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§1. Introduction and main results.

Consider a Brownian motion B(#, w) and form a stochastic process

»
1.1) Xt w)=2 2 @iy H1 (B(t+ s, ) — Bt + u;,, ) .
> iy o
Here we shall call the process of the form a polynomial process, since
this process is a polynomial of the increments of B(f, w). We see that a
polynomial process is strictly stationary and that it is continuous in pro-

bability in the following sense:
1.2) lim P(| X(¢, w) — X(s, w)| >€)=0
t—s

for e>0 and any s & (— oo, o).

It is obvious that an arbitrary strictly stationary process continuous in
probability is not always a polynomial process, but we can approximate it
in a certain sense by polynomial processes. The purpose of this paper is
to prove this approximation theorem.

For this purpose, we shall introduce some topologies in the set of
stochastic processes. The formal extension of the convergence in law for
real random variables is as follows. A sequence of stochastic processes
X, ={X,(t, w), —co< t<oo} may be called to converge to the stochastic
process X= {X({t, w), — oo <t<oco} in law if any joint distribution of X, at a
finite number of #-values converges to the corresponding one of X in Helly’s
sense. This definition is inadequate; in fact, even if X,—X and if X, ,—
X,, we cannot always find a sequence X, ., such that X, ., —X. Therefore
we shall here introduce a neighborhood system {U(X,e¢)} which yields a
convergence stronger than the convergence above.

DeriniTioN 1. U(X,¢) is the collection of all stochastic processes Y =
{Y(t, w), —o0 < ¢ < oo} such that

]Eeia'X(”"“’)+"'+i0nx““'“’) _Eeiﬁ.Y(z.,w)+m+i0nY<tn,w>I <€
whenever #, |0;| and |¢#,] are all less than .

Extending the convergence in probability for real random variables we
shall say that X, converges to X in probability if
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P X:(t, ) — X(t, 0)| > €)—0

for any ¢ >0 and ¢ & (—o0, ). To avoid the same trouble as above we shall
further define another neighborhood system {V(X,¢)} which also yields a
convergence stronger than the convergence above.
Derinition 2. V(X, ¢) is the collection of all stochastic processes Y such
that
P(Ytw)—Xt,w)| >e)<e

whenever |7]<1/e.

It should be noted that the basic probability space £ for X, may or
may not vary with » in the Definition 1, while it should be the same for
all X, and X in the Definition 2. It is evident that the V-topology is
stronger than the U-topologyv, because

V(X “3';172>C u(x, %) -

[t is also evident that in both topologies, if Y belongs to the e-neighborhood
of X and if Z belongs to the ¢-neighborhood of Y, then Z belongs to the
(¢+¢’)-neighborhood of X.

Using these topologies we will state our main results which will be
proved in §3 and §4.

Tueorem 1. Let {X(¢, w), —co < t< oo} be strictly stationary, continuous in
probability and ergodic in the sense that any measurable functional of the process
is constant if it is invaviant under the time translation [1]V. Then we can form
a sequence of polynomial processes which converges to the given process in the
U-topology. ,

Traeorem 2. Let {X(t, ), —oco < ¢t < o0} bélz strictly stationary and continuous
in probability. Then we can form a sequence of continuous (in probability),
ergodic, stvictly stationary processes { X, w), —oo < t<oo},m=1,2, -, such that
X, tends to X in the U-topology as n— oo. Here the probability space for X,
may vary with n.

Combining these two theorems we have the following

Tueorem 3. Let {X(t, w), —oo <t < oo} be strictly stationary and continuous
in probability. Then we can form a sequence of polynomial processes which
converges to the given process in the U-topology. v

As to [Theorem 1, N. Wiener discussed a similar problem on stationary
random interval functions in his famous paper “ The Homogeneous Chaos
using a very ingenious device which served as a model for our proof.

On the other hand [Theorem 2 is closely related to the theorem of J.C.

1) The number in [ ] refers to the references at the end of this paper.
2) See [2, Section 127.
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Oxtoby and S.M. Ulam that the set of all ergodic transformations is
everywhere dense in a certain topology in the set of all invertible measure-
preserving transformations. Although we do not here use this theorem
itself, we have made use of their idea.

In §5 we shall discuss Gaussian (strictly) stationary processes continuous
in probability. In this case it is enough to consider, as approximating
processes, linear processes, namely, processes of the form:

1.3) Xt o) = iZ a[ B+ s;, w)— Bt +u;, )],

instead of polynomial processes. In fact we can prove the

TueoreMm 4. Given any stationary Gaussian process {X({, w), —oo <t < oo}
continuous in probability, we can form a Sequence of linear processes whick
converges to the given process in the U-topology.

If the covariance function of the given process has an absolutely con-
tinuous spectral measure, a much stronger result is known [1, Chap 12]
and the above theorem can be readily derived from that results as is shown
in §5.

