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An example on the fundamental conjecture of $GLC$.

By Gaisi TAKEUTI

(Received June 26, 1959)

Since 1953, the author has worked on the fundamental conjecture (abbrev.

F. C.) of $GLC[3]$ . Professor Godel presented to the author a very interest-
ing possible counterexample to F. $C$ . Following the advice of Professor Godel,

the author wishes to prove that F. C. holds on this example. It should be
remarked that G. Kreisel [2] presented a special case of this example.

1. First, we give some definitions to state the example. $\Delta_{0}$ is the axiom
of natural numbers without the axiom of mathematical induction in $LK$ $e(a)$

is Fregean, which is defined by

$\forall\varphi$ ($\forall x(x=0-\varphi[x])$ A $\forall x(\varphi[x]-\varphi[x^{\prime}])\leftarrow\varphi[a]$ ) ,

where $a^{\prime}$ is the successor of $a$ .
$A_{i}(a)$ is the arithmetical formula, which means that $a$ is not the Godel

number of a proof-figure in $G^{i}LC$ (cf. [5], appendix) to the contradiction from
$\Delta_{0}$ . ($A_{i}(a)$ can be represented in many ways, $e$ . $g$ . by using recursive func-
tions. Anyway F. C. holds on the example by the following proof.) $B_{i}(a)$ is
the formula of $G^{i+1}LC$, which means, ‘ if $a$ is the G\"odel number of provable
formula in $G^{i+1}LC$, then $Tr(a)$ , where $Tr(a)$ is a formula in $G^{i+1}LC$ which
means that $a$ is the Godel number of a true formula. ‘ Truth ‘ of a formula
may be formalized in various ways, subject only to the condition that $\Delta_{0}$ ,
$e(a)\rightarrow B_{i}(a)$ is provable in $G^{i+1}LC$. $C_{i}$ is a certain prenex normal form of
7 $e(a)\vee A_{i}(a)$ or 7 $e(a)\vee B_{i}(a)$ . Then the example is $\Delta_{0}\rightarrow C_{i}$ , which is prov-
able in $G^{i+1}LC$ (cf. Tarski [6]).

To prove F. C. on the example, it is sufficient that we prove the follow-
ing more general theorems.

THEOREM 1. Let $\Gamma\rightarrow\Delta$ be a sequence in $G^{i+1}LC$ . If $\Gamma\rightarrow\Delta$ is provable in
$G^{i+1}LC$ , then $e(a),$ $\Gamma\rightarrow\Delta$ is provable without cut in $G^{i-1}LC$ .

THEOREM 2. Let $\Gamma\rightarrow\Delta$ be a sequence in $G^{i+1}LC,$ $A$ and $B$ be formulas in
$G^{i+1}LC$, one of which is a prenex normal form of anolher. If $\Gamma\rightarrow\Delta,$ $A$ is prov-
able without cut, then $\Delta\rightarrow\Gamma,$ $B$ is provable without cut in $G^{i+1}LC$ .

We prove F. C. on the example from Theorems 1 and 2 as follows: Since
$\Delta_{0}\rightarrow C_{i}$ is provable in $G^{i+1}LC$ (loc. cit.) $e(a),$ $\Delta_{0}\rightarrow C_{i}$ is provable without cut in
$G^{i+1}LC$ by Theorem 1. Then $e(a),$ $\Delta_{0}\rightarrow 7e(a)\vee A_{r}(a)$ (or $e(a),$ $\Delta_{0}\rightarrow 7e(a)\vee B_{i}(a)$ )

is provable without cut by Theorem 2. Hence $\Delta_{0}\rightarrow 7e(a)\vee A_{i}(a)$ (or $\Delta_{0}\rightarrow$
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7 $e(a)\vee B_{i}(a))$ is provable without cut. Thus F. C. on the example is proved
by Theorem 2.

2. PROOF OF THEOREM 1. We prove the theorem by induction on the
number of inferences of the proof-figure $\mathfrak{P}$ to $\Gamma\rightarrow\Delta$ . We may and shall as-
sume that every $a$ in $\mathfrak{P}$ is not an eigenvariable. If $\Gamma\rightarrow\Delta$ is of the form
$D\rightarrow D$ , then clearly $e(a),$ $\Gamma\rightarrow\Delta$ is provable without cut. Let $\Gamma\rightarrow\Delta$ be a lower
sequence of an inference $ s\circ$ and the theorem be proved for the upper se-
quences of $s^{\infty}$ . If $s^{\alpha}$ is not a cut, $e(a),$ $\Gamma\rightarrow\Delta$ is obviously provable without
cut. If $s^{\infty}$ is a cut of the form

$\frac{\Gamma_{1}\rightarrow\Delta_{1},DD,\Gamma_{2}\rightarrow\Delta_{2}}{\Gamma_{1},\Gamma_{2}\rightarrow\Delta_{1},\Delta_{2}}$

we have the proof-figure to $e(a),$ $\Gamma\rightarrow\Delta$ without cut as follows:

where $b$ is assumed not to be contained in $\mathfrak{P}$ . The proof is thus concluded.

