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In a former paper [6], the author developed a theory of ordinal numbers
independently of the set theory and then constructed the set theory in the
theory of ordinal numbers.

In that theory, we used only the predicates $<,$ $=$ and only the functions
$N,$ $\max$ , Iq, $j,$ ${\rm Min}$ , Rec, and $\chi$ . (We used other special variables and func-
tions $0,$ $\omega,$

$\delta$ , represented by the above described $f\dot{u}nctions.$ )

In this paper, we shall call a function semi-recursive if it is represented
by $N,$ $\max$ , Iq, $j,$ ${\rm Min}$ and Rec, and a semi-recursive function recursive, if
every ${\rm Min}$ in the function satisfies the well-known condition as in the case
of the recursive functions of natural numbers (to be given precisely later).

We shall define, moreover, $M_{a}$ as the model generated by $N,$ $\max$ , Iq, $j,$ ${\rm Min}$,
Rec and the ordinals less than $a$ . $M_{a}$ is well-ordered by the original order
and has the same order type as the ordinal $\mathfrak{m}(a)$ . Then we shall prove that
an interpretation of a recursive function $f$ in the model of ordinals less
than $\mathfrak{m}(a)$ is $f$ itself and that the power of $f(a_{1}, \cdots , a_{n})$ is not greater than
the power of $\max(a_{1}, a_{n})$ , if $f$ is recursive and $\max(a_{1}, a_{n})\geqq\omega$ . It
seems very difficult to generalize this proposition to the case of semi-
recursive functions, because the consistency of the set theory could be
proved, if it is proved.

On the formalized system developed in [6], we shall prove that there
exists a recursive function $C$ such that we can replace the axiom of cardinal
by the weaker axiom $\forall x\exists y\forall z(C(x, y, z)=0\wedge y>0)$ to construct the set theory.
We shall give further the condition for the ordinal $a$ with countable power
that the ordinals less than $a$ constitute the model of the set theory.

The author wishes to express his thanks to Prof. K. Godel, who has
given him valuable remarks. This work was done under Appointment $\sup$ .
ported by the International Cooperation Administration under the Visiting
Research Scientists Program administered by the National Academy of
Sciences of the United States of America.
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\S 1. Let $O(>\omega)$ be a cardinal number and $O$ be the class of all the
ordinal numbers $<0$ . We say simply ‘

$a$ is an ordinal ‘, if $a\in O$. (We may
regard, in the following, $O$ as the class of all the ordinal numbers.) We
use the concepts on ordinals $0,$ $\omega,$ $<,$ $=,$

$a^{\prime}$ (successor of $a$), $\max(a, b)$ as usual.
Moreover we can define the following functions $N,$ $\delta$ , Iq, Eq, $j,$ $g^{1},$ $g^{2}$ from
ordinals to an ordinal.

$N(a)=\{10(=0’)otherwiseifa>0,$
.

$\delta(a)=\{ba$ $otherwiseif0<a<\omega$

and $a=b^{\prime}$ ,

$Iq(a, b)=\{01$ $otherwiseifa<b,$

.
$Eq(a, b)=\left\{\begin{array}{l}0 ifa=b,\\1 otherwise.\end{array}\right.$

$j(g^{1}(a), g^{2}(a))=a$, $g^{1}(j(a, b))=a$ , $g^{2}(j(a, b))=b$ .
$j(a, b)<j(c, d)\Leftrightarrow\max(a, b)<\max(c, d)$

V $(\max(a, b)=\max(c, d)\wedge(b<d\vee(b=d\wedge a<c)))$ .
(We use a logical symbol in this section as an abbreviation of a word or a
phrase of English.) Moreover, we shall define ${\rm Min}$ and Rec as follows. If
$f\in O^{o}$ , that is, $f$ is a function from $O$ to $O$ , we define

${\rm Min}(f)=\{0otherwisetheleastnum$
ber $a$ such that $f(a)=0$ , if $\exists x(f(x)=0)$ ’

and

$Con(f, a, b)=\left\{\begin{array}{l}f(b) ifb<a,\\0 otherwise.\end{array}\right.$

(We see easily that Con can be represented by ${\rm Min},$ $N$, Iq, Eq and $\max.$)

Let $f$ be a function from $O^{o}\times O$ to $O$ . Then we can define by the trans-
finite induction Rec satisfying

$\forall x(Rec(f, x)=f(\{y\}Con(\{z\}Rec(f, z), x, \gamma), x))$ .
(We use the notation $\{x\}A$ instead of usual notations $\lambda xA$ or $\hat{x}A$ . Rec is a
function from

$O^{(O^{O}\times O)}\times O$

to $0.$)

