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As is well-known I. Gelfand and M. Neumark [1] proved in 1943 that a
Banach algebra over the complex number field with a unit 1 and an involu-
tion $*satisfying$

(0.1) $x^{**}=x$,
(0.2) $(\alpha x)^{*}=\alpha^{*}x^{*}$ ($\alpha^{*}=the$ conjugate complex number of $\alpha$),

(0.3) $(x+y)^{*}=x^{*}y^{*}$ ,
(0.4) $(xy)^{*}=y^{*}x^{*}$

is isometric and $*$ -isomorphic to a $C^{*}$-algebra, ( $i$ . $e.$ , a uniformly closed self-
adjoint algebra acting on a Hilbert space over the complex number field) if
and only if it satisfies the following three conditions:

(0.5) $\Vert x^{*}x\Vert=\Vert x^{*}\Vert\Vert x\Vert$ ,
(0.6) $\Vert x^{*}\Vert=\Vert x\Vert$ , and
(0.7) $1+x^{*}x$ has an inverse.

Also they conjectured that
(A) this fact holds without (0.7) and
(B) this fact holds without (0.6) (and (0.7)).

It was pointed out by I. Kaplansky that M. Fukamiya [2] gave implicitly
an affirmative answer to the conjecture (A) (See J. A. Schatz’ review [3] of
[2]), and the assumption of existence of a unit was removed by I. Kaplansky
and C. E. Rickart (cf. Ioc. cit.).

Their answer is very simple and stands on the following three facts:
(0.8) A $B^{*}$-algebra without a unit is isometrically and $*$ -isomorphically

imbeddible into a $B^{*}$-algebra with a unit (I. Kaplansky, C. E. Rickart).
(0.9) The set of non-zero spectra of $xy(x,$ $y$ being elements of a Banach

algebra) coincides with that of $yx$.
(0.10) The set of hermitian elements of a $B^{*}$-algebra with a unit has a

semi-ordering $h\geqq 0$ defined by $h=k^{2}$ ($h,$ $k$ being in the set) (M. Fukamiya [2],

J. L. Kelley-R. L. Vaught [5]). \langle cf. I. Kaplansky [4] [8], M. Mimura [6]).

In this note, we shall give a direct proof of the theorem of I. Geland
and M. Neumark by making no use of (0.7) in \S 1. The present proof is not
simple, for we make use neither of (0.7) nor of $(0.8)-(0.10)$ . In \S 2, we shall
give an affirmative answer to the conjecture (B).
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\S 1. A direct proof of the theorem of I. Gelfand and M. Neumark.

A Banach algebra over the complex number field $C$ is called a $*$-algebra
if it has an involution $*satisfying(0.1)-(0.4)$ . A $*$-algebra is called a $B^{*}-$

algebra if it satisfies (0.5) and (0.6). A $*$ -algebra is called C-symmetric if every
maximal commutativel) $*$ -subalgebra of it is $B^{*}$ .

The aim of this \S is to prove the following theorem.
THEOREM 1.1. 1) A C-symmetric $*$ -algebra is homeomorphic $and*$ -isomorphic

to a suitable C’-algebra.
2) A $B^{*}$-algera is isometric and $*$ -isomorphic to a suitable $c\forall^{\prime}$ -algebra.
Let $R$ be a C-symmetric $*- algebra^{2)}$ and $h$ be an hermitian3) element of

$R$ . Denote by $R_{h}$ the $*$-subalgebra of $R$ generated by $h$ . Since $R_{h}$ is com-
mutative and contained in a maximal commutative $*$-subalgebra of $R$, it is
$B^{*}$ . By virtue of a theorem of I. Gelfand and M. H. Stone $R_{h}$ is isometric
and $*$-isomorphic to $C(\Omega_{h})$ (or $C^{\prime}(\Omega_{h})$), $f2_{h}$ being the set of spectra4) of $h$ in $R_{h}$.
The space $\Omega_{h}$ is considered as a bounded closed subset of $C;C(\Omega_{h})$ is the
$B^{*}$-algebra of complex-valued continuous functions on $\Omega_{\hslash}$ and $C^{\prime}(J2_{h})$ is the
$B^{*}$-algebra of complex-valued continuous functions $g’ s$ on $\Omega_{h}$ with $g(O)=0$,
when $R_{h}$ has no unit. For such a function $g$, we can find an element of $R_{h}$

as the inverse image of $g$ by the canonical $*$-isomorphism of $R_{h}$ onto $C(\Omega_{h})$

(or $C^{\prime}(\Omega_{h})$). Denote it by $g(t)/h$ (or $g(h)$).

We denote by $A$ the set of elements $a’ s$ of $R$ satisfying the following
condition:

(1.1) every spectrum of $a^{*}a$ is non-negative.
Now we shall begin with the following

1) Two elements $a,$ $b$ of $R$ are said to be commutative with each other if $ab=ba$

and $a^{\star}b=ba^{*}$ .
2) We do not assume that $R$ has a unit.
3) An element $h$ of $R$ is called hermitian if $h^{*}=h$ .
4) A non-zero scalar $\alpha$ is called a (left) spectrum of an element $a$ of $R$ (in $R$)

if the equation $xa-\alpha x=a$ has no solution in $R;0$ is called a (left) spectrum of $a$

(in $R$) if $a$ has no inverse. When $R$ has no unit, of course, $a$ has no inverse.
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LEMMA 1.1. If $a^{2}=0$ , then $a\in A$ holds.
PROOF. We have $a^{*}a+aa^{*}=(a+a^{*})^{2}$ and further $a^{*}a\cdot aa^{*}=aa^{*}\cdot a^{*}a=0$ .

Combining these with the fact that $a+a^{*}\in A^{6)}$ we finally get $a\in A$ by an easy
computation. $q$ . $e$ . $d$ .

