_1}}{\sqrt{c_2}}(au_1\!+\!\sqrt{c_2}) \end{array}
ight)\!\!,$$

Thus we see that the semilinear transformations $x \to D_{\sigma} x^{\sigma}$, $x \to D_{\tau} x^{\tau}$ of K^4 give rise, up to scalar factors, to the above semilinear transformations of K^6 . We also get the relations

(13)
$$f(\lambda, U)^{\sigma} = f(\lambda^{\sigma}, D_{\sigma} U^{\sigma} D_{\sigma}^{-1}),$$
$$f(\lambda, U)^{\tau} = f(\lambda^{\tau}, D_{\tau} U^{\tau} D_{\tau}^{-1})$$

for all $(\lambda, U) \in \widetilde{L}$.

Now, if one considers the subgroup of $GL_4(K)$ formed of all the elements U in $GL_4(K)$ commuting with the semilinear transformations $x \to D_\sigma x^\sigma$, $x \to D_\tau x^\tau$, i.e. such that $D_\sigma U^\sigma D_\sigma^{-1} = D_\tau U^\tau D_\tau^{-1} = U$, it turns out that this group consists of the matrices of the following form

(14)
$$\begin{pmatrix} \zeta_{0} & -(\gamma_{2}-\gamma_{3}\sqrt{c_{1}})\zeta_{1}^{\tau} & -\frac{\gamma_{1}+\sqrt{c_{2}}}{2}\zeta_{2}^{\sigma} & \frac{\sqrt{c_{2}}}{2\sqrt{c_{1}}}\zeta_{3}^{\sigma\tau} \\ \zeta_{1} & \zeta_{0}^{\tau} & \frac{\sqrt{c_{2}}}{2\sqrt{c_{1}}}\zeta_{3}^{\sigma} & -\frac{\gamma_{1}-\sqrt{c_{2}}}{2(\gamma_{2}-\gamma_{3}\sqrt{c_{1}})}\zeta_{2}^{\sigma\tau} \\ \zeta_{2} & -\zeta_{3}^{\tau} & \zeta_{0}^{\sigma} & -\frac{\sqrt{c_{2}}(\gamma_{2}+\gamma_{3}\sqrt{c_{1}})}{\sqrt{c_{1}}(\gamma_{1}+\sqrt{c_{2}})}\zeta_{1}^{\sigma\tau} \\ \zeta_{3} & (\gamma_{2}-\gamma_{3}\sqrt{c_{1}})\zeta_{2}^{\tau} & \frac{\sqrt{c_{1}}}{\sqrt{c_{2}}}(\gamma_{1}+\sqrt{c_{2}})\zeta_{1}^{\sigma} & \zeta_{0}^{\sigma\tau} \end{pmatrix} .$$

This is nothing other than a representation in K of an element $\zeta = \zeta_0 + \omega_1 \zeta_1 + \omega_2 \zeta_2 + \omega_3 \zeta_3$ in an algebra $\widetilde{\mathfrak{D}}$ of dimension 16 over k defined as follows:

(15)
$$\widetilde{\mathfrak{D}} = K + \omega_1 K + \omega_2 K + \omega_3 K,$$

$$\left\{ \begin{array}{l} \omega_1^2 = -\gamma_2 + \gamma_3 \sqrt{c_1}, \quad \omega_2^2 = -\frac{1}{2} (\gamma_1 + \sqrt{c_2}), \\ \omega_2 \omega_1 = \omega_1 \omega_2 \frac{\sqrt{c_2} (\gamma_2 - \gamma_3 \sqrt{c_1})}{\sqrt{c_1} (\gamma_1 + \sqrt{c_2})} = \omega_3 (\gamma_2 - \gamma_3 \sqrt{c_1}), \\ \omega_1^{-1} \eta \omega_1 = \eta^{\tau}, \quad \omega_2^{-1} \eta \omega_2 = \eta^{\sigma} \quad \text{for} \quad \eta \in K. \end{array} \right.$$

Therefore we have $\widetilde{\mathfrak{D}}^{\kappa} = M_4(K)$, and, if we put

(16)
$$L = \{(\lambda, \zeta) \mid \lambda \in k^*, \ \zeta \in \widetilde{\mathfrak{D}}^*, \ \widetilde{n}(\zeta) = \lambda^2 \},$$

 \tilde{n} denoting the reduced norm from $\tilde{\mathfrak{D}}$ to k, it is easy to see that \tilde{L} may be regarded as the algebraic group obtained from L by the scalar extension K/k. As the rational homomorphism f (defined over K) commutes with the Galois automorphisms of K/k operating on G_3^{+K} and on \tilde{L} , by (13), f is in fact defined

over k, and thus maps the set of k-rational points of $\widetilde{L}/\widetilde{L}_0$ onto G_3 . Since $\widetilde{L}_0 \cong K^*$, it follows from the Theorem 90 of Hilbert that any k-rational coset modulo \widetilde{L}_0 contains a k-rational representative. Therefore, putting

$$L_0 = \{(\lambda^2,\lambda) \mid \lambda \in k^*\} \cong k^*$$
 ,

we finally conclude that f induces the isomorphism

$$(17) G_3 \cong L/L_0,$$

which is a rational isomorphism defined over k. The fact that $\widetilde{\mathfrak{D}}$ is a division algebra follows either directly or from the fact that $\widetilde{\mathfrak{D}}^*$ contains no unipotent element. L/L_0 is clearly isogeneous to $\widetilde{\mathfrak{D}}^{(1)} = \{\zeta \in \widetilde{\mathfrak{D}} \mid \widetilde{n}(\zeta) = 1\}$.