Now we shall define $\{\mathfrak{A}_{m,n}\}(m, n=0,1,2,3, \cdots)$ . $\mathfrak{A}_{m,n}$ is a class of functions
from $O^{o}\times\cdots\times O^{o}\times O\chi\cdots\times O$ to O. (Especially $\mathfrak{A}_{0.0}\subset O.$) If $\alpha\in \mathfrak{A}_{m,n}$ , then $\alpha$

$\overline{m}$ $\overline{n}$

is of the form
$\{f_{1}, \cdots, f_{m}, x_{1}, \cdots, x_{n}\}f(f_{1}, \cdots,f_{m}, x_{1}, \cdots, x_{n})$ .
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$If^{r}no$ confusion is likely to occur, we use the notations like

$f(f_{1}, \cdots, f_{m}, x_{1}, \cdots, x_{n})\in \mathfrak{A}_{m,n}$ .
$\{\mathfrak{A}_{m,n}\}$ is defined as the least classes satisfying the following conditions.

1. $\{x\}x\in \mathfrak{A}_{0,1}$ .
2. If $f(f_{1}, \cdots, f_{m}, x_{1}, \cdots , x_{n})\in \mathfrak{A}_{m,n}$ , then

$\{f_{1}, \cdots,f_{m+k}, x_{1}, \cdots, x_{n+l}\}f(f_{1}, \cdots,f_{m}, x_{1}, \cdots, x_{n})\in \mathfrak{A}_{m+k,n+l}$ .
3. If $f(f_{1}, \cdots, f_{m}, x_{1}, \cdots, x_{n})\in 9I_{m,n}$ and $(k_{1}, \cdots, k_{m})$ and $(l_{1}, \cdots , l_{n})$ are any

permutations of $($1, $\cdots$ , $m)$ and $(1, \cdots, n)$ respectively, then
$\{f_{k_{1}}, \cdots,f_{km}, x_{\iota_{1}}, \cdots, x_{\iota_{n}}\}f(f_{1}, \cdots, f_{m}, x_{1}, \cdots, x_{n})\in \mathfrak{A}_{m.n}$ .

4. If $f(f_{1}, \cdots,f_{m}, x_{1}, \cdots, x_{n})\in \mathfrak{A}_{m,n}$ , then
$\{f_{1}, \cdots,f_{m}, x_{1}, \cdots, x_{n}\}f_{1}(f(f_{1}, \cdots,f_{m}, x_{1}, \cdots, x_{n}))\in \mathfrak{A}_{m,n}$ .

5. If $f(f_{1}, \cdots, f_{m}, x_{1}, \cdots , x_{n})\in \mathfrak{A}_{m,n}$ and $g(f_{1}, \cdots, f_{m}, x_{1}, \cdots , x_{n})\in \mathfrak{A}_{m,n}$ then
$N(f(f_{1}, \cdots,f_{m}, x_{\iota}, \cdots, x_{n}))$ ,
$j(f(f_{1}, \cdots,f_{m}, x_{1}, \cdots, x_{n}), g(f_{1}, \cdots, f_{m}, x_{1}, \cdots, x_{n}))$ ,
$\max(f(f_{1}, \cdots, f_{m}, x_{1}, \cdots , x_{n}), g(f_{1}, \cdots , f_{m}, x_{1}, \cdots, x_{n}))$ and
$Iq(f(f_{1}, \cdots, f_{m}, x_{1}, \cdots, x_{n}), g(f_{1}, \cdots, f_{m}, x_{1}, \cdots, x_{n}))$ belong to $\mathfrak{A}_{m,n}$ .

6. If $f(f_{1}, \cdots , f_{m}, x_{1}, \cdots, x_{n})\in \mathfrak{A}_{m,n}$ , then
${\rm Min}(\{x\}f(f_{1}, \cdots,f_{m}, x, x_{2}, \cdots, x_{n}))\in 91_{m,n-1}$ .

7. If $f(f_{1}, \cdots,f_{m}, x_{1}, \cdots , x_{n})\in?l_{m,n}$ and $g(f_{2}, \cdots , f_{m}, x_{2}, \cdots , x_{n})\in \mathfrak{A}_{m-1.n-1}$ , then
$Rec(\{f, x\}f(f,f_{2}, \cdots, f_{m}, x, x_{2}, \cdots, x_{m}), g(f_{2}, \cdots,f_{m}, x_{2}, \cdots, x_{n}))\in \mathfrak{A}_{m-1.n-1}$ .