LEMMA 1.2. $R$ is commutative if and only if
(1.2) $a-- ab=0$ implies ac–acb $=0$ for any $c\in R^{6}$ )

PROOF. The necessity is obvious and so we need only to see the suffi-
ciency. Let $R$ be a C-symmetric $*$-algebra satisfying (1.2). First of all, we
show that any closed left ideal $I$ of $R$ is two-sided. For an element $a$ of $I$,
we denote by $u_{n}(a)$ (or briefly by $u_{n}$) the element $g_{n}(a^{*}a)$ of $I$, where

(1.3) $g_{n}(t)=\left\{\begin{array}{l}1 (2/n\leqq t),\\linear (1/n\leqq t\leqq 2/n),\\0 (-1/n\leqq t\leqq 1/n),\\linear (-2/n\leqq t\leqq-1/n),\\1 (t\leqq-2/n).\end{array}\right.$

It is easy to see that $au_{n}\rightarrow a$ as $ n\rightarrow\infty$ . Further we have $u_{n}u_{m}=u_{m}u_{n}=u_{n}$ if
$2n\leqq m$ . Since $u_{n}-u_{n}u_{m}=0$ for $2n\leqq m$ , we have, from (1.2), $u_{n}c=u_{n}cu_{m}$ for

any $c\in R$, from which it follows that $au_{n}c=au_{n}cu_{m}\in I$. As making $ n\rightarrow\infty$ , we
get $ac\in I$ for any $c\in R$. This implies that $I$ is two-sided.7) We say that $I$

is proper if $R/I$ is not (0) and has a unit. In this sense, for any proper ideal
$I$ of $R$, there exists a maximal proper ideal $J$ of $R$ contaning $I$. Next, sup-

pose $J$ is a maximal proper (left) ideal of $R$. Since $R/J$ constitutes a normed
sfield over the complex number field $C$, we have $R/I\cong C$ by the theorem of

S. Mazur and I. Gelfand. Denote by $t_{J}$ the canonical homomorphism of $R$

onto $C$. Let $h$ be an hermitian element of $R$ . If $h\neq 0,$ $h$ has at least $\cdot one$

non-zero spectrum, say $\beta$ . And the closed (left) ideal $I$ of $R$ generated by

$(ch-\beta c;c\in R)1s$ proper8). Hence there exists a maximal proper ideal $J$ of

5) For any hermitian element $h$ of $R$ , we have $h\in A$. In fact, if $xh-\alpha x=h$ has

no solution in $R$ for $\alpha\neq 0$
) it has also no solution in $R_{\iota}$. And there is a simple

proof by M. Fukamiya with regard as $heA$ when $R$ is commutative (cf. [4]).

6) When $R$ has a unit, $R$ is commutative if and only if $ab=0$ implies $acb=0$ for
any $c\in R$ . The proof is similar.

7) We notice that $a\in I$ implies $a^{*}\in I$ for any closed two-sided ideal $I$ of $R$. In
fact, we have $a^{*}u_{n}(a^{*})\in I$ by Weierstrass’ approximation theorem. Hence we get $a^{*}\in I$.

8) We first show that $R/I\neq(0)$ . For, otherwise, we can find a sequence $\{c_{n}\}$

such that $c_{n}h-\beta c\rightarrow h$ and hence $||ch-\beta c-h||<|\beta|$ for some $c\in R$. Put $d=(1/\beta)$

$(ch-\beta c-h),$ $ x=d-d^{2}+d^{3}+\ldots$ . and $y=x+c-xc$ . Then, $yh-\beta y=h$ . This is impossible.
Hence, $R/I\neq(0)$ . Denote by – the canonical homomorphism of $R$ onto $R/I$. Put $e=$

$(1/\beta)h$ . Then $\overline{e}$ is hermitian and we have $\overline{ce}=\overline{c}$ for any $c\in R$ . This means that $\overline{e}$ is
a unit of $R/I$. Therefore $I$ is proper.
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$R$ containing $(ch-\beta c;c\in R)$ . Then we have $t_{J}(h)=\beta\neq 0$ by an easy compu-
tation. Thus we have $h=0$ if and only if $t_{J}(h)=0$ for any maximal proper
ideal $J$ of $R$ . Now, suppose $h,$ $k$ are hermitian elements of $R$. Put $x=(1/2i)$

. (hk-kh). Then, for any maximal proper ideal $J$ of $R$, we have
(1.4) $t_{J}(x)=(1/2i)(t_{J}(h)t_{J}(k)-t_{J}(k)t_{J}(h))=0$ .

Hence we get $x=0$ , that is, $hk=kh$. Since general elements of $R$ are gener-
ated by hermitian elements of $R$, this completes the proof. $q$ . $e$ . $d$ .

Denote by $N$ the set of hermitian elements of $R$.
LEMMA 1.3. 1) $N$ is closed.
2) $*is$ continuous.
$p_{ROOF}$ . THE PROOF OF 1). Let $\{h_{n}\}$ be a Cauchy sequence of elements

of $N$ Suppose its limit is not hermitian, that is, $h+ik$ for $h,$ $k\in N$ such as
$k\neq 0$ . Put $h_{n}^{\prime}=h_{n}-h$ . Then $h_{n^{\prime 2}}\rightarrow-k^{2}$ as $ n\rightarrow\infty$ . We may assume that
$\Vert h_{n}^{\prime}\Vert\leqq 1,$ $\Vert k\Vert\leqq 1$ . Denote by $P$ the polynomial ring over the complex num-
ber field $C$. It is not so hard to see that $\Vert(1-h_{n^{\prime 2}})p(h_{n^{\prime 2}})\Vert\leqq\Vert p(h_{n^{\prime 2}})\Vert$ for all
$p\in P$ with $p(O)=0$ . From this it follows that $\Vert(1+k^{2})p(-k^{2})\Vert\leqq\Vert p(-k^{2})\Vert$ for
all $p\in P$ with $p(O)=0$ . Since $k\neq 0$ , we can find a spectre9) $t$ of $R_{k}$ with $t(k)\neq 0$

(and so $t(k^{2})>0$) $\sigma$ Since $\Omega_{k}$ is compact, there exists a continuous function $g^{10)}$

on $\Omega_{k}$ satisfying (1) $g(t)=1,$ (2) $0\leqq g(t^{\prime})\leqq 1$ for $t^{\prime}\in f2_{k}$ , and (3) when $R_{k}$ has
no unit, $g(O)=0$ . Then we get I $(1+k^{2})g(k^{2})\Vert\leqq 1$ by making use of Weierstrass’
approximation theorem. Hence $1+t(k^{2})\leqq 1$ . This is impossible, for $t(k^{2})>0$ .
Thus we get 1).

THE PROOF OF 2). We introduce a norm $\Vert\cdot\Vert^{\prime}$ into $R$ defined by $\Vert a\Vert^{\prime}=$

$\sup(\Vert h\cos\theta+k\sin\theta\Vert ; 0\leqq\theta\leqq 2\pi)$ for $a\in R$, where $h=(1/2)(a+a^{*})$ and $k=(1/2i)$

$(a-a^{*})$ . In view of 1), $R$ constitutes a Banach space over the complex num-
ber field $C$ with this norm. Denote it by $R_{1}$ . Further we see that $\Vert a\Vert\leqq$

$2\Vert a\Vert^{\prime}$ . Hence $R_{1}$ is homeomorphic to $R$ by a theorem of S. Banach. Hence
we have $\Vert a\Vert^{\prime}\leqq K\Vert a\Vert$ for $a\in R$ and for some positive number $K$ independent
of $a$ . Thus we get $\Vert a^{*}\Vert\leqq 2\Vert a^{*}\Vert^{\prime}=2\Vert a\Vert^{\prime}\leqq 2K\Vert a\Vert$ . This implies 2). $q$ . $e.d$ .