In §6, we discuss a similar polynomial approximation for strictly station-
ary random sequences. We can pass from the continuous time parameter
case to the discrete one in the following way. Instead of the differences of
Brownian motion B(f, ) we use {&(w),i=0,=x1-.-} which are mutually
independent and normally (MO, 1)) distributed. A random sequence {X,(w),
n=0,+1---} of the form,

(L.4) X(@)= 3 3 sy 1 Eyraf@),

e
is called here a polynomial sequence.

Tueorem 5. Let {X,(w); n=0,x1---} be strictly stationary and ergodic.
Then we can form a sequence of polynomial sequences {Y,™ (@), n=0,%1--}
which converges to the given rvandom sequence in law, i.e.

llm !Eeiﬂ-nX“n(w)+"-+i0an(w) i Eeie-anﬁ)w)+---+i0nY(gzzw) l —_ O
Jor any n and 0;.

Tueoram 6. Let {X (@), n=0, x1,---} be a strictly stationary random Se-
quence. Then we can form a sequence of ergodic (strictly) stationary vandom
sequences {Y,"™(w),n=0,=+x1,---},m=0,1,2,---, which converges to {Y.(w),
n=0,=x1, -} in law, where the probability space for Y™ may vary with m.

It is not necessary to state Theorem 5 and 6 in terms of the convergence
in the U-topology, since this is equivalent to the above convergence in law

3) For a neater proof see P.R. Halmos [4]
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for random sequences.

If we combine the above two theorems, we have, corresponding to
‘Theorem 3,

Tueorem 7. For any given strictly stationary random sequence we can form
a sequence of polynomial sequences which converges to the given sequence in law.

We can prove these theorems in the same way as in the case of processes
and even more simply.

In conclusion the author wishes to express her sincere thanks to Pro-
fessor K. It6 for his kind guidance and valuable suggestions.

§2. A sequence of random variables a,(w) related to Brownian motion
B(t, w).

Let B(#, ) be Brownian motion. Using the coordinate representation?
we may assume that o is the path function of this motion. Let w,* be
the shifted path of w by s, namely the continuous function whose value at
¢ is equal to the value of w at ¢+s.

We shall here introduce a sequence of random variables a,(®), # =1,
related to B(#, w), which will play a fundamental role in the proof of Theo-
rem 1. Let S(w) be the set of ¢-values for which

|B¢+1,0)—Blt—1,0)| >1.

Because of the continuity of the path functions of B(Z, w), S(w) is open and
can therefore be expressed as a denumerable disjoint sum of open intervals
I(w),i=1. Denote with J(w) the following class of intervals

{I(w): | I(@)| >n, I(w)C(—n,0)},”
and put

Sn(w) = U L;(Q)) .

I;EXy
First of all we shall prove that S,(w) is not empty for every » for almost
all .
Let f(w) be a summable function of @ with respect to the Borel field

determined by {B(, )—B(s, w), —0<s<t<+oo}. Then by the ergodicity
of B(t, w) we have

tim - [ Ao dt = B{ (@)
Now put

4) See Chap 1, §5.
5) |Al= Lebesgue measure of set A(C k?).
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1 if |Bt(+1,w)—Bt—1,0)>1, 0Z¢t<m
fAw)= and |B(—zn+1,0)—B(—n—1,0)|=1
0 if otherwise.

Since f(w,*) =1 implies ¢ € S,(w), we have, for =3,

@.1) lim inf % 1Su(0) A (=72, — 1+ T)|

T > oo

. 1 -n+T
zlim - [ flo) dt = E{f(@)

= P(|B¢t+1, 0)—Bt—1, )| >1,0=¢t<n;and | B(—n+1, ©)—B(—n—1, 0)| = 1)
=P(|Bit+1, 0)—B(¢—1, )| >1,0=¢=n) P(| B(—n+1, ®)—B(—n—1, 0)| =1).
for almost all w, so that it is enough to show
2.2) P(|B(t+2, 0)— Bt )| >1, 0<t<n)>0.
The w-set in P(--+) in includes the intersection of the following w-sets,
{w:2v—2< B{t,w)— B0, w)<2v4+1, v=t=v+1}
v=0,1,--,n—1.

By the property of Brownian motion we can easily see that this intersec-
tion has positive probability, so that is true.
Now we shall define «,(w) by

(2.3) (@) =n4inf(t: t = Sp(w));

we set a,(w) = oo for convenience if S,(w)=¢. By the above remark a,(w)
is finite with probability one.

Next we shall determine the probability law of @,(w). We shall first
note that “g,(w)=1¢" is equivalent to the following condition: “#—n & S(w),
t—n,t]CS(w) if 0=t n, t—n & S(w), (t—n, t]CS(w), (—n, t—n) N\ Sy(w) =0 if
t>n”"; we shall here remark that, if 0=¢=<w#n, then ¢#—n < S(w) implies
(—n, t—n) N\ Sp(w) = ¢.