Clearly we have the following propositions.
PROPOSITION 1. Every $\mathfrak{A}_{m.n}$ is countable.
PROPOSITION 2. If $f(f_{1}, \cdots , f_{m}, x_{1}, \cdots, x_{n})\in 9l_{m,n}$ ,

$g_{1}(f_{1}, \cdots, f_{k}, x_{0}, x_{1}, \cdots, x_{l})\in \mathfrak{A}_{k,l+1},$ $\cdots,$ $g_{m}(f_{1}, \cdots,f_{k}, x_{0}, x_{1}, \cdots, x_{l})\in \mathfrak{A}_{k.l+1}$

and $h_{1}(f_{1}, \cdots, f_{k}, x_{f}, \cdots, x_{l})\in \mathfrak{A}_{k,l}$ ,
$h_{n}(f_{1}, \cdots , f_{k}, x_{1}, \cdots, x_{l})\in \mathfrak{A}_{k,l}$ , then

$f(\{x\}g_{1}(f_{1}, \cdots,f_{k}, x, x_{1}, \cdots, x_{\iota}),$
$\cdots,$

$\{x\}g_{m}(f_{1}, \cdots,f_{k}, x, x_{1}, \cdots, x_{\iota})$ ,
$h_{1}(f_{1}, \cdots,f_{k}, x_{1}, \cdots, x_{\iota}),$ $\cdots,$ $h_{n}(f_{1}, \cdots, f_{k}, x_{1}, \cdots, x_{l}))\in \mathfrak{A}_{k.l}$ .

DEFINITION. We call a function $\alpha$ to be semi-recursive, if $\alpha\in \mathfrak{A}_{m,n}$ for
some $m,$ $n$ .

Clearly a semi-recursive function is constructed from $N,$ $\max$ , Iq, $j,$ ${\rm Min}$

and Rec.
DEFINITION. $\mathfrak{M}_{a}=$ { $f(b)|f\in \mathfrak{A}_{0,1}$ and $b<a$ }.
Clearly we have the following propositions.
$p_{ROPOSITION}3$ . If $ a\geqq\omega$ , then the $pon$er of $\mathfrak{M}_{a}$ is equal to the power of $a$ .

(The power of $a$ means the power of $\{x|x<a\}.$)
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PROPOSITION 4. $f(x_{1}, \cdots , x_{n})\in \mathfrak{A}_{0,n}$ and $a_{1}\in \mathfrak{M}_{a},$
$\cdots,$

$a_{n}\in \mathfrak{M}_{a}$ , then $f(a_{1},$ $\cdots$ , $ a_{n}\rangle$

$\in \mathfrak{M}_{a}$ .
Definition of the bounded minimum.

$Em(f, a)=\{0otherwisetheleastnum$
ber $b$ such that $f(b)=0\wedge b<a$ , if exists such $b$ ,

The bounded minimum $Bm(f, x)$ clearly belongs to $\mathfrak{A}_{1.1}$ and is represented.
by ${\rm Min}(\{y\}\max(f(y), Iq(y, x)))$ .

DEFINITION. ${\rm Min}$ in ${\rm Min}(f)$ is called recursive, if $\exists x(f(x)=0)$ .
DEFINITION. A semi-recursive function is called recursive, if every ${\rm Min}$

contained in this function is recursive or is bounded.
As usual, it is easily proved that there exists an ordinal $\mathfrak{m}(a)$ and one $\cdot$

to one mapping $\tau_{a}$ from $\mathfrak{M}_{a}$ onto $\{x|x<\mathfrak{m}(a)\}$ satisfying

$a_{1}\in \mathfrak{M}_{a},$ $a_{2}\in \mathfrak{M}_{a},$ $a_{1}<a_{2}\rightarrow\tau_{a}(a_{1})<\tau_{a}(a_{2})$ .
DEFINITION. $\mathfrak{A}_{m.n}^{a}$ is defined by

$\{\{f_{1}, \cdots, f_{m}, x_{1}, \cdots, x_{n}\}f(f_{1}, \cdots,f_{m}, x_{1}, \cdots, x_{n}, b)|$

$f(f_{1}, \cdots , f_{m}, x_{1}, \cdots , x_{n+1})\in \mathfrak{A}_{m,n+1}$ and $b\in \mathfrak{M}_{a}$ }.

PROPOSITION 5. If $f(f_{1}, f_{m}, x_{1}, x_{n+k})\in \mathfrak{A}_{m,n+k}^{a}$ , $a_{1}\in \mathfrak{M}_{a},$ $a_{k}\in \mathfrak{M}_{a},$ .
then $f(f_{1}, \cdots,f_{m}, x_{1}, \cdots, x_{n}, a_{1}, \cdots , a_{k})\in \mathfrak{A}_{m,n}^{a}$ .