Denote by $N^{+}$ the set of hermitian elements $h’ s$ of $R$ with $h=k^{2}$ for some
$k\in N$.

LEMMA 1.4. 1) $N^{+}$ is closed.
2) $A$ is closed..
PROOF. The proof of 1). Let $\{h_{n^{2}}\}$ be a Cauchy sequence of elements of

$N^{+}$ . Denote its Iimit by $k$ . Assume that $\Vert h_{n}\Vert\leqq 1,$ $\Vert k\Vert\leqq 1$ . Then we have
$\Vert(1-k)p(k)\Vert\leqq\Vert p(k)$ I for all $p\in P$ with $p(O)=0$ . Similarly as in the proof of
1), Lemma 1.3 and so every spectrum of $k$ is non-negative. Hence we get
$/\overline{h}\in N$ and $h=(\sqrt{k})^{2}\in N^{+}$ . This shows 1). The statement 2) is an immediate

9) A point $t$ of $\Omega_{k}$ is called a spectre of $R_{k}$ .
10) The only case which can not be verified by P. Urysohn’s theorem is: $R_{k}sC$.
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consequence of 1) and so the proof will be omitted. $q$ . $e$ . $d$ .
LEMMA 1.5. There exists an element $a$ of $R$ satisfying $u_{n}(a)Ru_{n}(a)\subseteqq A$ for

$n\geqq 1$ . (The $u_{n}’ s$ are defined like those in Lemma 1.2.)

PROOF. If $R$ is commutative, we have $A=R$ and so we can choose an
arbitrary non-zero element of $R$ as the element $a$ in question. On the other
hand, if $R$ is not commutative, from Lemma 1.2 it follows that there exist
three elements $b,$ $c$ , and $d$ such that $b-- bd=0$ and bc-bcd $\#$ $0$ . Here we may
assume without loss of generality that $b,$ $d$ are both hermitian. In fact,
denoting by $u_{n}^{\prime}(d^{*})$ the element $(1-g_{n}(1+t))/(dd^{*}-d^{*}-d)$ of $R$, we have $u_{n}(b)$

$-u_{n}(b)u_{n}^{\prime}(d^{*})=0$ by an easy computation. If $u_{n}(b)c-u_{n}(b)cu_{n}^{\prime}(d^{*})=0$ for any
$n$, we would have $bu_{n}(b)c-bu_{n}(b)cu_{n}^{\prime}(d^{*})-(bu_{n}(b)c-bu_{n}(b)cu_{n^{\prime}}(d^{*}))d=0$ , from
which it follows that $bc$– $bcd=0$ as making $ n\rightarrow\infty$ . This leads to a contradic-
tion. We write $a$ for bc–bcd. Since $b,$ $d$ are both hermitian, we have b–db
$=0$ and so $a^{2}=bc(b-db)(c-cd)=0$ . Hence $a\in A$ by Lemma 1.1. Denote $u_{n}(a)$

briefly by $u_{n}$ and take $v_{n}$ as the element $h_{n}(t)/(a^{*}a)$ of $R$, where

(1.5) $h_{n}(t)=\left\{\begin{array}{l}t^{-1/2} (2/n\leqq t),\\linear (0\leqq t\leqq 2/n),\\0 (t\leqq 0).\end{array}\right.$

Then we have $(au_{2n}v_{4n})^{*}(au_{2n}v_{4n})u_{n}=u_{n}$ and $u_{n}a=0$ . Hence we have
$(au_{2n}v_{4n}u_{n}xu_{n})^{*}(au_{2n}v_{3n}u_{n}xu_{n})=(u_{n}xu_{n})^{*}(u_{n}xu_{n})$ and $(au_{2n}v_{4n}u_{n}xu_{n})^{2}=0$ . Thus we
have from Lemma 1.1 $u_{n}xu_{n}\in A$ for any $x\in R$. $q$ . e. d.

REMARK. We can find the element $a$ of $R$ in Lemma 1.5 such as it is
contained in an arbitrary fixed closed ideal $I$ of $R$. In fact, if for any $a,$ $b\in I$

$a-- ab=0$ implies ac–acb $=0$ for any $c\in R,$ $I$ must $b_{\vee}^{\circ}$ commutative.
We may assume without loss of generality that 1 $a^{*}a\Vert=1$ and $\Vert u_{n}\Vert=1$ .

Since $A$ is closed by Lemma 1.4, the closure $R_{n}$ of $u_{n}Ru_{n}$ is contained in $A$ .
Denote by $N_{n}$ the set of hermitian elements of $R_{n}$ . As to $N_{n}$ , we have the
following

LEMMA 1.6. The set $N_{n}$ constitutes a semi-ordered linear space over the real
number field $R^{11)}$ with the semi-order $a\leqq b$ for $a,$ $b\in N_{n}$ defined by the relation
that every spectrum of $b-a$ is non-negative.

PROOF. The others are obvious and so we need only to see the transitive
law. Denote $(\sqrt{1+}t-1)/(a^{*}a)+u_{4n}$ by $x$ and $(tg_{4n^{2}}(t))^{-1}g_{2n}(t)/(a^{*}a)^{I2)}$ by $x^{\prime}$ . Then
we have $x^{f}x=xx^{\prime}=u_{2n}$ . Further we put $y=bx^{\prime}$ and denote $(\sqrt{1+}t-1)/(y^{*}y)$

11) A linear space over the real number field is called to be semi-ordered if it has
a semi-ordering compatible with linear operation: (1) $a,$ $b\geqq 0$ imply $a+b\geqq 0$ and (2)
$a\geqq 0,$ $\alpha\geqq 0$ imply $\alpha a\geqq 0$ .
12) Here we consider $\infty\cdot 0$ as $0$ .
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$+u_{2n}$ by $z$ . Then we have $x,$ $y,$ $z\in R_{4n}$ and $u_{2n^{2}}+a^{*}a+b^{*}b=(xz)^{*}(xz)$ by an
easy computation. Thus we get the assertion. $q$ . $e$ . $d$ .

Let $K$ be the linear space over the real number field generated by $u_{2}$

and $N_{1}$ . By Lemma 1.6, $K$ constitutes an N-space over the real number field
with $u_{2}$ as its order unit.i3) Moreover we can see that $K$ is admissiblei4) by
an easy computation. Hence, by the extension theorem of Hahn and Banach,
there exists at least one $positive^{\iota_{\text{\’{o}})}^{r}}$ linear functional (say $f^{\prime}$ ) of $K$ with $f^{\prime}(u_{1}^{2})$

$>0$ . As to $f^{\prime}$ , we have the following
LEMMA 1.7. It holds that $f^{\prime}(u_{1}c^{*}cu_{1})\geqq 0$ for $c\in R$.
PROOF. Denote $(1-\sqrt{1-t})/u_{2}^{2}$ by $v$ . Since $(cu_{1}-vcu_{1})^{2}=0$ , we have, by

Lemma 5.1, $cu_{1}-vcu_{1}\in A$ and so $f^{\prime}(u_{1}c^{*}cu_{1}-u_{1}c^{*}u_{2^{2}}cu_{1})\geqq 0$ . On the other hand,
from $u_{2}cu_{1}\in A$ it follows that $f^{\prime}(u_{1}c^{*}u_{2}^{2}cu_{1})\geqq 0$ . Hence we get $f^{\prime}(u_{1}c^{*}cu_{1})=0$ .
$q$ . $e$ . $d$ .