3. The rest of this paper is devoted to a proof of Theorem 2. We give $\cdot$

first some definitions.

3.1. DEFINITION 1. A proof-figure $\mathfrak{P}$ is called ‘ split’, if and only if all the
formulas in $\mathfrak{P}$ are divided into two classes, which are called the first and
second classes, and the following conditions are fulfilled:
3.1.1. The two formulas in a beginning sequence belong to the different
classes.
3.1.2. All formulas belonging to a fibre simultaneously belong to the same
class.
3.1.3. The two cut-formulas of a cut belong to the different classes.

A sequence $\mathfrak{S}$ is called ‘ provable splitly ‘, if there exists a split proof-
figure to $\mathfrak{S}$ . ‘ A sequence $\mathfrak{S}$ is reducible splitly to sequences $\mathfrak{S}_{1},$

$\cdots,$
$\mathfrak{S}_{m}$ , will

mean ‘ if $\mathfrak{S}_{1},$

$\cdots,$
$\mathfrak{S}_{m}$ are provable splitly without cut, then $\mathfrak{S}$ is also provable

splitly without cut.‘ ‘ A proof-figure $\mathfrak{P}$ is reduced splitly to proof-figures
$\mathfrak{P}_{1},$

$\cdots,$
$\mathfrak{P}_{n}$

‘ will mean ‘
$\mathfrak{P}$ is reduced to $\mathfrak{P}_{1}\cdots,$ $\mathfrak{P}_{n}$ and if $\mathfrak{P}_{1},$

$\cdots,$
$\mathfrak{P}_{n}$ are split, then

$\mathfrak{P}$ is also split.’ $(Cf. [3, \S 4].)$
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3.2. $D_{EFINi\urcorner ION}2$ . A proof-figure $\mathfrak{P}$ is called ‘ naive ’, if and only if the fol-
lowing conditions are satisfied:
3.2.1. Every inference $\forall$ left in $\mathfrak{P}$ is of the $\xi orm$

$\overline{\forall}\frac{F(\alpha),\Gamma\rightarrow\Delta}{\varphi F(\varphi),\Gamma\rightarrow\Delta}$ or $\forall^{\frac{F}{\chi}}F(x(a)\frac{\Gamma\rightarrow\Delta}{),\Gamma\rightarrow\Delta}$ .

3.2.2. Every inference $\exists$ right in $\mathfrak{P}$ is of the form

$\Gamma\rightarrow\Delta,$ $F(\alpha)$ $\Gamma\rightarrow\Delta,$ $F(a)-$
$\overline{\Gamma\rightarrow\Delta,}\exists\varphi F\overline{(\varphi)}$

or
$\overline{\Gamma}\overline{\rightarrow\Delta,}\exists xF(x)$

.

3.3. DEFINITION 3. A cut $s^{\alpha}$ in a proof-figure is called ‘ semi-explicit’, if and
only if there exists a cut-formula $A$ of $s^{\infty}$ satisfying the following conditions:
3.3.1. Let $\mathfrak{S}$ be any beginning sequence. If one formula of $\mathfrak{S}$ is an ancestor
(cf. [3]) of $A$ or $A$ itself, then another formula of $\mathfrak{S}$ is explicit (cf. [3]).

3.3.2. Let $B$ be an ancestor of $A$ or $A$ itself. If $B$ is related to a beginning
formula (cf. [3, 2.5] for related formulas), then every leading formula (cf. [4,

1.2]) of $B$ is a beginning formula or a weakening formula.

A proof-figure $\mathfrak{P}$ is called ‘ semi-explicit ‘, if and only if every cut of $\mathfrak{P}$ is
semi-explicit.

3.4. LEMMA. If $\mathfrak{S}$ is an end-sequence of a semi-explicit proof-figure $\mathfrak{P}$ then
there is a proof-figure $\mathfrak{Q}$ such that $\mathfrak{Q}$ contains no cut and its end-sequence
is $\mathfrak{S}$ . Moreover, if $\mathfrak{P}$ is split (or naive), then so is $\mathfrak{O}$ .

PROOF. The former part of this lemma is proved by [4, \S 3 and \S 4], in
which ‘ separative ‘ is replaced by ‘ semi-explicit ‘. The other part can be
easily seen in tracing the reduction.

In the following we say that a sequence $A\rightarrow B$ is elementary, if there is
a split and naive proof-figure which contains no cut to $A\rightarrow B$ .

We have clearly the following two propositions.
$p_{ROPOSITION}1$ . If $A\rightarrow B$ and $C\rightarrow D$ are elementary, then $7B\rightarrow 7A$ ,

$A\wedge C\rightarrow B\wedge D$ and $A\vee C\rightarrow B\vee D$ are elementary. If $F(\alpha)\rightarrow G(\alpha)$ or $F(a)\rightarrow G(a)$

is elementary, then $\forall\varphi F(\varphi)\rightarrow\forall\varphi G(\varphi)$ and $\exists\varphi F(\varphi)\rightarrow\exists\varphi G(\varphi)$ , or $\forall xF(x)\rightarrow\forall xG(x)$

and $\exists xF(x)\rightarrow\exists xG(x)$ are elementary.
$p_{ROPOS1TION}2$ . Let $A$ be a formula and $B$ be a formula obtained from $A$ by

moving a quantifier outside the scope of a logical symbol $\wedge,$ $\vee or7$ Then $A\rightarrow B$

and $B\rightarrow A$ are elementary. Especially the following sequences are elementary.