We have for #/+s=<#n,s>0 and <0,

2.4 P(an(0) € (45,8 +5))
=PEhc(@t+s,t/+98); h—nESw), (B—n,h]CS(w)
=P@Eke,t); h—ne& Sw"), (h—n, h]CS(;"))
=P@Ehet,t'); h—nE S(w), (h—n,h]CS(w)
[by the stationarity of B(¢, w)]
= P(a,(w) € (¢, 1)),

while we get, for #+s>n,s>0 and ¢ >0,
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(2.5) Plan(w)E(+s, 1/ +5))

=P@ErE@+s,t'+5); h—neS(w), (h—n, h]C S(), (—n, A—n)N\S(w) = ¢)

=P@Ehet, t"); h—neS(wt), (h—n, h]C S(w,*), (—n—s, h—n)N\Sy(ws*) = ¢)

< PEhe@, V) h—naS(wst), (h—n, h]C S(ws*), (—n, hA—n)N\Sp(wst) = ¢)

= P(a,(0) € ¢, 1)) .
[2.4) and imply that the probability law of a,(w) is absolutely continuous
with respect to Lebesgue measure and that its density function, say f;, is
flat on [0,#] and decreasing on (s, co).

Lemma 1. f,(8) is expressed as a convex combination of the function C,(f),

y=n, with weight do,(y) = y[ —df.(y)], where

2.6) C,() = —}; For 0<t<y, 0 fort>y.
Proor.

Y —oo

Y—rco

as f,(y) is non-negative, decreasing and integrable. Therefore

£y = [ =dfuln) = [ Ctw (—dfuls)
and

[—anon=—su» +[ fndy=1,
0 0 0

which implies that £,(#) is a convex combination of C,(#) with the weight
yL—dfu(¥)].

Lemma 2. For any positive [ and ¢, theve exists ny(l,e) such that, if
n = ny(l, €),
(2.7) Pla(o)=a,(@)—s, —I=s=)>1—c¢.
Proor. When s >0, we shall find some condition equivalent to a,(w,%)
= q,(w) —s. By the definition of a,(w),
€« an(a)s-[-) — t ”»
< “t—n& Swt), t—nt]CS(), (—n,t—n)N\S,(w)=¢"
=“tt+s—nagESw), (+s—n, t+s]CS(w),

(—n+s,t+s—n)N\Sy(w)=¢".9
‘On the other hand

6) It is evident that S(wst)=S(w)—s where S(w)—s={x;s+x=S(w)}.
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“aw)y=t+s”
< “t+s—neSw), t+s—nt+s]CS(w), (—n,t+s—n)N\S,(w)=¢".

Hence a,(w;") =a,(w)—s if and only if (—»n, —n+s] N\ S,(w) = ¢; this condition
is also equivalent to a,(w)=s. Therefore it is evident that if s >s’ >0 and
if “a,(0) = a,(w)—s” then “a(0})=a,(w)—s"".

When s <0, putting # =—s, noting o = (0*,),” and o,* = v*, and applying
the previous result to wZf,, we see that “ a,(0*,).") = a,(w*,)—u” is equivalent
to “(—n, —ntu)\Sy(wt,)=¢”, or to “q,(wf,)=u". And also we shall
remark that if s<s'<0 and if “a,(w,*) = a.(®)—s” then “ a,(0]) = a,(@)—s' ",
because we get S,(w,") D S, (@) noting (S(w)—s)N\(—n, 00) = (S(w)—s" )N\ (—n, ).
Using the above results we have

(2.8) Play(w") = ap(@)—s, —I=s=1)
= P(an(@;") = an(w) — [ and a,(wl) = a,(0)+ 1)
=1 — Plaw") # an(w) — 1) — Play(f)) # a,(®) +1) .

‘On the other hand we have

2.9) P (o) =0)=1/n
and
(2.10) Pl (o) =)=Pla(w)=)=l/n

using and also the stationarity of B(#, w) for [2.00) Therefore we

have

2.11) P, (o) =a(w)—s, —I=s=DH=1— iﬁ ,

which completes the proof of

Finally we shall remark that «,(w,*) is a measurable function of (s, ®)
because it is measurable in @ for each s and left continuous in s for each
@ by the definition of a,(w).

§3. Proof of Theorem 1.

Let X={X{(¢, o*), —oo <t < oo} be strictly stationary, continuous in pro-
bability and ergodic. Then there is a process Y= {{Y({t, ©¥), —oco < ¢ <o}
measurable in (¢, »*) and such that

(CHY) PX(t, o)=Y, 0¥) =1, —co <t < 00).D

We use another symbol o* for the probabhility parameter of X since it may
differ from that of the Brownian motion B(, ).

7) See J.L. Doob [1, Theorem 2.6 (Chap. 2)].
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Define Yy = {Yy(t, ®*), —co <t < co} by
Y(¢, o*) for |Y(@¢ 0| N
for |Y({t, o*)|>N.

(3.2) Yy, 0*) =

Then this process is strictly stationary, continuous in the mean and ergodic.
Furthermore it converges to Y in the V-topology by the strict stationarity
of Y when N tends to infinity.