We define a functional $f$ of $R$ by $ f(c)=f^{\prime}(u_{1}(1/2)(cc^{*})u_{1})+if^{\prime}(u_{1}(1/2i)(c-c^{*})u_{1}\rangle$

for $c\in R$ . Thenf is a state‘6) of $R$ by Lemma 1.7. Denote by $\Gamma^{*}$ the set of
states of $R$ and, for $f\in\Gamma^{*}$ , we denote by $1\psi_{f}$ the set of elements $c’ s$ of $R$

with $f(c^{*}c)=0$ , which is a clcsed left ideal of $R$. Denote by –the canonical
homomorphism of $R$ onto $R/M_{f}$ and denote by $H_{f}$ the completion of the
unitary space $R/1\psi_{f}$ over the complex number field $C$ with the inner product
$(\overline{b},\overline{c})=f(c^{*}b)$ . It is easy to see that $R$ is represented on $\mathfrak{H}_{f}^{17)}$ Its kernel
will be denoted by $I_{f}$ . Similarly we denote by $\mathfrak{H}$ the direct sun of $(\mathfrak{H}_{J} ;f\in\Gamma^{*})$ .
Then $R$ is also represented on $\mathfrak{H}^{18)}$ Its kernal will be denoted by $I$. Then
we have $I=\cap(f_{f} ; fe\Gamma^{*})$ , which must be (0). For, otherwise, from the remark
of Lemma 1.5, we have a state $f$ of $R$ with $f(u^{2})>0$ for some hermitian element
$u$ of $I$. This leads to a contradiction. Thus $R$ is $*$-isomorphic to a self-
adjoint algebra acting on $H$, say S.

The following lemma is due to I. E. Segal.
LEMMA 1.8. Let $S_{1}$ be a commutative $B^{*}$ -algebra and $S_{2}$ be a commutative,

not necessarily complete $B^{*}$-algebra. Suppose $S_{1}$ is $*$ -isomorphic to $S_{2}$ . Then $S_{1}$

is isometric to $S_{2}$ .

13) We mean by an N-space over the real number field the semi-ordered linear
space over the real number field with an order unity $e:N=$ ($a;a\leqq ne$ for some $n$ ).
14) With the same terminologies as in 13), $N$ is called admissible if $a\leqq\inf(\epsilon;a\leqq\epsilon e)e$

for any $aeN$.
15) A linear functional $f$ of a semi-ordered linear space is called to be positive if

$a\geqq 0$ implies $f(a)\geqq 0$ .
16) A linear functional $f$ of $a^{*}$ -algebra $R$ is called a state of $R$ if $f(a^{*}a)\geqq 0$ and

$f(a^{*})=\overline{f(a)}$.
17) cf. [1], [2] and [7].
18) cf. [1], [2] and [7].
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PROOF. Denote by $\Omega_{i}$ the spectrumi9) of $S_{i}$ . Then we may assume with-
out loss of generality that $\Omega_{2}$ is contained in $\Omega_{1}$ . If $\overline{\Omega}_{2}\neq\Omega_{1}(\overline{\Omega}_{2}$ being the
closure of $J2_{2}$ in $\Omega_{1}$ ), there exists a non-zero continuous function $g$ defined on
$2_{1}$ such that $\mu(g)=0$ for $\mu\in\Omega_{2}$ . Of course, this is a contradiction. Hence
we get $\overline{\Omega}_{2}=\Omega_{1}$ . For $c_{i}\in S_{i}$ , the norm of $c_{i}$ is expressed as $\Vert c_{i}\Vert=\sup(|\mu(c_{i})|$ ;
$j1\in\Omega_{i})$ . Thus we obtain the assertion. $q$ . $e$ . $d$ .

Now we are in a position to prove Theorem 1.1.
THE PROOF OF THEOREM 1.1. Let $h$ be an hermitian element of $R$ and let

$R^{\gamma}$ be a maximal commutative $*$ -subalgebra of $R$ containing $h$ . In view of
Lemma 1.8, $R^{\prime}$ is isometrically and $*$-isomorphically imbedded into $S$ by the
$*$-isomorphism obtained before. Hence $N$ is isometrically imbedded into $S$ by

that $*$-isomorphism. From this it follows that $S$ is closed by making use of

Lemma 1.3. Denote by $\Vert\cdot\Vert_{0}$ the norm of $S$ and by $\Vert\cdot\Vert_{0}^{\prime}$ the norm of $S$

defined by $\Vert a\Vert_{0^{\prime}}=\sup(\Vert h\cos\theta+k\sin\theta\Vert ; 0\leqq\theta\leqq 2\pi)$ , where $h=(1/2)(a+a^{*})$ ,

$k=(1/2i)(a-a^{*})$ . Moreover we use the norm of $R$ and the norm of $R$ cited

in Lemma 1.3. Then these four norms are equivalent (that is, they induce
homeomorphic topologies) to each others. This shows 1). Since $N$ is iso-
metrically imbedded into $S,$ $R$ is isometric to $S$ by (0.5) and (0.6) if $R$ is $B^{*}$ .
This implies 2). $q.e.d$ .

By virtue of Theorem 1.1, following corollaries are reduced to the well-
known results for the case of $C^{*}$-algebras.

COROLLARY 1. Let $R$ be a C-symmetric $*$-algebra. Then $R$ satisfies (A). (I.

Kaplansky-M Fukamiya-J. L. Kelley-R. L. Vaught).

COROLLARY 2. Let $R$ be a C-symmetric $*$-algebra. Then $N$ has an intrinsic
semi-ordering $a\geqq 0$ for $a\in N$ defined by $a=h^{2}$ for some $h\in N(loc. cit.)$

COROLLARY 3. Let $R$ be a $B$“-algebra. Then $R$ is isometrically and $*$ -iso-
morphically imbedded into a B’-algebra with a unit (I. Kaplansky [4]).

\S 2. An affirmative answer to (B).

We shall say, for a while, that a $*$ -algebra $R$ is $B^{\prime*}$ if it satisfies the

condition:
(2.1) $\Vert a^{*}a\Vert=\Vert a^{*}\Vert\Vert a\Vert$ for all $a\in R$.

