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Superposability of the equations of magneto-hydrodynamics.
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§0. The edquations of magneto-hydrodynamics in an incompressible
viscous electrically conducting fluid are given by

2 Iy - o
& %If 4.8+ 4 [OH  cunixg)]=o, ©.1)
%?'*3X Curl g+ 45: HxCurl H
t+grad(y- ¢+ 2 —U)—raq-o0, 0.2)
divg=0, divH=0, (0.3)

the notations being classical. As in the case of equations of motion in
hydrodynamics, here also, the equations contain non-linear terms and the
solutions cannot be superposed in general. We examine below the necessary
and sufficient conditions under which two solutions of the system of equa-
tions [(0.1), (0.2, [0.3) can be superposed on one another, i. e., we seek the condi-
tions such that when (Z},, ﬁl,])l, U,) and (21;, ﬁz,pg, U,) are solutions of the
system, (31+32,1?1+Hg,p1+p2+7t, U,+U, is also a solution of the system.
Similar investigations for the hydrodynamical case have been made in some

detail [1].

§1. The equations for the first two fields are

@ %g RUN R L o Curl(A, <a)]=0, (L1
?9% qz x Curl (Iz + 4 H « Curl H

+grad(-y-ar+ - U)=raqr, A2

divg;=0, div =0 (i=1,2) (1.3)

and the equations for the field resulting from the superposition are
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e 9xH +H, 4 (H, -,
?{j_‘,,( ,at“?" H,) — 42 (}L -i-Ho)—i—“Zr% Qa_(gaj;ffl

+ Curl(H, + Hy) x (g + ) |=0, (14

M — @+ @) x Curl(g +a) + 45 4 [(H, + H)

x Curl(H, + H)] + grad[ -~ (@ .’

+ PIPEE (0,1 U) ] =1 4G+ 4D - (15)
From equations (1.2). (1.4) and we get
Curl(H, x ¢, +H,x¢,]1=0, (1.6)

ixCurl Z];—{—Z;'szurl 51—-4% ([_5[1 x Curl FI2+f12xCurl H)

—grad(cz -(};+—;—)=0. 1.7)
The field (5, ff, p, U) is self superposable when
Curl(Hxq)=0, (1.8)
— < — ﬂ — - _
Curl[gx Curl g — 4wy HxCurl H]=0. (1.9)

We examine in some detail the case where the vectors Zj, H are coplanar,
when they are both two-dimensional and axially symmetric vectors.

§2. Two-dimensional motion
q= Qx_i:c + Qy_{y’ H= [le: + Hy;; s
__ oy _ oy
q.z: - 8_’)’ ’ Qy - ax ’ (2-1)

__ 0% _ 09
xr ay ’ Hy - ax b (2'2)
where the stream lines and the lines of force are given by = constant
and ¢ = constant respectively.
From [1.6) we see that there exists a scalar function F such that

}11 X QA"!‘HO X 41 grad F. (2.2)
In terms of the functions ¥ and ¢ this condition becomes
O, ry) | 0By _
3xy) T o) =0. @3)
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Condition (1.7) now becomes

6(‘/’1’ 2"#) +6(‘/f2a 4,3 __ M 5(¢1y ?952) 5((252’ 2¢)]

3(x, 7) 0y)  ~ Amo L o(xy) 5(%,) @4
§3. Conditions for superposability in the case of axial symmetry
5: q.z'?z: -+ QG?E -+ Qw—{w s
H=Hg,+ Hsig+ Hyio -
The conditions div 5;—0 and div =0 are satisfied by taking
__ 1oy __ 1 0y
=" % 0’ T & ox
__ 1 0¢ - _ 1 04
H,= o 00’ H‘”_a) ox ’
and we may write g, =f(, ®), and H, = g(x, ®).
From we now may write
[3951 _ail’z 8‘252 f— _al@_ gg]dx
1o, 88% 9 fi W g law=ar— 2 5t @)
and
6(¢Ia 1/’2) ;0\7(@2,7'5” )
swm@ T oemw O 3.2)

By means of cross differentiation we may write from (3.1) a single equa-
tion

5(¢1’ f‘)) 6(¢2) fi) 8051 8(13“
5, @) T o, @) [ St G ]

— 0(Yry, &9) 0(rs, g1 61#1

o(x, @) ox, ») ET
From (1.7) we get

at+trg0]. 63

% [-%‘.Zl EXp, + %%2— Er + % (@*f112)

- 4/7:0 (aaqjc‘ E?,+ 8(132 E2¢I+ ox ((‘)glgz))]iz

+ z <8W1 E2‘/’2+ 61#2 E*r + o= 0o (C’)flfz)>

_ﬁ (g‘i‘ E’,+ % 90, E2¢1+5%(c32g1g2)>]55
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&<8¢1 (g — 2 2 @y + 00 D @gy — O 2 @) Ji

~ 4o\ o0 ox ox 05 8t 55 ax ox Do @8

ax R T T

dnd A
= grad(Ql g+ 7) , 3.4y
where E? is the differential operator

o* 0?

o 90 1 9
ox' T 9w T @ 0o

Writing —% +EI -Z]}zG we have the right hand of (3.4) in the form

G »  0G » , 1 8G » .
Rt o Tt D2 - (3.5)