Next define Zy y(tf, ®*) by

(3.3) Zu.wlt, o) = o f YN(t+s %) ds .

This process Zy,y, which converges to Yy in V-topology when M tends to
infinity, is also strictly stationary, continuous in the mean and ergodic.
Furthermore this process Z,,» has the following property of uniform con-
tinuity,

(3.4) ]ZM v+ R, %) — ZM n(t, @%)]

1/M+z+h 1/M+t
l j Y y(s) ds—j YN(s)ds < MN# .

1/M+t+h -1/M

Therefore we may assume with no loss of generality that the given
process is of the type of Zy,y. Thus we have reduced our problem to the
case that X satisfies the following conditions,

X.1 strictly stationary and ergodic,
(X.2) uniformly bounded, say | X{#, o*)| =K,
(X.3)  uniformly continuous, say | X(¢- 4, o*) — X, o¥)| < Ch,

where K and C are constants independent of # and w*.
Define pT(ﬁl o am Ly ooy (L)*) by

i L ﬂj)l(t s+ L,w¥)

1 r° )
(3.5) P20y Oty -ty ) = o [ e dt.
For every sample path of X we have
(36) lpT(ﬁl e 01” tl -+= Iy C‘)*) —pT(ll lnv Vi ¥ny O)*)I

< él _;_ij’ 0 jLX e, 00 —X(rprt,0n] __ ] |dt + ?;\1 g%‘__ f(iTI gl = pX(rj+t, 0" 1 |dt .
But
3.7 71,« j' 0 | @ILX @ +sth,0n~X(ets,0n]__ ] |dt
T r

IA

_%— { i’T4 sin? % (Xt + 5+ h, 0%) — X+ 5, 0%) e
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2 0
= 0 [ IXC sy o)~ XUt 45, 0% P dt S 8C,

68 4 f _"T| et-pror g = G0 ijXQ(t, W¥)dt < (0 — )°K? .

Thus we obtain
Lemma 3. For any € >0, there exists d(¢) independent of T such that, if n,
10:1, 12:0, 12, | rs) < 1/e and if |0,—2;1, |ti—71:] < 8(e), then

IIOT(al o 671.’ tl oo by C‘)*) _pT(ll e xn; Ti° Ta Q)*)[ <e

for all w*.
By the ergodicity of X
1 %1/11-1'(7]-,&)*)

(0. 1) lim pg(A; =+ An, 7y *+ Ty @%) = Ee 7~

T o0

for any rational numbe;r {4;}, {r;} and any #». for almost all w*. Fix one of
such o* say w,*. Noting that the right side of (p.1) is continuous in
(A4 - Aps 71 - 7») and so uniformly continuous in any bounded region, and
using we get the following

Lemma 4. We can determine T,(c) such that, whenever n, |0;], |t;| <1/e,
we have
. n 5
i LlﬂjX(t]-.(u )

3.9 | 0p(81 ++ Ony £, -+ to, @0*) — Ee 7~ |<e
Sor T > Te).
Using «,(®) introduced in the previous section we shall define a sequence

of stochastic processes {Fy(f, ®), —co<f< co}, k=1, on the probability field
of Brownian motion B(, w), by

(3.10) Fi(t, ) = X(—ar(w), %) .

This is clearly measurable in (¢, w) and we obtain

LemMma 5. {Fi(t, ), —oo <t < oo} comverges to {X({, w¥), —oco <t o} in
U-topology when k tends to infinity.

Proor. We shall compute the characteristic function of (Fy(?,, ), Fi(ts, @),
ey Filtn, 0)):

i T 0,700 i % 0. x(agop) )
2 Uit elpo vz Ugal-aglog ).wq
e /=1 = Ee ™! J

. *
i ElﬂjX(—ak(w) +tjwo)

=Fe’ + ek, 0, - O, t 1)
by Lemma 1 this equals

on %k
T i 2 0;X(;-3,00)

[laodT) e ds-+ ek, 0, -+ Oty o+ 1)
k 0
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= [ 0T)0r, -+ O -+ tyy 0%+ (8, 0, Oy 11 1)

Take any positive number ¢ and fix it. By we have

(6, 0y By 1 1| < 5, i |6 <1, 1<i<m,

and if k>n0(%, 7i~)
On the other hand by Lemma 4 we have,

. n X *
i Zalﬂj (t]-,w)

§ 0T pr(0; -+ 02 1, ta, 0% — Be P <5

if m, 16,1, 16;] = and if k> T,(-5-). Combining the above results we have

. n ) . n *
zjilﬂjpk(tj,w) 1»]_5101X(lj.a) )

| Ee — Fe <e¢

if k>Max(T,( 5 ), m(+ ) and if . 16, 1= =

This completes the proof of Lemma 5.