$-19)$ We say that a homomorphism $t$ of a normed ring $R$ over $C$ onto $C$ , if $R$ has a
unit, (into $C$, if $R$ has no unit) is a spectre of $R$ and the set of spectres of $R$ is the
spectrum of $R$ . We notice that every spectre $t$ of $R$ is continuous. In fact, if $t(a)$

$\# 0$ , the equation $xa-t(a)x=a$ has no solution in $R$ and so $t(a)$ is a spectrum of $a$ ,

and then $|t(a)|\leqq\Vert a\Vert$ by a theorem of I. Gelfand. From this it follows that the

spectrum of $R$ is compact with respect to the usual Stone topology. If $R$ is a not

necessarily complete normed ring, the spectrum of the completion of $R$ is catled the

spectrum of $R$ .
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It is $obvious^{2)}$ that a $B^{*}$-algebra is always $B^{\prime*}$ . The aim of this \S is, con-
versely, to give an affirmative answer to (B), that is, to prove the following

THEOREM 2.1. Every $B^{\gamma*}$-algebra is necessarily $B^{*}$ .
Let $R$ be a $B^{\prime*}$-algebra. The following lemma is well known and is

included only for completeness.
LEMMA 2.1. $R$ is C-symmetric.
PROOF. By the definition of C-symmetricity we need only to see that $R$

is $B^{*}$ if it is commutative. Suppose $R$ is commutative. Then it is obvious
that $\Vert a\Vert_{\infty}\leqq\Vert a\Vert,$ $\Vert a^{*}\Vert_{\infty}\leqq\Vert a^{*}\Vert$ , and 1 $a^{*}\Vert_{\infty}=\Vert a\Vert_{\infty}$ . Moreover we have from
(2.1) $\Vert a^{*}a\Vert_{\infty}=\Vert a^{*}a\Vert$ and from the commutativity of $R\Vert a^{*}a\Vert_{\infty}\leqq\Vert a^{*}\Vert_{\infty}\Vert a\Vert_{\infty}$ .
From these it follows that $\Vert a^{*}\Vert=\Vert a\Vert$ . Thus we get $\Vert a^{*}a\Vert=\Vert a^{*}\Vert\Vert a\Vert=\Vert a\Vert^{2}$ .
$q$ . $e$ . $d$ .

Combining this lemma with Corollary 1 of Theorem 1.1, we may use (A)

for the present case. From now on we denote by $\beta(a)$ the positive number
determined by $\Vert a^{*}\Vert=\beta(a)\Vert a\Vert$ for a non-zero element $a$ of $R$ and we put
$\beta(0)=1^{21)}$ We recall two elements $a,$

$b$ of $R$ to be orthogonal to each other
if $b^{*}a=ab^{*}=0$ and mean by $a,$ $b,\cdots(\perp)$ the fact that $a,$ $ b,\cdots$ are mutually
orthogonal, non-zero elements of $R$ .

The following lemma is a key to prove the theorem.
LEMMA 2.2. $a,$ $b(\perp)$ implies $\beta(a)=\beta(b)=\beta(a+b)$ .
PROOF. Suppose 0# $\Vert b^{*}b\Vert\leqq\Vert a^{*}a\Vert$ . Then we have $\Vert a^{*}\Vert\Vert a\Vert=\Vert a^{*}a\Vert=$

$\Vert a^{*}(a+b)\Vert\leqq\Vert a^{*}\Vert\Vert a+b\Vert$ , that is, $\Vert a\Vert\leqq\Vert a+b\Vert$ . Similarly we have $\Vert a^{*}\Vert\leqq$

$\Vert(a+b)^{*}\Vert$ . On the other hand, we have $\Vert a^{*}\Vert\Vert a\Vert\leqq\Vert(a+b)^{*}\Vert\Vert(a+b)\Vert=\Vert(a+$

$ b)^{*}(a+b)\Vert=\Vert a^{*}a+b^{*}b\Vert\leqq\Vert a^{*}a\Vert=\Vert a^{*}\Vert\Vert a\Vert$ . Thus we get $\Vert a\Vert=\Vert a+b\Vert$ and
$\Vert a^{*}\Vert=\Vert(a+b)^{*}\Vert$ . This shows that $\beta(a)=\beta(a+b)$ .

If we select a positive scalar $\alpha$ such that $\Vert(\alpha a)^{*}(\alpha a)\Vert=\Vert b^{*}b\Vert$ , we simi-
larly get $\beta(b)=\beta(\alpha a+b)=\beta(\alpha a)=\beta(a)$ . Thus we reach the assertion. $q$ . $e$ . $d$ .

In order to prove the theorem, we now prepare a tool to eliminate the
trivial cases. A projection $e$ of $R$ is called minimal if it is non-zero and if
every element $a$ of $eRe$ is written as $a=\beta e$ for some scalar $\beta$ . Moreover an
element $a$ of $R$ is called primitive if $a^{*}a$ is written as $a^{*}a=\beta e_{*}$ , where $\beta$ is
a non-zero scalar and $e_{*}$ is a minimal projection of $R$. In this case, $\beta$ is

20) If $a\neq 0,$ $\Vert a\Vert^{2}=\Vert a^{*}a\Vert\leqq\Vert a^{*}\Vert\Vert a\Vert$ implies $\Vert a\Vert\leqq\Vert a^{*}\Vert$ . Similarily we have
$||a^{*}\Vert\leqq\Vert a\Vert$ . Thus we get $\Vert a^{*}\Vert=\Vert a\Vert$ .
21) According to [4] [9], we have already known the following facts : (a) $*is$

continuous, (b) $R$ is homeomorphic and isomorphic to a $c*$-algebra, and (c) (R. Kadi-
son) if $a$ is regular, then $\beta(a)=1$ . The facts (a) and (b) are contained in Lemma
1.3 and Theorem 1.1. As to the fact (c), we shall use it, to prove the theorem, in a
weaker sense: if $u$ is unitary, then $\beta(u)=1$ . And this fact is an immediate con-
sequence of Lemma 2.1.
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positive by (A) and $u$) $=(\sqrt{\beta})^{-I}a$ is aprimitive partial isometry22), and then
we get a polar decomposition $a=w(\sqrt{\beta}e_{*})$ , because $(w-we_{*})^{*}(w-we_{*})=0$ and
so $w=we_{*}$ . This decomposition is unique in the sense that $\beta>0$ and $w=we_{*}$ .
Put $e=ww^{*}$ . Since $w=we_{*}$ , we have $e^{2}=e(=e^{*})$ and hence $e$ is a projection
of $R$. We call $e_{*}$ the initial projection of $a$ (denoted by $e_{*}(a)$) and $e$ the final
projection of $a$ (denoted by $e(a)$).