DEFINITION. If $f\in \mathfrak{A}_{0,1}^{a}$ and $\tau_{a}(f(b))=g(\tau_{a}(b))$ for every $b\in \mathfrak{M}_{a}$ , then we
say ‘

$g$ is an $f^{\tau_{a}}$ .
LEMMA 1. If $a_{1}\in \mathfrak{M}_{a}$ and $a_{2}\in \mathfrak{M}_{a}$ , then $\tau_{a}(N(a_{1}))=N(\tau_{a}(a_{1})),$ $\tau_{a}(\max(a_{1}, a_{2}))=$

$\max(\tau_{a}(a_{1}), \tau_{a}(a_{2})),$ $\tau_{a}(Iq(a_{1}, a_{2}))=Iq(\tau_{a}(a_{1}), \tau_{a}(a_{2}))$ and $\tau_{a}(j(a_{1}, a_{2}))=j(\tau_{a}(a_{1}), \tau_{a}(a_{2}))$ .
LEMMA 2. $Ifg$ is an $f^{\tau_{a}}$ and ${\rm Min}$ in ${\rm Min}(f)$ is recursive, then $\tau_{a}({\rm Min}(f))$

$={\rm Min}(g)$ .
PROOF. We set $b={\rm Min}(f)$ . Then $f(b)=0$ , so $g(\tau_{a}(b))=0$ . If there exists

$c$ satisfying $c<\tau_{a}(b)$ and $g(c)=0$ , then $\exists d(c=\tau_{a}(d)\Lambda d\in \mathfrak{R}?_{a})$ . Clearly $\tau_{a}(f(d))$

$=g(\tau_{a}(d))=0$ and $d<b$ , which is a contradiction.
LEMMA 3. If $g$ is an $f^{\tau_{a}}$ and $b\in \mathfrak{M}_{a}$ , then $\tau_{a}(Bm(f, b))=Bm(g, \tau_{a}(b))$ .
PROOF. If $\exists x(f(x)=0\Lambda x<b)$ , then the proof is done in the same way as

in the proof of Lemma 2. We consider therefore the case when $\forall x(x<b|-$

$f(x)>0)$ . Then we have only to prove $Bm(g, \tau_{a}(b))=0$ . Let $c=Bm(g, \tau_{a}(b))$

$>0$ . Then $c<\tau_{a}(b)\wedge g(c)=0$ , so there exists $d$ such that $d\in \mathfrak{R}$? and $c=\tau_{a}(d)$ ,

which is a contradiction.
THEOREM 1. If $\{f_{1}, \cdots, f_{m}, x_{1}, \cdots, x_{n}\}f(f_{1}, \cdots , f_{m}, x_{1}, \cdots, x_{n})\in \mathfrak{A}_{m,n}$ is recursive

and $g_{i}$ is an $f_{i^{\tau_{a}}}$ and $a_{i}\in \mathfrak{M}_{a}$ for each $i$ ( $i\leqq m$ and $i\leqq n$ respectively), then
$\tau_{a}(f(f_{1}, \cdots,f_{m}, a_{1}, \cdots, a_{n}))=f(g_{1}, \cdots,g_{m}, \tau_{a}(a_{1}), \cdots, \tau_{a}(a_{n}))$ .

PROOF. We prove this by induction on the number of stages to construct
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$f$. If the outermost function of $f$ is other than Rec, then the theorem is
clearly proved by Lemmas 1-3 and the hypothesis of the induction. There-
fore, we hav $e$ only to prove the theorem in the case, when $f$ is of the form

$Rec(\{f, x\}g_{1}(f,f_{1}, \cdots,f_{m}, x, a_{1}, \cdots, a_{n}), g_{2}(f_{1}, \cdots, f_{m}, a_{1}, \cdots, a_{n}))$ .
We set $c=g_{2}(f_{1}, \cdots,f_{m}, a_{I}, \cdots, a_{n})$ . From the hypothesis of the induction
follows $\tau_{a}(c)=g_{2}(g_{1}, \cdots , g_{m}, \tau_{a}(a_{1}), \cdots , \tau_{a}(a_{n}))$ . Therefore we have only to prove

$\tau_{a}(Rec(\{f, x\}g_{1}(f,f_{1}, \cdots,f_{m}, x, a_{1}, \cdots, a_{n}), c))$

$=Rec(\{f, x\}g_{1}(f,g_{1}, \cdots,g_{m}, x, \tau_{a}(a_{1}), \cdots, \tau_{a}(a_{n})), \tau_{a}(c))$ .
We prove this by the transfinite induction on $c$ with the condition $c\in \mathfrak{M}_{a}$ .
We set

$\{y\}f_{0}(y)=\{y\}Con(\{z\}Rec(\{f, x\}g_{1}(f,f_{1}, \cdots,f_{m}, x, a_{1}, \cdots, a_{n}), z), c,y)$ ,

then $Rec(\{f, x\}g_{1}(f,f_{1}, \cdots,f_{m}, x, a_{1}, \cdots , a_{n}), c)=g_{1}(f_{0}, c)$ .
Clearly we have $f_{0}\in \mathfrak{A}_{0.1}^{a}$ .
However, if $c_{0}\in \mathfrak{M}_{a}$ , then