Now we shall consider the polynomial expression of F.(f, w). To do this
we shall first prove that F(0, w) can be approximated by polynomials of the
differences of B(#, w). Although this follows at once from a result by R.H.
Cameron and W.T. Martin or by K. It6 [6, Theorem 4.17®, we shall
show it directly using their idea as much as we need.

Since F3(0, w) is a random variable measurable in {B(+1, w)—B{—1, w),
—k < t< oo}, it can be expressed as the limit (in the mean square sence) of
a sequence of L,(#)-random variables {9, (@)}, ¢ (w) being smeasurable in
{Bt;""+1, ®)—B{;?—1,w),i=1,-,n,}, for some n; and some {,?}. Taking
a common subdivision of (#,"+1, ,*’—1), say (s;”, u;?) i=1,---,m, we can see
that ¢, (@) may be expressed as ¥(X,(w), -+, X.(w)) where
31'(‘7.)»7(1))_ B(%f]), CL))

_ B
Xw) =" N §, P — g, P

¥ being a B-measurable function on R™ It is clear that
- N
G B = [0, () e T dEidEa < oo,

By the completeness of Hermite polynomials, ¥ can be approximated by a
polynomial @4(&, -+ £,) as

8) The number in [ ] refers to the references at the end of this paper and

[Theoreml.. is the to be consulted.
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fofiwe, - en—6a, el (o) et dsdta<e

so that
El9fw) — O X (@), -+, Xp(0) P < e.

By the stationarity of Brownian motion we have
El¢)(0) — Oy Xi(0H), -, Xp(w)) P <e.

Hence {¢;(w*), —oo <t < oo} is approximated by polinomial processes in the
V-topology and so in the U-topology.
This completes the proof of [Theorem 1.

§4. Proof of Theorem 2.

In order to prove our we may assume that £ = R® and that
X(t, ) is the value of the path function @ at # taking the coordinate re-
presentation of the given stochastic process.

We shall define the transformation 7, on £ by

Tw= wt, i.e. X(s, T,0) = X(s — t, ) for all s.

It is clear that 7, is a 1-1 measure-preserving transformation and T,,,=
T.T,.

Furthermore we may assume that
(4.1) 2={w;0eR? | Xt w)|=K |X({t+h 0)— Xt 0)|=Ch}

for suitable positive integers K and C independent of ¢, %2 and o, since we
can find a strictly stationary continuous (in probability) process whose:
sample function belongs to £ with probability 1 in any V-neighborhood of
the given process by forming Zy,y in We remark that T,2 = Q.

Next we will map £ onto [0,1]% Put 2, ={w; P(w) >0} and 2,=02—-2,.
2, consists of a countable number of points, say {w;};=;. Let B be the
minimum Borel field which makes {X(¢, w), —cc < ¢t < oo} all measurable. On
account of its continuity, £;; defined by

Eijj={w; X(r, 0) <r;, v 2,}

and the above {w;};=; will generate B.
We arrange {F;;} in linear order to make a simple sequence {E,},z;.
We map £ onto the Lebesgue measure space [0,1) as follows. w,(c 2,) is

i—-1 €
mapped onto [ 3 P;, 2 P,) where P;=P(w;). E, and E\°~ £, are mapped
=1 i=1
onto [ X P;, 3 P;+P(E)) and [ 3 P+P(E)), 1) respectively. Next for E,
jzl1 jz1 j=1
E NEy ExNEY, E°NE; and E°N\E° 82, are mapped onto [ 3 P, X P+
j= jz=t
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P(E,NEY)), [ng Pi+P(E, N EY), Z:l P;+P(E))), [21 Pj+P(E1)’ 21 Pj+P(EJ)+
= iz JjZ= iz
P(E°NE)) and [ZIIP+P(E1)+P(E1”mE2), 1)) respectively and so on.
j=

Denote by ¥ the above set transformation from £ onto [0,1). Next we
map [0,1) onto [0,1]? by a 1-1 measure-preserving point transformation v.
‘Then v¥ will be a measure-preserving set transformation from 2 onto [0,172

Let y4(-) be the indicator function of a set A. Since X(, w) is measurable
with respect to B, there exists f,, which is a Borel measurable function on
:a space of infinite dimension, such that

P(X(, @) # flxp(@), -+ 5 Xo(@)+)) =0

for any ¢ Therefore {f(x, we (@), -+, Xyww (@)), —oc0o < {< oo} is a version”
on [0,17% of the given process and we denote it by X(, &), where & [0, 172

Now we shall modify this transformation for the later use. Firstly we
shall remark that if w, has positive probability, then  X(¢, w,) = X(0, w,) for
all ¢, i.e. w, represents a constant-valued function.- Suppose in the contrary
that there exists ¢ such that X(¢, w,) # X(0, ). Then by the continuity of
the path function, we shall have infinitely many different points among
{T_,»,}. Since T, is a measure-preserving point transformation, this con-
tradicts the boundedness of the probability measure.