Since 51 and 32 are axially symmetric and = also is to be axially symmetric,

we have —g% =0. In view of this we get from (3.4)
A R ALY R G
475‘0 {5(151 E*¢, + 5’(]52 B2y +-—H— (0) glg))}]djL
+ 5[ eyt B8 prp L @irip)
—‘74‘;0'{8051 Epy - a¢z B+ == a— (@ glgz)}]dw
oG
—dG — vk 3.6y
and
O, wfy) | 80y af)) _ u ﬂ@@g@_}i@_z,@gd} (3.7)
T o(x, @) o(x, ) 4o o(x, @) 0(x, @) ’ ’

From (3.6) we may derive by means of cross differentiation

O ) 4 00 EP) 2 (00 oy, O oy O @y}

8(x, @) 8(x, @)
L [ O(by, E?y) | 0(ho, E2by) od 6(250 )
ET R T S "{"‘a S Byt E ¢1+~7* @z} ] -

(3.8)

Equation (3.6) can also be written in the form

d(5) = [ B+ dn B+ d@ ) — 4 (@B,
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+dpaE, + d@igg)} | —d{ oy (G D 1 T8 O0L )

and determines the adjusted pressure.
We now indicate two specific examples of flows that are superposable.
In the case where the fields (; and H are both coplanar and independent
of the space coordinate Z, we can assume them in the form given in [2.1),
or using polar coordinates 7, 8 in the xoy-plane, we can also take them as

o (1 0y oy -
a=(7 35 9 0) “D
H=(-%, -0 5y =12, (42)

The necessary and sufficient conditions (viz., 2.3, 2.4) for the addition of
two can be written in the form

[ ) 1 <a(¢'1’ + 0y, 1) >} ,

06 L a(r, 0) o(r, 6)
S (o + 25 i ) o]=0 43)
and
oo+ 25+ ]
Lot (5 + G0 as

Writing ~/ _H gi=¢, i=1,2, these equations give

a@”n—z) a(‘p’o; Qb )
80[ o, 6) 20y 1=0> (4.5)
Ol 8, ) 4 0k, )
orL v 9(r,0) a(r, 6) ] 0, (4.6)
By drs) | (s, A 3(py, dogpy) (o, dothy) ~
o, 6) T a(r, ) o, 6) a(r, 6) =0. 4.7)

Cataldo Agostinelli* [2] has shown that the fields and [4.2) satisfy the
fundamental equations and if

¢'i = A—% ]Z.ﬂ’g '+'fi(7’) 07 t) ’ (4.8)

Vim0 LB 0,0 (=1,2), (4.9)

* The results of [2] referred to here were available to the author only from the
Math. Rev., 18 (1957), p. 849.
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where %, w;, B are constants and

(i) dyf;=0 or (i) f=a= x/zf‘;?‘ and

Ofi _ _ Ofi\ _
A2< 6t TA2fi+(wi akz) 06 >—0'

It is easily seen that fields given in and satisfy the condition (4.7)
and from and we get

OUfry, by) | B(fra b)) _ o
a(;’ 0)2 + a(;’ 0) ﬁc(’) ’ (4'10)
air [‘5;@,]: 0. (4.11)
Whence we deduce that
S =gx) +axh +bx  (K=1,2) (4.12)

with gx() =a harmonic function.
We may therefore write

bi=— g b+ (At Bilog )t ad + b, (4.13)

Py =— % w7+ B(A; + Bilogr+a,0 +b;) (E=1,2) (414)

and the corresponding fields are

6= (%8, or—p {f o), (4.15)
Hy = (—‘j, har — lfi ,0) - (4.16)

Hence we have the result that

The fields defined in (4.16) are superposable. When the functions
fi(r, 6) of [4.8), satisfy the condition

o~ rafitlo—ard J)=0  (=12). @I

The conditions and and (4.7) are reduced to the form

oW, ¢y) | Oy d1) .
0,0 T o e 8N

FICas

(4.18)

and

(—ah) 5 (def)Hw,—ah) 2o (4,1)=0. (419)



Superposability of the equations of magneto-hydrodynamics. 103

We may write (4.19) also in the form (compare (4.17))
d(—742f5) + 4(—74:/)=0. 4.20)
After some calculation we get from this that
Fe=8xN)+axf +bx (K=12),
where gg(r) is a biharmonic function, i.e.,

gx(r) = Cx+dxlog r+ i"i r*+ BZLIL (log r — D)2 (421)

Hence we have

Yy=— —;‘— o7 + [Cz- +D;logr+ ‘21 7+ %— (logr— 1)72]/3

+ ﬁ(aKa + bK) ’ (4.22)

q&i:——é—hir?—]—[Cﬁ—Di log 7+ 121 7’4 ? (logr—l)ri’]

+agl + bk 4.23)

and the corresponding fields are

a=[P%, oo —(Leg i vy Birtogr—n+5 )g40,0], @29
A=[ %, (hr—L5 — Ar—Battogr—1)— B 1, 0)]. (4.25)

We have therefore the result:

The motions given by (4.24) and are superposable.

The author wishes to thank the referee for his valuable suggestions
for improving the first version of my paper.
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