$\tau_{a}(f_{0}(c_{0}))=\{0^{a}otherwise\tau(Rec(\{f,x\}g_{1}(f,f_{1}, \cdots,f_{m}, x, a_{1}, \cdots, a_{n}), c)$

if $c_{0}<c$ ,

By the hypothesis of the transfinite induction, we have

$\tau_{a}(f_{0}(c_{0}))=\{0otherwiseRec(\{f,x\}g_{1}(f, g_{1}, \cdots,g_{m}, x, \tau_{a}(a_{1}), \cdots, \tau_{a}(a_{n})), \tau_{\alpha}(c_{0}))$

if $c_{0}<c$ ,

Hence we have
$\{y\}g_{0}(y)=\{y\}Con(\{z\}Rec(\{f, x\}g_{1}(f,g_{1}, \cdots,g_{m}, x, \tau_{a}(a_{1}), \cdots, \tau_{a}(a_{n})), z), \tau_{a}(c),y)$

is an $f_{0^{\tau_{a}}}$ .
In virtue of this and the hypothesis of the induction we have

$\tau_{a}(g_{1}(f_{0}, c))=g_{1}(g_{0}, \tau_{a}(c))$

$=Rec(\{f, x\}g_{1}(f,g_{1}, \cdots,g_{m}, x, \tau_{a}(a_{1}), \cdots, \tau_{a}(a_{n})), \tau_{a}(c))$ .
THEOREM 2. If $f(x_{1}, \cdots, x_{n})$ is recursive and $a_{1}\in \mathfrak{M}_{a}$ , , $a_{n}\in \mathfrak{M}_{a}$ , then

$\tau_{a}(f(a_{1}, \cdots, a_{n}))=f(\tau_{a}(a_{1}), \cdots, \tau_{a}(a_{n}))$ .
THEOREM 3. If $f(x_{1}, \cdots, x_{n})$ is recursive, then the power of $f(a_{1}, \cdots , a_{n})$ is not

greater than the power of $\max(a_{1}, \cdots, a_{n})$ provided that $\max(a_{1}, \cdots , a_{n})\geqq\omega$.
PROOF. Let $a=\max(a_{1}, \cdots, a_{n})$ . Then $\tau_{a}(f(a_{1}, \cdots, a_{n}))=f(a_{1}, \cdots, a_{n}),$ $\tau_{a}(f(a_{1}$ ,

... $a_{n}$)) $<\mathfrak{m}(a)$ and the power of $\mathfrak{m}(a)$ is equal to the power of $a$ .
Let $\Omega$ and $\Omega_{0}$ be two cardinal numbers and $\Omega_{0}<\Omega$ . It follows from

Theorem 3 that $\exists x(x<\Omega\wedge g(x, a_{1}, \cdots, a_{n})=0)$ implies $\exists x(x<\Omega_{0}\wedge g(x, a_{1}, , a_{n})$

$=0)$ for $a_{1}<J2_{0},$ $\cdots$ , $a_{n}<\Omega_{0}$ and a recursive function $g$. We see, therefore,
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a recursive function $f$ of the ordinal numbers $<\Omega$ remains recursive, everh

if the domain of $f$ is restricted to $\Omega_{0}$ .
\S 2. In this section, we shall prove that the functions defined in [6]

are almost recursive. Some acquaintance with [6] is assumed in this sec-
tion.

In this section we confine ourselves to the system of axioms obtained
-from the syst$em$ of axioms in [6] by removing the axiom of cardinal. But
instead of the axioms II 1-7 we shall use the following axioms:

II. 1. $\forall p\forall x\forall y(x=y|-p(x)=p(y))$ .
2. a) $\forall p\forall x(p(x)=0-p({\rm Min}(p))=0\wedge x\geqq{\rm Min}(p))$ ,

b) $\forall p(p({\rm Min}(p))=0\vee{\rm Min}(p)=0)$ .
3’. $\forall p\forall x\exists z\forall y(y<x\leftarrow p(y)<z)$ .
7. $\forall p\forall x(Rec(p, x)=p(\{y\}Con(\{z\}Rec(p, z), x,y), x))$ ,

where $Con(f, a, b)$ is the abbreviation of a composition of ${\rm Min},$ $N$, Iq, Eq
and $\max$ , and satisfying the axiom of contraction in [6]. We see easily
$\{f, x,y\}Con(f, x,y)$ is recursive. We can easily define $S(f,g, b, a)$ satisfying
the axiom of sum in [6] as a recursive function and also a recursive func-
tion $T(f_{1}, \cdots , f_{m}, a_{1}, \cdots , a_{n})$ for every primitive formula $F(f_{1}, \cdots , f_{m}, a_{I}, \cdots , a_{n})$ ,

whose quantifiers are all bounded, satisfying the following formula:
$\forall p_{1}\cdots\forall p_{m}\forall x_{1}\cdots\forall x_{n}(T(p_{1}, \cdots, p_{m}, x_{1}, \cdots, x_{n})=0 F(p_{1}, \cdots, p_{m}, x_{1}, \cdots, x_{n}))$ .