If P( fk\ E,)=0, then ¥( fk\ E;)= ¢ where E’ means either E or £°. Denote
i=1

=1

N
by A the set of all w such that we N E, where P( N E,’)=0 for some N.
k=1

kz1

N N N-1
‘We shall remark that P(A)=0. Set ex={N E}; P(kﬂ Ey)=0, P(kﬂ1 E) >
k=1 =1 -

~
0}. Since ¢y is a finite system of sets, we have P(\U (N E}"))=0 which
EN k=1

implies P(A)=0as A=\ U ( f% Ey).
N EN k=1

We shall define a 1-1 point transformation ¢ from D=2, A° onto
[ > F,, 1] minus a countable set such that ¢ induces ¥ on D. Set F/ =¥E;’.

j=1
¢ 1s defined by

oo=lim \F/ if woeNE'AD.
k=1

Nooe =1

Since the right side of the above equality is a single point set, ¢ can be
.considered as a point transformation on D. [ X P;, 1]—¢(D) is a subset of all
j=1

the endpoints of Fy, £=1,2,---, and therefore it is at most countable. The

9) Y(¢) is called a version of X(¢) if any joint distribution of Y (¢) at any finite
time points is equal to that of X(#).
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set {¢pw} which has at least two inverse images is a subset of all the

endpoints of Fy, £=1,2,---, and therefore it is at most countable. Hence

denoting the set [ X P, 1] minus some countable set by R, we have a
izl

measure-preserving point transformation ¢ from D to R.
We shall define F as

fle~w™i@) for @ =vR
F@) =1 flw) for & e[ 211 P, 21 P)iz=1.
J= J=
0 otherwise

where f(0) = X(0, w). Next define T, as

voT, o W™ i@ for @ € ve(DNT,D)

n@ =
~

& otherwise

for any fixed %2>0. Then the transformation 7%, is 1-1 and measure-
preserving and {F(T.k&), k=0, +1,---} is a version of {X(kh, ), k=0, +1,---}.
We shall omit ~ in & since we shall not refer to the original o in the
sequel.
We shall now introduce some notions on measure-preserving transfor-

mation following Halmos. We call a square of the form [21,7, f;’,,l)x
{ L j—{—lﬁ e qe . _— n_

Lons “on-) @ diadic square of rank #, #=0,1,---, 7,7=0,1,---,2*—1). We
mean by permutation an invertible measure-preserving transformation which
maps each diadic square of rank » onto a diadic square of rank #z by an
ordinary translation. A cyclic permutation of rank » is a permutation that
acts as a cyclic permutation on the diadic square of rank #. (This means
that there is only one cycle). A subbasic neighborhood of an invertible
measure-preserving transformation S is a set of the form:

N(s)=N(s: E,e)={T: P(SE~TE) < ¢}

where E is a measurable set and ~ means symmetric difference. Then we
have

Lemma 6 (P.R. Halmos)!®, Every neighborhood contains cyclic permutations
of arbitary high ranks.

By a diadic step function of rank M we shall understand a function of
the form:

oM _q
4.2) flo)= i%  LiiZ 4, {(@)

10) See [4, p. 65].
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where Aijz[ngnw, "H) [2"’ , ]+1 ) and x,(-) is the indicator of the set

A. For any given measurable functlon f, there exists a sequence of diadic
step functions f, such that

1 1
P(Ifu@) —r@i> 1)< L.
Then the measure-preserving property of 7, implies

43 PR — Aol > )= P(fu@) - f@)] > =)< L

Since X satisfies
@) P Ao <-S)< o for [hl= 4

for any #. Fixing » for a while, we shall write g(T_s*@) and & for fn(T_gk(t))‘
2nC
as in for g.

Now we shall discuss some properties of the random sequence {g(T_;"w)
n=0,+x1,--}. Write m for 2x»’C and define T, B}, Blyaj» and D¢y by
4.5) T= T—B; Bi]l‘ = TlAijy B(%j)(i/j/) = Bijl NAiy s

. — -1
Dépwp=T B(f'j)(ifj/)y for ll|=m.

and respectively. Let M be the rank of g. We use the same notations

Thus we have Ai]‘:(v) D(%j)(i/]‘/) and D(éj)wj/)[\D(%j)(,,m):qS unless i =mn and
i

7 =m. Since the system {D¢;qu ,} is finite, there exists a class of disjoint

measurable sets D; 1<i=<k, such that each D}, can be expressed as the

sum of those sets taken from among {D,} and the set T'D, is contained in

a certain set A4,, for any i and any / so that

(4.6) g(T'w) = constant (depending on /) for we D, .