REMARK. In the case $\dim V = 3$, $\delta(V) \not\sim 1$, we can choose the basis of $\mathfrak D$ and V in such a way that

(18)
$$H = \begin{pmatrix} \varepsilon_1 & 0 & -1 \\ & 1 & 0 \end{pmatrix}.$$

Then, proceeding quite similarly as above, we conclude that under the isomorphism (12) we have

$$(19) G_3 \cong L/L_0,$$

where

$$L = \{(\lambda, U) \mid \lambda \in k^*, U \in GL_4(K_1), {}^t\bar{U}DU = \lambda D, \det U = \lambda^2\}$$

with
$$D = \begin{pmatrix} 1 & & & & \\ & -c_2 & & & & \\ & & 0 & \frac{c_2}{\sqrt{c_1}} \\ & & -\frac{c_2}{\sqrt{c_1}} & 0 \end{pmatrix}$$
,

$$L_0 = \{(\lambda^2, \lambda 1_4) \mid \lambda \in k^*\}$$
.

4. The case dim V=2, $\delta(V) \not\sim 1$. Taking suitable basis of $\mathfrak D$ and V, we may assume, in the notation of N^0 3, that $\delta(V) \sim c_1$, $V=V(c_2,c_1c_2)$ and

(20)
$$H = \begin{pmatrix} \epsilon_2 & 0 \\ 0 & \tau \end{pmatrix}.$$

Hence G_2 can be identified with the subgroup of G_3 for $V(c_1, c_2, c_1c_2)$ consisting of those elements X which leave x_1 fixed, i.e. of the form

$$X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & * \\ 0 & * \end{pmatrix}$$
.

Therefore, under the isomorphism (17), we have $f(\lambda, \zeta) \in G_2$ for $(\lambda, \zeta) \in L$, if and only if the matrix (14) corresponding to ζ is of the form

$$U\!=\!\left(egin{array}{cc} \stackrel{2}{U_1} & \stackrel{2}{0} \ 0 & U_2 \end{array}
ight)$$
 , $\det U_1\!=\!\det U_2\!=\!\lambda$,

i.e. if and only if

$$\zeta = \zeta_0 + \omega_1 \zeta_1 \in \mathfrak{D}_1 = K + \omega_1 K$$
,

$$\zeta_0^{1+\tau} + (\gamma_2 - \gamma_3 \sqrt{c_1}) \zeta_1^{1+\tau} = \lambda$$
.

Here it is clear that \mathfrak{D}_1 is a quaternion division algebra over K_1 and that, denoting by n_1 the reduced norm from \mathfrak{D}_1 to K_1 , we have

$$n_1(\zeta) = \zeta_0^{1+\tau} + (\gamma_2 - \gamma_3 \sqrt{c_1}) \zeta_1^{1+\tau}$$
.

Thus we obtain the isomorphism

(21)
$$G_2 \cong L/k^*,$$

$$L = \{ \eta \in \mathfrak{D}_1^* \mid n_1(\eta) \in k^* \}.$$

 L/k^* is clearly isogeneous to $\mathfrak{D}_1^{(1)} = \{ \eta \in \mathfrak{D}_1 \mid n_1(\eta) = 1 \}.$

REMARK. In the case dim V=2, $\delta(V)\sim 1$, we may assume that

$$(22) H = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Then it follows either directly or by a similar argument as above starting from the case $\dim V = 3$, $\delta(V) \not\sim 1$, that we have

$$G_2\cong L/L_0\;,$$
 (23)
$$L=\{(\xi,\,Y)\,|\,\xi\in\mathfrak{D}^*,\,\,Y\in GL_2(k),\,\,n(\xi)=\det Y\}\;,$$

$$L_0=\{(\lambda,\,\lambda 1_2)\,|\,\,\lambda\in k^*\}\;.$$

 L/L_0 is clearly isogeneous to $\mathfrak{D}^{(1)} \times SL_2(k)$.

University of Tokyo

Bibliography

- [1] N. Bourbaki, Eléments de mathématique, Livre II Algèbre, Chap. 9, Formes sesquilinéaires et formes quadratiques. Hermann, 1959.
- [2] J. Dieudonné, Les extensions quadratiques des corps non commutatifs et leurs applications. Acta Math., t. 87 (1952), 175-242.
- [3] J. Dieudonné, Sur les groupes unitaires quaternioniques à deux et à trois variables. Bull. des Sci. Math., t. 77 (1953), 195-213.
- [4] J. Dieudonné, La géométrie des groupes classiqes. Springer, 1955.
- [5] T. Tsukamoto, On the local theory of quaternionic anti-hermitian forms. This Journal, 387-400.
- [6] B. L. van der Waerden, Gruppen von linearen Transformation. Springer, 1935.