(See [6], Chapter II, \S 2 for the definition of primitive formula.) From this
and the axiom II. 3’ follows that $\{f, x\}\sup(f, x)$ is recursive. In the same
way, we see, every function defined in [6], Chapter II, \S 3 and Chapter III,
\S 1 is recursive. ($G(a, b, c),$ $a-b,$ $Od(a)$ and $C(a)$ are also defined by ${\rm Min}(z)$ ,

$(z<c\Lambda K(z, c)=j(a, b)),$ ${\rm Min}(x)(b+x=a\Lambda x<a),$ ${\rm Min}(x)(x<a^{\prime}\wedge x=a)$ and ${\rm Min}(x)$

$(x<a\wedge x\in a)$ respectively.)
Now, we shall prove that every function in [6], Chapter III, \S 4 is re-

cursive.
$C_{0}(a, b)$ is also defined by ${\rm Min}(x)(x<\omega\wedge a<B_{0}(x^{\prime}, b))$ .
The following function $H(a, b)$ is clearly recursive:

$H(O, b)=b\wedge\forall x(0<x\wedge x<\omega|-H(x, b)=H(\delta(x), b)+^{\sim}j(0, H(\delta(x), b),$ $0$))

A $\forall x(\omega\leqq x\mapsto H(x, b)=0)$ .
$A_{1}(n, a, b)$ is also defined by

$A_{1}(0, a, b)=a\wedge\forall x(\omega\leqq x\leftarrow A_{1}(x, a, b)=0)$

A $\forall x(0<x\wedge x<\omega-A_{1}(x, a, b)=A_{0}(A_{1}(\delta(x), a, b), H(x, b)))$ .
$Cp(a, b)$ is also defined by ${\rm Min}(x)(B_{1}(x, b)>a\wedge\omega<x)$ . Therefore we have

that $A(a, b, c)$ is recursive.
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Now we define recursive functions $A(b, c)$ and $C(b, x, c)$ by $\sup(\{x\}A(x,$ $b$ ,
$c),$ $b$) and the following formula respectively:

$C(b, 0, c)={\rm Min}(z)(z<A(b, c)\wedge\exists y(y<b\wedge z=A(y, b, c)))$

A $\forall x(x>0\mapsto C(b, x, c)={\rm Min}(z)(z<A(b, c)\wedge\exists y(y<b\wedge z=A(y, b, c))$

$\wedge\forall u(u<A(b, c)\leftarrow Con(\{v\}C(b, v, c), x, u)<z)))$ .
Then from [6], Chapter III, \S 2 follows the following theorem:

THEOREM 4. We can construct the set theory in the system of axioms I. 1-24
in [6] and II. 1, 2, 3’, 7 and $\forall x\exists y\forall z(C(x, y, z)=0\wedge y>0)$ , where $C$ is a recursive
function. (the axiom of cardinal is unnecessary.)

NOTE. We use the axiom II. $3^{\prime}$ to prove the recursivity of $C$ but for
the recursivity of $C$ we necessitate only the weaker axiom, which states.
that ordinals run over the domain less than a certain ordinal number.

Now, we define the semi-recursive function $D(b)$ by ${\rm Min}(y)(\forall z(C(b,y, z)|$

$=0\wedge y>0))$ . Then $\forall x\exists y\forall z(C(x, y, z)=0\Lambda y>0)$ is equivalent to $\forall x\forall z(C(x, D(x)$ ,
$z)=0\wedge D(x)>0)$ .

THEOREM 5. If $\exists p\forall x(x<D(a)-\exists y(y<a\wedge x=p(y)))$ for every $ a\geqq\omega$ , then
the consistency of the set theory holds.

PROOF. Now, we shall consider the ordinal less than $\Omega_{2}$ . If the power
of $b$ is countable, then we have clearly $\exists y\forall x(C(b, y, x)=0\wedge y>0)$ , whence
follows $\forall x(C(b, D(b),$ $x$) $=0\Lambda D(b)>0)$ . From the hypothesis of the theorem
we see that the power of $D(b)$ is countable. Therefore, if we confine our-
selves to consider the ordinals less than $J2_{1}$ , then $\forall^{\prime}x\exists y\forall z(C(x, y, z)=0\wedge y>0)\{$

holds, where $\forall^{\prime}x$ (or $\exists^{r}y$ ) means that $\chi$ (or y) runs over the ordinals less
than $\Omega_{1}$ . The axioms I. 1-24 and II. 1, 2, 3’, 7 also hold in $l2_{I}$ , if we replace
$\forall x$ (or $\exists y$) by $\forall^{\prime}x$ (or $\exists^{\prime}y$), and we interpret $p$ as ‘for all functions from $S2_{1}$