Using [Cemma 6, we can find a cyclic permutation of arbitary high rank
N(> M), say @, such that

4.7 PQD,~TD)) < ¢ i=1,-,k,

where 5/=ﬁ21/%' We shall estimate the difference between g(7"w) and

2(Q"®). When [/ is positive, it is clear that
-1
(4.8) Pe(T'w) #+ g(Qw)) = g} P(T"'Q'w) # g(T"1Q"w))

noting that if we D, and if Qwe TD; then g(I''*'Qw)=constant by (4.6),
we have
(4.9) PE(T"Q'w) #+ g(T Q™ w))
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=PQ'w; g(T""'Tw) # g(T" " 'Qw))
= P(g(T" " 'Tw) # g(T""'Quw))

P

1 Pe(T "' Tw)+ g(T"'Qw): w € D))

J

&

é P(TDjNQDJ) < kE, .
j=1

J

Therefore the left side of is less than |/|ke’ for />0 and it is also
true for /<0, so that

“.10) PG|l =m; gQ)#g(TO)= 3 |1k’ <.

Suppose now that {F,--- F,~_,} is the partition of £ into diadic squares
of rank N such that

(4.11) QF, =Fiyy, (#4"—1), QFy_ =F,,

where F, = [O, ~21N——> X [0, 21,\,) Each F; is contained in some A;; since the

rank N of @ is large than M.
Let S be a measure-preserving point transformation which maps o=

(van + x, 12/‘]/\,— —]—y)e F; to

(412) So=(x Jy +7)

under the identification (x,y+1)= (x+ —21,\,*, y). Then S carries F; onto

[0, 21N> ><‘[» 2’Nﬁ , Z;;,l) under the same identification.

Define the transformation Q, by

“13) Q) =(ry+L o)

under the identification (x,y+1)=(x+ ~21N*, y) and (x+1,9) =(x,»). Then Q,
is a 1-1 measure-preserving point transformation such that @,.,= @Q, and
(4.14) 2(S7'QsSw) = g(Qw) .

It is evident that the process {g(S7'Q Sw), —oo < ¢ < co} is continuous in
probability by definition, but we shall here estimate the fluctuation of
2(S7'Q,Sw) more precisely. For any ¢ if |/—s| =0, then Q,(x,y) belongs to
the same diadic square of rank N as one of Qu/x,¥), Q.s(x,y) and Q,_s(x, )
does, so that
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@15 P(3s:1t—sI=0, |4(57QS0) — g(57QSW)| > 2

= P(3h: 14 25, |2(57QuS) — g(@)| > )

= P(18(57Qs50) — ()| > )+ P(|2(57'Q-s50) — g(@)| > )
= 2P(18(5Qs50) —g(@)| > -

= 2 P((Q0) # &(Tw)) + P(|&(T) — 2(@)| > > )]=-&

(by (4.4) and [(4.10)) .

Next we shall estimate the difference between two processes X(¢, w)Tand
2(571Q,Sw). Take any ¢ such that |¢]<md=n. Then we have

(416)  P(12(5Qi50) — X(t, @) > )
= P(12(57QS0) — g@a)| > )+ P(2(@) = o(T')

+ P(1(T'0) — XU, )| > - )+ P(|XUB, 0) — Xt )| > —-)

where (I—1)0=<t< 0. Applying and (4.15) to the right side of
this inequality, we have

(@17) P(18(571QiS0) — X(t, )| > o)<,

which implies that {£,(S7!Q,Sw), —co < ¢t < oo} belongs to V(X, —2—)

Next we shall show that there is a sequence of ergodic processes which
converges to g(S7'Q,Sw) in the V-topology.

Define the transformation R® by modifying @, slightly as follows

) ¢ 1
(4.18) R, 9) = (%, 3+ 5 o)

under the identification (x, y+1)=(x+a,y) and (x+1,9)=(x, y). {R2} is ergodic
for any irrational « [7].

We define {G2%,i=0,%1,%+2,--.} and {H,,i=0,x1,£2,---} by

RAGo =G, Gy=[0, 5 )% [0 ) »
4.19)

QoHy=Hyp Hy=[0, 5y )% [0, 5 ) -
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Then we have SF;= H; mod (4¥) and

P | riqli
(4.20) P(H,~G; )_zera—a‘ 2]z
Hence

(4.21) P(g|S™'Q,Sw) # g(S™'R2Sw))

&
= ZO P(g(S7'QSw) + g(ST'R*Sw) ; w € Fy)
l1 | ]
~ (r; N [ e N
< P(H;~ GOV =2 5y “;’(zzv +1)2
where (1—1)0 <t <. For irrational a such that

1 1 1
|

SN 2( gy +1)27 K2

b

the right side of (4.21) is less than —71; if |[¢#|<wn. This implies that

{&(STRSw), —00 < ¢ < o0} belongs to V(X, 1),
Finally we can easily show that this ergodic process is continuous in
probability, because for any positive ¢,
4.22)  P@3h; k| =0, g(STIRELS®) # g(STIR2Sw))
= P(g(S7' R 5.S0) #+ g(ST'R,"Sw) + P(g(S™ R 5.Sw) # &(S™'R"Sw))

= 2P(g(STR%S) # £(@) S24Y- gy gy e = 2.

This completes the proof of [Theorem 2.

§5. On the case of Gaussian processes.