LEMMA 2.3. If $a$ is a primitive element of $R$, then $e(a)$ is also minimal.
PROOF. Suppose $b$ is an arbitrary element of $R$. Since $w^{*}bw$ is contained

$ine_{*}Re_{*},$ $itiswrittenasw_{*}bw=\beta e_{*}$ . Hence we have ebe $=w(w^{*}bw)w^{*}=w(\beta e_{*})w^{*}$

$=\beta e$ . This shows that $e$ is minimal. $q$ . $e$ . $d$ .
If $a$ is primitive, so is $a^{*}$ by Lemma 2.3.
LEMMA 2.4. If $a$ is primitive and $ba\neq 0$ for $b\in R$, then $ba$ is also primitive.
PROOF. Since $(ba)^{*}(ba)$ is contained in $e_{*}(a)Re_{*}(a)$ , it is written as $(ba)^{*}(ba)$

$=\beta e_{*}(a)$ for some scalar $\beta$ . The scalar $\beta$ is not zero, for $ba\neq 0$ . Hence $ba$

is primitive. $q$ . $e$ . $d$ .
LEMMA 2.5. Let $uf$ be a primitive partial isometry of R. Then we have

$e(w)Re_{*}(w)=Cw$ .
PROOF. Suppose $a$ is an element of $e(w)Re_{*}(w)$ . Since $w^{*}a$ is contained

in $e_{*}(w)Re_{*}(u)$ , it is written as $w^{*}a=\beta e_{*}(w)$ and so we have $ a=ww^{*}a=\beta w\in$

$Cw$ . The converse is obvious and thus we obtain $e(w)Re_{*}(w)=Cw$ . $q$ . $e$ . $d$ .
LEMMA 2.6. Let $a$ be a primitive element of R. Denote $e(a)+e((1-e(a))e_{*}(a))$

briefly by $f$. Then we have the following two propositions:
1) $a\in fRf$.
2) $fRf$ is isomorphic to $(C)_{1}$ or $(C)_{2}^{\underline{o}}3)$

PROOF. Suppose $a$ is primitive. Denote $e_{*}(a),$ $e(a)$ by $e_{*},$ $e$ , and $e((1-$

$e(a))e_{*}(a))$ by $e^{\prime}$ . Since $e^{\prime}(1-e)e_{*}=(1-e)e_{*}$ , we have $(e+e^{\prime})e_{*}=e_{*}+e^{\prime}ee_{*}$ . By
noticing that $e^{\prime}e=0$ , we get $fe_{*}=e_{*}$ or $e_{*}f=e_{*}$ , that is, $af=ae_{*}f=ae_{*}=a$ .
On the other hand, it is obvious that $fe=e$ and so $fa=fea=ea=a$ . Thus
we get the first assertion.

If $eae^{\prime}=e^{\prime}ae=0$ , we have $a=faf=eae+e^{\prime}ae^{\prime}=\alpha e+\beta e^{\prime}$ ( $\alpha,$ $\beta$ , being scalars).

This shows that $a$ is normal24) and so $e_{*}=e=f$. Therefore $fRf=eRe=Ce$
$\cong(C)_{1}$ .

On the other hand, if there is an element $b$ ( $=a$ or $a^{*}$) of $R$ such that
$ebe^{\prime}\neq 0,$ $ebe^{\prime}$ is primitive by Lemma 2.4 and so written as $ebe^{\prime}=\beta w$ , where $\beta$

is a non-zero scalar and $w$ is a primitive partial isometry of $fRf$. We write
$e_{11},$ $e_{22},$ $e_{12}$ , and $e_{21}$ for $e,$

$e^{\prime},$ $w$, and $w^{*}$ respectively. Then $e_{ij}’ s$ form a complete

22) An element $\iota v$ of $R$ is called a partial isometry of $R$ if $w^{*}w$ is a projection of
$R$ . In this case, $ww^{*}$ is also a projection of $R$ .
23) We denote by $(C)_{r}$ the metric algebra of degree $r$ over $C$.
24) An element $a$ of $R$ is called to be normal if $a^{*}a=aa^{*}$ .
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set of matrix units of degree 2. In view of Lemma 2.5, every element $c$ of
$fRf$ is written as $c=\sum_{i,j=1}2\gamma_{ij}e_{ij}$

( $\gamma_{ij}$ being a scalar). Thus we get the second

assertion. $q$ . $e$ . $d$ .
LEMMA 2.7. If $a$ is primitive, then we have $\beta(a)=1^{26)}$

PROOF. In view of Lemma 2.6, we can assume without loss of generality
that $R$ is $*$ -isomorphic to $(C)_{1}$ or $(C)_{3}$ . As the assertion is quite obvious in
the latter case, we restrict the proof only in the former case. Denote by
$a=w(\beta e_{*})$ the polar decomposition of $a$ . An easy computation is used to find
a partial isometry $w^{\prime}$ of $R$ orthogonal to $w$ . Then $u=w+w^{\prime}$ is a unitary26)

of $R$ and so it satisfies $\beta(u)=1$ by Lemma 2.1. Hence we have $\beta(a)=\beta(\beta w)$

$=\beta(w)=1$ by Lemma 2.2. $q$ . $e$ . $d$ .
Now we enter the last lemma for the proof of Theorem 2.1.
LEMMA 2.8. $a,$ $b,$ $c(\perp)$ implies $\beta(a)=1$ .
PROOF. We write $h$ for $a^{*}a$ and $v$ for $bb^{*}$ . Then we have
(2.2) $va=0$ .

If $hv=0$ , we have $a^{*}av=0$ and so $(av)^{*}(av)=0$ and then $av=0$ . Hence we
have $a,$ $v(\perp)$ and $\beta(v)=1^{27)}$ Thus we obtain $\beta(a)=1$ by Lemma 2.2. There-
fore we may assume that $hv\neq 0$ .

First we see Lemma 2.8 under the following assumption:
(2.3) $hv$ is primitive.

Since $hv\neq 0$ , we have $h\sqrt{v}\neq 0$ and so $a^{*}avh=hvh\neq 0$ . Hence we get $avh\neq 0$ .
Moreover $hv$ is primitive and so $vh$ is also primitive. Hence $avh$ Is primitive
by Lemma 2.4. Since $avh=a(va^{*})a$ , we have $avh,$ $b(\perp)$ . Hence we have $\beta(a)$

$=\beta(b)=\beta(avh)=1$ by Lemma 2.2 and Lemma 2.7.
Next we see Lemma 2.8 for the case that $hv$ is not primitive. We write

$d$ for $vh$ . Then $d$ is non-zero and not primitive with $hv$ .
We first show that there exist two hermitian elements $v_{1},$ $v_{2}$ of $R$ enjoying

the following three conditions:
(2.4) $v_{1},$ $v_{2},$

$d^{*}d$ are mutually commutative.
(2.5) $v_{i}v_{2}=0$ .
(2.6) $dv_{1}\neq 0,$ $dv_{2}\neq 0$ .