to $\Omega_{1}$
’ etc. Hence we have the consistency of the set theory from the

hypothesis of the theorem and the axiom on the ordinals less than $\Omega_{2}$ .
THEOREM 6. If $\tau_{a}(D(b))=D(\tau_{a}(b))$ for every $a$ and $b\in \mathfrak{M}_{a}$ , then the consist-

ency of the set theory holds.
PROOF. From the hypothesis of the theorem follows

$D(b)=\tau_{b}(D(b))<\mathfrak{m}(b)$ .
Since the power of $\iota \mathfrak{n}(b)$ is equal to the power of $b$ for every $ b\geqq\omega$ , the
theorem follows from Theorem 5.

\S 3. We now define $\tau,$
$\mathfrak{M},$ $\omega_{\infty}$ by $\tau_{\omega},$

$\mathfrak{M}_{\omega},$ $\mathfrak{m}(\omega)$ and shall consider them in
this section. We assume the axiom of cardinal or the axiom $\forall x\exists y\forall z(C(x,y_{f}z)$

$=0\wedge y>0)$ in this section.
Clearly the power of $\omega_{\infty}$ is countable and the system of ordinals less

than $\omega_{\infty}$ is a model of the set theory. Theorem 2 shows that the interpre-
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tation of a recursive function $f$ in this model is $f$ itself. Especially for
every $a,$ $b,$ $c\in \mathfrak{M},$ $\tau(C(b, a, c))=C(\tau(b), \tau(a),$ $\tau(c))$ holds, so we have

$\forall x(x<\omega_{\infty}\leftarrow\exists y(y<\omega_{\infty}\wedge y>0\wedge\forall z(z<\omega_{\infty}\leftarrow C(x, y, z)=0)))$ .
In the same way as in Lemma 2, we have easily the following lemma.
LEMMA 4. Let $\{x\}f(x)$ be semi-recursive. We define $\{x\}f^{*}(x)$ from $\{x\}_{-}f(x)$

by replacing every ${\rm Min}($ $)$ in $f$ by the bounded minimum $Bm( , \omega_{\infty})$ . Then
$\tau({\rm Min}(f))=Bm(f^{*}, \omega_{\infty})$ .

In virtue of this lemma we have easily
THEOREM 7. There exists an ordinal $\omega_{\infty}$ satisfying tlte following conditions:
(1) The power of $\omega_{\infty}$ is countable.
(2) $\forall x(x<\omega_{\infty}\leftarrow\exists y(y<\omega\wedge y>0\wedge\forall z(z<\omega_{\infty}|-C(x,y, z)=0)))$ .
\langle 3) For every recursive function $f$,

$\forall x_{1}\cdots\forall x_{n}$ ($ x_{1}<\omega_{\infty\wedge}\ldots$ A $x_{n}<\omega_{\infty}\leftarrow f(x_{1},$
$\cdots,$

$x_{n})<\omega_{\infty}$).

\langle 4) For every recursive function $f$,
$\forall x(x<\omega_{\infty}-\exists z(z<\omega_{\infty}\wedge\forall y(y<x|-f(y)<z)))$ .

(5) For every semi-recursive function $f$,
$\forall x_{1}\cdots\forall x_{n}$ ($ x_{1}<\omega_{\approx\wedge}\ldots$ A $x_{n}<\omega_{\infty}\}-f^{*}(x_{1},$

$\cdots,$
$x_{n})<\omega_{\infty}$).

(6) For every semi-recursive function $f$,
$\forall x(x<\omega_{\infty}\leftarrow\exists z(z<\omega_{\infty}\wedge\forall y(y<x\leftarrow f^{*}(y)<z)))$ .

Moreover the conditions (2), (6) mean that the ordinals $<\omega_{\infty}$ constitute the model
of the set theory.

THEOREM 8. $\omega_{\infty}$ is greater than Church-Kleene’s $\omega_{\rfloor}$ . (See [1].)

PROOF. If $f$ is a recursive function from the natural numbers to the
natural numbers, then there exists a recursive function $f$ in our sense such
that $f$ is equal to $f$ on the domain of natural numbers. In this sense, $\tilde{U},\tilde{T}_{2}$

is recursive in our sense, where $U,$ $T_{2}$ are Kleene’s function and predicate
(see [3, pp. 278 and 281]). We define a new recursive function $\varphi(c, a, b)$ by
$\tilde{U}({\rm Min}(y)(y<\omega\wedge\tilde{T}_{2}(c, a, b, y)))$ and $B(c, x)$ by the following formula.