For the given process {X(f, w), —o0o << o} we may assume EX({, w)=0
without loss of generality.
Let o(t) be the covariance function of this process and consider the

spectral decomposition
G.1) o) =] " e aF Q).

Firstly we discuss the case in which the spectral measure F is absolutely
continuous with respect to Lebesgue measure, say F’'=f.
Set

5.2) g(s)=| j’ ¢l £1132 4
then
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5.3) pt)=[ " z(s)els+1)ds.

This implies that the process {)?(t, ®), —oo < f < co} defined by

(5.4) Kt ) =[ " gls)dB(s +1, ),

(this integral is the Wiener integral) is Gaussian with the same probability
law as the given process.

We remark that if g,,g, --- is a sequence of L,RY)-function which con-
verges to g in the L,(R')-sense, then the sequence of { X(¢, w), —oo < ¢ < 0},
defined by

(5.5) Xt @) = [ g.(s) dB(s +1,0),
converges to (X(f, w)—oo <t < oo} in the mean bacause

(5.6) E(X® (@ 0) — Xt ) = [ (g(s) —g(s)'ds — 0.

n-—»o0

Hence the covariance function p,(#) of {X™(¢4 w). —co < ¢ < oo}, converges to
o) uniformly in ¢#. Therefore the characteristic functional, determined by
the covariance function
i ’§c 0ij(tj,w) - ’Li onlti=t0:0;

(6.7) Ee ™! =g * B
tends to that of the process {X({#, w), —oco < ¢ < oo} uniformly in (&, -, ).

If we take a sequence of step functions for g,, #=1, then we can see
that is true for our special case.

For general spectral measure we approximate F by a sequence of
absolutely continuous spectral measures {F,} so that lim F,(2) = F(1) at all

continuity points of F. Then the sequence of covariance functions of the
{F,} converges to p(f) uniformly in every finite interval. Therefore the
sequence of stochastic processes of {F,} converges to {X({ w), —o0 <t < oo}

in the U-topology. This implies that is true for general Gaussian
processes. \

§6. Proof of Theorems 5 and 6.

Since we can carry out the proof of Theorems 5 and 6 as we did for
processes in the previous sections, we shall here give only a brief sketch
of the proof.

Corresponding to «,(w) defined for Brownian motion B(, ) in §2, we
shall define a,(w) for the random sequence &,(w), in the following way:
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6.1)  @(@=n+min{i;i=z —n [{i(@)| =1, (@) > 1, [fm(w)| > 1}

It is evident that P(a.(») < o) =1, because

6.2)  Plau(w)= )
SP@Eiz —n |E)| S D+ I PGkt [En (@) =1, kn < ko < (ko D)

=0.

We can easily verify the following properties of the probability law of
a.(w) which we shall here denote by P,(i) = P(a.(®w) =1);

(a.1) P.() is constant for 0 <i<# and decreasing for i=n-+|1.

@2  Pi)= 3 GOKP.k—D—Py®)

where Ck(i)z—'}ef, 0=i=k—1, =0, i1=k.

(a.3) For any positive m and e, there exists n,(m,¢) such that, if 2=
ny(m, €)

Pla(w)=ay(w)—i, li|<m)>1-—¢.

First we shall restrict ourselves to the case that | X, (w*)| < N for some
N independent of » and w*. Take a proper sample path, say {X.(®,*), n =0,
+1...}, as follows

k k
72 riXilwe*) i 21X )
ik

0
(6.3) limv—;l;« E gd=k ! = Fe '™

for any rational »; and &.

By the boundness of the random sequence it is evident for above
{Xn(@o*); n= 07 +1 }

4 1 0‘ ij ,yi kﬂij(wa*) i IZ kﬂij(w*)
.1 = b
(6.4) lim- - > e = Fe
l=—-n

for any 6; and %

Define Fy(n, w) by

(6.5) Fy(n, @) = X_ o m(@™) -

Corresponding to Lemma 4 we have

Lemma 7. The sequence {Fi(n,w), n=0,=+x1---} converges to {N,(o*),n=
0,%+1--} in law.

For the general strictly stationary and ergodic sequence {X,(w¥),n =0,
+1 .-} we define {Y,""(w*), =0, %1, ---} by
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Xo(@%) for | Xu(o*)| =N
(6.6) Y, M(w*) =
0 otherwise.

Then {Y,¥(w*), n=0,+1-.-} is strictly stationary, bounded and ergodic
for each N and converges to the given random sequence in probability as
N—oo. Since is true for {Y,™(o*), n=0, £1 ..}, it is also true
for {X,(0*), n=0,+%1---}.

On the approximation of {Fy(», w),n=0,+1-.--} by the polynomial se-
quence we can make similar discussion as in §3.

For the proof of we may assume that X,(o*) is written as
X (0*) = f(T""w*) by a measure preserving transformation 7 on the unit
interval [0,1) associated with Lebesque measure. It is enough to apply the
theorem of J.C. Oxtoby and S.M. Ulam to this transformation 7 in order
to prove

Department of Mathematics
Kobe University.
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