If $d^{*}d$ has at least two non-zero spectra (say $\beta_{1},$ $\beta_{2}$ ; $0<\beta_{1}<\beta_{2}$), we can take
$f_{i}(t)/d^{*}d$ as $v_{i}$ , where $f_{i}(t)$ is the function defined by

25) This lemma is due to M. Fukamiya. Owing to this lemma, proofs of Lemma
2.8 and the theorem become much simpler than original ones. His proof is elegant:
Suppose $R$ has a unit. Since $ae=eae$ is written as $\beta e$ ( $\beta$ being a scalar), $a=ea$ has
at most two spectra with $ae$. Hence $ a-\lambda$ is regular but for two exceptional $\lambda’ s$ . If
$ a-\lambda$ is regular, we have $\Vert(a-\lambda)^{*}\Vert=\Vert a-\lambda\Vert$ by R. Kadison’s result. As making
$\lambda\rightarrow 0$ , we get $||a^{*}\Vert=\Vert a\Vert$ , that is, $\beta(a)=1$ .
26) An element $u$ of $R$ is called to be unitary if $u^{*}u=1$ .
27) For $v$ is hermitian.
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$f_{1}(t)=\left\{\begin{array}{l}0 (t\leqq(1/2)(\beta_{1}+\beta_{2})),\\1inear ((1/2)(\beta_{1}+\beta_{2})\leqq t\leqq\beta_{2}),\\1 (\beta_{2}\leqq t),\end{array}\right.$

$f_{2}(t)=\left\{\begin{array}{l}1 (t\leqq\beta_{1}),\\linear (\beta_{1}\leqq t\leqq(1/2)(\beta_{1}+\beta_{2})),\\0 ((1/2)(\beta_{1}+\beta_{2})\leqq t).\end{array}\right.$

The verification of $(2.4)-(2.6)$ is easy and so it will be omitted. On the other
hand, if $d^{*}d$ has exactly one non-zero spectrum (say $\beta$), we write $w$ for
$(\sqrt{\beta})^{-1}d$. Then $w$ is a partial isometry of $R$ and $d=w(\sqrt{\beta}w^{*}w)$ is a polar
decomposition of $d$. Write $e_{*}$ for $w^{*}w$ . Since $d$ is not primitive, $e_{*}$ is not
minimal. Hence we can find an element $b$ of $e_{*}Re_{*}$ , which is never written
as $b=\alpha e_{*}$ for any scalar $\alpha$ . In this case, either $\mathfrak{R}\mathfrak{e}(b)$ or $s^{\alpha}\mathfrak{m}(b)^{28)}$ is never
written as $\alpha e_{*}$ for any scalar $\alpha$ and so we may assume that $b$ is hermitian.
By taking, if necessary, $\gamma e_{*}-b$ (for some scalar $\gamma$ ) in place of $b$ , we may
assume moreover that $b$ is positive and has an inverse in $e_{*}Re_{*}$ . Since $b$ is
never written as $\alpha e_{*}$ for any scalar $\alpha,$

$b$ has at least two non-zero spectra.29)

We construct $v_{1},$ $v_{2}$ by taking $b$ in place of $d^{*}d$ as before. Then it is not so
hard to see that these $v_{1},$ $v_{2}$ satisfy $(2.4)-(2.6)$ .

We put $v_{2}^{\prime}=dv_{2}d^{*},$ $k=vv_{2}^{\prime}v$ , and $l=ahv_{1}h$ .
We see that
(2.7) $k\neq 0$ .

For, otherwise, $vv_{2}^{\prime}v=0$ and so $(vd\sqrt{v_{2}})(vd\sqrt{v}2)^{*}=0$ . Hence we get $vd\sqrt{v_{2}}=0$ .
This shows that $v^{2}hv_{2}=0$ and so $(vhv_{2})^{*}(vhv_{2})=0$ and then $vhv_{2}=0$ . That is,
$dv_{2}=0$ . This contradicts to (2.6). Therefore we must have (2.7).

Further we see that
(2.8) $l\neq 0$ .

For, otherwise, we have $ahv_{1}h=0$ and so $(ah\sqrt{v_{1}})(ah\sqrt{v_{1}})^{*}=0$ . Hence we have
$ah\sqrt{v}1=0$ and so $ahv_{1}=0$ . This implies that $a^{*}ahv_{1}=h^{2}v_{1}=0$ . From this it
follows that $(hv_{1})^{*}(hv_{1})=0$ and so $hv_{1}=0$ . Hence we get $dv_{1}=0$ . This con-
tradicts to (2.6). Therefore we must have $($2.8 $)^{}$

Since $l=a(hv_{1}a^{*})a,$ $l$ is orthogonal to $c$ and so
(2.9) $\beta(c)=\beta(l)$ .

In view of (2.2) we have $kl=vv_{2}^{\prime}(va)hv_{1}h=0$ . On the other hand, we have
$Ik=ahv_{1}hvv_{2}^{\prime}v=ah(v_{1}d^{*}dv_{\epsilon}d^{*})v=ah(v_{1}v_{2}d^{*}dd^{*})v=0$ . From these it follows that

28) $\Re \mathfrak{e}(b)=(1/2)(b+b^{*}),$ $s^{\triangleright}()\iota(b)=(1/2i)(b-b^{*})$ .
29) For, otherwise, we have $b=\alpha e_{1},$ $e_{1}$ being a projection of $e_{*}Re_{*}$ with $e_{1}\neq e_{*}$ .

This contradicts to the existence of the inverse of $b$ in $e_{*}Re_{*}$ .
30) This proof of (2.7) is due to T. Saito.



Note on a $B^{*}\cdot algebra$ . 157

$k$ is orthogonal to $l$ and so in view of (2.7) and (2.8) we have
(2.10) $\beta(l)=\beta(k)$ .

Since $k$ is hermitian, we have
(2.11) $\beta(k)=1$ .

In view of $(2.9)-(2.11)$ , we get $\beta(c)=1$ and so $\beta(a)=1$ . Thus we reach the
assertion. q. e. $d$ .