$B(c, 0)={\rm Min}(z)(z<\omega\wedge\varphi(c, z, z)=0\wedge\forall x(x<\omega\wedge\varphi(c, x, x)=0-\varphi(c, z, x)=0)$

$\wedge\forall x(x>0-B(c, x)={\rm Min}(z)(z<\omega\wedge\varphi(c, z, z)=0\wedge\forall y(y<x-7(z=B(c,y)))$

$\wedge\forall u(u<\omega\wedge\forall y(y<x-7(u=B(c,y)))\wedge\varphi(c, u, u)=0-\varphi(c, z, u)=0)))$ .
$B(c)$ is defined by ${\rm Min}(z)(B(c, z)=0\wedge B(c, z^{\prime})=0)$ . We see $\omega_{1}=\sup(B, \omega)$ by
[5], whence follows that all the ordinals not greater than $\omega_{1}$ belong to $\mathfrak{M}$

and $\omega_{1}<\omega_{\infty}$ .
NOTE. Until now, we have considered the model of Godel’s set theory.

We can consider the model of the set theory with the axiom of inaccessible
number by the sam $e$ method. Let $S_{\alpha},$ $e$ . $g.$ , be the set theory with Tarski’s
axiom $\mathfrak{A}$ (cf. [7]) and without the axiom of replacement. Then by the above
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method we see the existence of an ordinal $a_{\infty}$ satisfying the following
conditions:

(1) Th $e$ power of $a_{\infty}$ is countable.
(2) $\forall x(x<a_{\infty}-\exists y(0<y\wedge y<a_{\infty}\wedge\forall z(z<a_{\infty}\leftarrow C(x,y, z)=0)))$ .
(3) $\forall x(x<a_{\infty}-\exists y(y<a_{\infty}\wedge x<y\wedge\forall z(z<y-\overline{D}(z)<y)$

A $\forall u(u<y-\forall v(v<a_{\infty}\leftarrow u\cdot v\in y))))$ ,

where $\overline{D}(b)$ is the abbreviation of ${\rm Min}(u)(\forall v(v<a_{\infty}-C(b, u, v)=0)\Lambda u>0)$ and
$b\cdot c$ and $b\in c$ are recursive function and predicat $e$ defined in [6, p. 106].

Conversely the conditions (2), (3) mean that the ordinals $<a_{\infty}$ constitute
the model of $S_{a}$ .

Tokyo University of Education.
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Correction of ‘ On the theory of ordinal numbers ’ ([6]).

p. 1. Errata Corrections
96 8 $\forall x\forall y7(x<y\wedge y<x)$ $\forall x\forall y\forall z(x=y\Lambda$ y $=z$ –x $=z)$

$96$ 26 $|-$ $\leftarrow 1$

97 1 2.4. 24.
97 4 $((x=y$ $(x=y$

98 30 $T(f, \cdots , g, a, \cdots , b)$ . $T(f, \cdots,g, a, \cdots, b)$

98 32 $V(f, \cdots, g, a, \cdots , b))$ $V(f, \cdots, g, a, \cdots , b))$ .
100 1
100 19 $Con(\{v\}U(u), x, z)$ $Con(\{u\}U(u), x, z)$

101 3 $T(x)$ $T(a)$

103 5 $(Con(K, a, T_{2}(a)))))$ $Con(K, a, T_{2}(a))))$

103 8 $K(j(a, b))$ $K(j(a, b))$ .
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104 3 $\forall\exists xy\exists z(J(y, b)+z=x$ $0<b\rightarrow\forall x\exists y\exists z(J(y, b)+z=x$

$105$ 2 $g_{1}(\tilde{K}(x, a))<a\wedge g_{2}(\tilde{K} \tilde{g}_{1}(\tilde{K}(x, a))<a\Lambda\tilde{g}_{2}(\tilde{K}$

107 19 LEMMA 2 THEOREM 2
108 31 $x(b)$ $\chi(b)$

109 16 $p(p)$ $p(y)$

111 21 $\sup((y)A_{1}(\delta(x), y, b), b)$ $\sup(\{y\}A_{1}(\delta(x), y, b), b)$

111 29 $j(0, B_{1}(\delta(x), b),$ $0$) $\tilde{]}(0, B_{1}(\delta(x), b)_{J}0)$

112 2 $A_{3}(x, b)$ $A_{2}(x, b)$

112 6 $B_{0}(b)$ $B_{1}(b)$

112 8 $B(\delta(Cp(x, b)),$ $b$) $B_{1}(\delta(Cp(x, b)),$ $b$)

112 9 $j(u, y, z)$ $ j(u, y, z)\sim$


	On the recursive functions ...
	\S 1.
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...

	\S 2.
	THEOREM 4. ...
	THEOREM 5. ...
	THEOREM 6. ...

	\S 3.
	THEOREM 7. ...
	THEOREM 8. ...

	References