$\forall\varphi(F(\varphi)\wedge G(\varphi))\rightarrow\forall\varphi F(\varphi)\wedge\forall\varphi G(\varphi)$ $\forall\varphi F(\varphi)\wedge\forall\varphi G(\varphi)\rightarrow\forall\varphi(F(\varphi)\wedge G(\varphi))$

$\forall\varphi(F(\varphi)\vee A)\rightarrow\forall\varphi F(\varphi)\vee A$ $\forall\varphi F(\varphi)\vee A\rightarrow\forall\varphi(F(\varphi)\vee A)$

$\forall\varphi 7F(\varphi)\rightarrow 7\exists\varphi F(\varphi)$ $7\exists\varphi F(\varphi)\rightarrow\forall\varphi 7F(\varphi)$ etc.

To prove Theorem 2, we have only to prove the following propositions.



An example on the fundamental conjecture of $GLC$ . $24L$

PROPOSITION 3. Let $\Gamma\rightarrow\Delta,$ $A$ be a sequence which is provable without cut and
$A\rightarrow B$ be an elementary sequence. Then $\Gamma\rightarrow\Delta,$ $B$ is provable without cut.

PROOF. Since $\Gamma\rightarrow\Delta,$ $A$ is provable without cut, there exists a proof-figure
$\mathfrak{P}_{1}$ satisfying the following conditions:

1. $\mathfrak{P}_{1}$ has no cut.
2. Every beginning sequence of $\mathfrak{P}_{1}$ has no proper logical $s$ymbol. There

exists also a split and naive proof-figure $\mathfrak{P}_{2}$ to $A\rightarrow B$, satisfying the same
conditions as $\mathfrak{P}_{1}$ .

It is easily seen that the following proof-figure is semi-explicit, whence
the proposition follows.

$\backslash \backslash ..’\backslash \cdot,\prime \mathfrak{P},\backslash v^{\prime}’,’1$, $\backslash \backslash j,\backslash \prime \mathfrak{P},_{1}\backslash v^{\prime}’ 2$

,

$\Gamma\rightarrow\Delta,$ A $A\rightarrow B$

$-\Gamma\overline{\rightarrow\Delta,B}$

$p_{ROPOSI^{\prime}\Gamma 1ON}4$ . If $A\rightarrow B$ and $B\rightarrow C$ are elementary sequences, then $A\rightarrow C$

is elementary.
PROOF. We shall apply the reduction in the proof of Proposition 3 to the

proof-figure

$\backslash ,’\backslash _{\backslash }\prime \mathfrak{P},,\backslash l^{\prime}l^{\prime,}’\prime 1$, $\backslash _{\backslash \prime}\mathfrak{P},\backslash ’’\backslash ,\psi^{\prime}’’\prime 2,$

,

$\frac{A\rightarrow BB\rightarrow C}{A\rightarrow C}$

where each of $\mathfrak{P}_{1},$ $\mathfrak{P}_{2}$ is split, naive and has no cut, and has no beginning
sequence with proper logical symbols. Then the proposition follows from
Lemma.

PROPOSITION 5. Let $A$ be a formula and $B$ be a prenex normal form of $A$ .
Then $A\rightarrow B$ and $B\rightarrow A$ are elementary.

PROOF. This follows from Propositions 1, 2 and 4 by induction on the
number $n$ of proper logical symbols in $A$ . If $n=0$ , the proposition is trivial.
If $n=m+1$ , and the proposition is proved in case $n\leqq m$ , we prove it by
dividing cases according to the outermost logical symbol of $A$ . Since every
case is easily treated, we show here only the following $c$ase as an example:
$A$ is of the form 7 $A_{1}$ , and $\forall\varphi B_{1}(\varphi)$ and $B_{2}(\alpha)$ are prenex normal forms of $A_{1}$

and 7 $B_{1}(\alpha)$ respectively. Then $A\rightarrow B$ is elementary; By the hypothesis of
induction $7B_{1}(\alpha)\rightarrow B_{2}(\alpha)$ is elementary. Then $\exists\varphi 7B_{1}(\varphi)\rightarrow\exists\varphi B_{2}(\varphi)$ and
7 $\forall\varphi B_{1}(\varphi)\rightarrow\exists\varphi 7B_{\iota}(\varphi)$ are elementary (by Prop. 1 and 2), whence 7 $\forall\varphi B_{1}(\varphi)\rightarrow$

$\exists\varphi B_{2}(\varphi)$ is elementary (by Prop. 4). Since $\forall\varphi B_{1}(\varphi)\rightarrow A_{1}$ is elementary by the
hypothesis of induction, $7A_{1}\rightarrow 7\forall\varphi B_{1}(\varphi)$ is elementary (by Prop. 1). Then
7 $A_{l}\rightarrow\exists\varphi B_{0}.(\varphi)$ is elementary.
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