We are now in a position to prove the theorem.
THE PROOF OF TIIEOREM 2.1. Let $a$ be an arbitrary (but fixed) non-zero

element of $R^{\theta 1)}$ We shall see the assertion for this $a$ by the induction from
3 to 1 with respect to $r$, which appears in the following statement:

(2.12) $a^{*}a$ has at least $r$ non-zero spectra.
Suppose first $a^{*}a$ has at least three non-zero spectra (say $\beta_{1},$ $\beta_{2},$ $\beta_{3}$ ; $0<\beta_{I}$

$<\beta_{2}<\beta_{3})$ . Consider following three functions:

$h_{1}(t)=\{$ $01linear$ $(\beta(t\leqq_{\leqq^{\beta_{t})}\leqq_{1}(1/2)(\beta_{1}+\beta_{2}))}((1^{I}/2)(\beta’+\beta_{2})\leqq t)1$ ,

$h_{2}(t)=\left\{\begin{array}{l}0 (t\leqq(1/2)(\beta_{1}+\beta_{2})),\\1inear ((1/2)(\beta_{1}+\beta_{2}))\leqq t\leqq\beta_{2}),\\1 (t=\beta_{2}),\\linear (\beta_{2}\leqq t\leqq(1/2)(\beta_{2}+\beta_{3})),\\0 ((1/2)(\beta_{2}+\beta_{3})\leqq t),\end{array}\right.$

$h_{3}(t)=\{$ $01inearl$ $((1_{2}/2)(\beta_{2}.+\beta_{3}^{2})\leqq^{3}t^{))}\leqq(\beta\leqq t)(t\leqq(1/2)(\beta+\beta, \beta_{3})$ ,

Write $v_{1}$ for $h_{i}(t)/a^{*}a$ and $a_{i}$ for $av_{i}(1\leqq i\leqq 3)$ . Then $a_{i}’ s$ are non-zero and
mutually orthogonal. Hence we have from Lemma 8 $\beta(a_{1})=1$ . Therefore we
have $\Vert a^{*}a\Vert=\Vert a^{*}av_{1}^{2}\Vert=\Vert a_{1}^{*}a_{1}\Vert=\Vert a_{1}\Vert^{2}\leqq\Vert a\Vert^{2}\Vert v_{1}\Vert^{2}=\Vert a\Vert^{2}$ , that is. $\Vert a^{*}a\Vert^{1/2}$

$\leqq\Vert a\Vert$ . Similarly we have $\Vert a^{*}a\Vert^{1/2}\leqq\Vert a^{*}\Vert^{32)}$ On the other hand, we have
$\Vert a^{*}a\Vert^{1/2}=\Vert a^{*}\Vert\Vert a\Vert$ . Thus we get $\Vert a\Vert=\Vert a^{*}a\Vert^{1/2}=\Vert a^{*}\Vert$ , that is, $\beta(a)=1$ .

Next we assume that $a^{*}a$ has at least $r(<3)$ (eventually exactly r) non-
zero spectra and that the assertion holds for every element $b$ of $R$, for which
$b^{*}b$ has at least $r+1$ non-zero spectra. In this case, $a^{*}a$ is expressed as $a^{*}a$

$=\Sigma_{j\Rightarrow 1}^{r}\alpha_{j}e_{*j}$, where $\alpha_{j}’ s$ are scalars and $e_{*j}’ s$ are projections of $R^{33)}$ Write

31) When $a=0$ , the assertion is trivially valid and so this case is omitted.
32) $aa*has$ also at least three non-zero spectra.
33) We notice that $\Omega_{a^{*}a}$ is a finite set.
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$a_{f}$ for $ae_{*j}$ . Then we have $a_{1},\cdots,$ $a_{r}(\perp)$ and $a=a_{1}+\cdots+a_{r}$ . Hence we have
$\beta(a_{1})=\cdots=\beta(a_{r})=\beta(a)$ by Lemma 2.2.

If $e_{*f}$ (say $e_{*1}$ ) is not minimal, then there exists an hermitian element $h$

of $e_{*I}Re_{*1}$ , which has at least two non-zero spectra. Moreover, it necessary,
by taking $\beta e_{*1}-h$ in place of $h$ (for a sufficiently large positive scalar $\beta$ ), we
may assume without loss of generality that $h$ is positive and has at least two
non-zero spectra distinct from $\sqrt{\alpha_{j}/\alpha_{1}}(2\leqq 1\leqq r)$ . Put $b=ah+\Sigma_{j=2}^{r}a_{j}$ . Then
$ah,\cdots,$ $a_{r}(\perp)$ and $b^{*}b$ has at least $r+1$ non-zero spectra. Hence we have $\beta(b)$

$=1$ and so, if $r\geqq 2,$ $\beta(a_{2})=1$ , that is, $\beta(a)=1$ . On the other hand, if $r=1$ ,

we take $c=w\sqrt{h}$ in place of $b$ , where $w=(\sqrt{\alpha_{1}})^{-1}a$ is a partial isometry of
$R$ . Then $c^{*}c$ has at least two non-zero spetra and so $\beta(c)=1$ . Hence we
have $\Vert\sqrt{h}\Vert=\Vert w\sqrt{h}\Vert\leqq\Vert w\Vert\Vert\sqrt{h}\Vert$ and so $ 1\leqq\Vert w\Vert$ . Similarly we get $ 1\leqq\Vert w^{*}\Vert$ .
On the other hand, we have $ 1=\Vert w^{*}w\Vert=\Vert w^{*}\Vert\Vert w\Vert$ . Hence we get $\Vert w^{*}\Vert=$

$\Vert w\Vert=1$ and so $\beta(a)=\beta(\sqrt{\alpha_{1}w})=\beta(w)=1$ .
Thus we may assume without loss of generality that $e_{*1}$ (and so all $e_{*J}’ s$)

is minimal. So $a_{j}$ is primitive by Lemma 2.4 and then $\beta(a_{J})=1$ by Lemma
2.7. This implies that $\backslash \beta(a)=1$ . This completes our assertion. $q$ . $e$ . $d$ .

References

[1] I. Geland and M. Neumark. On the imbedding of normed rings into the rings
of operators in Hilbert spaces, Mat. Sbornik, 12 (1943), 197-213.

[2] M. Fukamiya, On a theorem of Gelfand and Neumark and the $B^{*}$-algebra, Kuma-
moto J. Sci. Acad., 1 (1952), 17-22.

[3] J. A. Schatz, Review of [2], Math. Rev., 14 (1953), 713-943.
[4] I. Kaplansky, An appendix added in October 1955 to the paper “topological

algebra”.
[5] J. L. Kelley and R. L. Vaught, The positive cone in Banach algebras, Trans.

Amer. Math. Soc., 74 (1953), 44-55.
[6] M. Mimura, Iso kaiseki (Functional analysis), Kyoritu, 1957. (Japanese)
[7] M. Nakamura, A remark on a theorem of Gelfand and Neumark, Tohoku Math.,

2 (1950), 182-187.
[8] I. Kaplansky, Function analysis, Some aspects of analysis and probability,

Surveys in Applied Mathematics vol. 4, 1958.


	Note on a $B^{*}$ -algebra.
	\S 1. A direct proof of ...
	THEOREM 1.1. ...

	\S 2. An affirmative answer ...
	THEOREM 2.1. ...

	References


