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§1. Introduction.

Let @ be a class of topological spaces. A topological space X is called
a dimensionally full-valued space for Q, if, whenever Y is a space of @, the
following equality holds:

dim(XxY)=dim X+dim Y.

Here dim X <# means that every finite open covering of X has a refinement
of order not greater than .

A sequence a = (q,, gq,+-, q;,-++) of positive integers is called a k-sequence?
if ¢, is a divisor of ¢,.,,i=1,2,---, and ¢;,>1 for some i. There exists a
natural homomorphism 7%(a,i) from Z,,, onto Z,, i=1,2,--, where Z, means
the factor group Z/qZ and Z means the additive group of all integers. Let
us denote by Z(a) the inverse limit group of the inverse system {Z,,: A(a, i)}.
Let (X, A) be a pair of topological spaces. We shall denote by H,(X, A: G)
the n-dimensional Cech homology group of (X, A) with G as a coefficient
group based on all open coverings of X. Consider the following property P
of an #-dimensional topological space X.

For every k-sequence a there exists a closed subset A. of X such that
H.(X, A,: Z(a)) == 0.
In the first paper under the same title we have proved the follow-
ing theorem.

TueoreM. Let Q be a class of all compact metric spaces. In ovder that an
n-dimensional compact metric space X be a dimensionally full-valued space for
Q, it is necessary and sufficient that X have the property P.

In the proof of this theorem (cf. [10, pp. 391-3937]) the compactness of X
played an essential role. By making use of the unrestricted Cech homology
groups we can remove the compactness condition of X from the sufficient
condition of the theorem. Throughout this paper we shall denote by Q the
class of all locally compact fully normal spaces. We shall prove the following
theorem.

P.

1) Cf. [10, §17.
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Turorem 1. An n-dimensional fully normal space X is a dimensionally full-
valued space for Q if X has the property P.

By we can prove the following main theorem of this paper.

TuroreMm 2. In order that an n-dimensional locally compact fully normal
space X be a dimensionally full-valued space for Q, it is necessary and sufficient
that X has the property P.

Our is a generalization of the theorem refered to above
in two respects. Firstly, does not assume the metrizability of
spaces. Secondly, the compactness condition of spaces is weakened to the
local-compactness condition; this generalization seems not to be trivial since
in the formulation of property P we do not assume the compactness of the
closed subset A, of X. By the proof of we can prove the follow-
ing K. Morita’s theorem.

Turorem 3. (K. Morita [13, Theorem 61]). A 1l-dimensional fully normal
space X is a dimensionally full-valued space for Q.

Finally, as a consequence of [Theorem 1, we have the following corollary.

CoroLrLarY. An n-dimensional fully normal space X which contains a closed
subset A such that H (X, A: Z)+ 0 is a dimensionally full-valued space for Q.

In Addendum of the previous paper we have proved that our pro-
perty P is equivalent to Boltyanskii’s property in compact metric spaces (cf.
§ 3, Remark). But, in case X is non-compact, we do not know whether our
property P is equivalent to Boltyanskii’s property even for locally compact
fully normal spaces. In §2 we shall prove several lemmas and introduce the
notations used later on. The theorems mentioned above are proved in §3.
In §4 we shall show that the converse of the corollary is not true even for
the case where X is a two-dimensional compact metric space.

§ 2. Lemmas and notations.

A system I8 of subsets in a topological space X is called to be locally
finite if for each point x of X there exists a neighborhood U(x) such that
U(x) intersects a finite number of sets of 8. A normal space is called fully
normal if every open covering has a locally finite open refinement (cf.
and [15]). Throughout this paper we mean by a covering a locally finite open
covering. Let X be a fully normal space. A system U= {l,|as2} of cover-
ings of X is called a cofinial system of coverings of X if for each open
covering U of X there exists a member U, of U such that U<U, (U, is a
refinement of N). If W, <Up for acf and p=£, we denote it simply by
« < fB. The order of a covering is the largest integer » such that there exist
n-+1 members of the covering which has a non-empty intersection. By the
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dimension of X (we denote it by dim X) we mean the least integer z such
that every (finite or infinite) open covering has a locally finite refinement of
the order n. By [3, Theorem 3.5] or [12, Theorem 2.17, this dimension is
equivalent to the usual Lebesgue dimension. By the #nerve of a covering we
mean the nerve with the Whitehead weak topology (cf. or [6). Let K
be the nerve of a covering U. We shall denote the vertex of K corresponding
to an element U of W1 by the same notation U. Since X is a normal space,
for each covering U there exists a canonical mapping? of X into the nerve
K of the covering I. Let A be a closed subset of X. Let U and B be cover-
ings of X such that U >, and let (K,L) and (M, N) be the pairs of the
nerves of U and B corresponding to (X, A) respectively. A projection of
(K, L) into (M, N) defined as usual is continuous (cf. [5,§47). Let {U,|acf}
be a cofinal system of coverings of X, and let us denote by (K, L,) the pair
of the nerves of 11, corresponding to (X, A) for a=® and by =, a projection
of (K, Lg) into (K,, L,) for #>a. We mean by H,(K,, L,: G) the n-dimen-
sional homology group of finite cycles of (K,, L,) with coefficients in G. For
each pair § >« a projection 7,f: (Ks, Lg)— (K,, L,) induces the homomorphism
o)y s H(Kp, Lg: G)— H,(K,, L, G). The limit group H,.(X, A: G) of the in-
verse system {H,(K,, L,:G): (@ Bla<pf:acs and =L} is called the »-
dimensional unyestricted Cech homology group of (X, A) with coefficients in G
(cf. or [4]). In compact spaces unrestricted Cech homology groups are
equal to usual Cech homology groups based on all finite coverings. Let R,
be the additive group of rational numbers mod 1. The following lemmas
are well known (cf. [11, § 2] and [12, Theorem 3.2]).

Levma 1. (Hopf’s extemsion theorem). Let A be a closed subset of an
(n+1)-dimensional compact Space X. In order that a mapping f of A into the
n-dimensional sphere S™ be extensible to a mapping of X into S™ it is mecessary
and sufficient that the condition fyO0H,..(X,A: R)=0 hold, where fy is the
homomorphism of H,(A: R)) into H,(S™: R)) induced by the mapping f and 0 is
the boundary homomorphism® of H,, (X, A: R,) into H,(A: R).

Levmma 2. Let X be a locally compact fully normal space. In order that
dim X'=n it is necessary and sufficient that

(1) therve exists a closed subset A of X such that H (X, A: R) + 0,

(2) for every closed subset A of X and every integer j>n we have
H(X,A: R)=0.
 Lewmma 3. Let X be a locally compact fully normal space. In orvder that

2) A mapping of X into K is called a canonical mapping if the inverse image of
the open star of each vertex U is contained in the open set U. Throughout this
paper we shall mean by a mapping a continuous transformation.

3) Cf. [6, Chap. I and Chap. IX].
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dim X =n it is necessary and sufficient that for every compact subset A of X we
have dim A = n.

Let X be a topological space and let U be a covering of X. Let K be a
simplicial complex with the Whitehead weak topology and let ¥ be the
covering of K consisting of its open stars. By an (I, K)-mapping of X into
‘K we mean a mapping f of X into K such that U</~ 1(B)H. The following
lemma is well known (cf. [9, Chap. V, §87).

Levmma 4. Let X be @ normal space. In ovder that dim X=wn it is neces-
sary and sufficient that for every covering W of X there exist an n-dimensional
simplicial complex K and an (N, K)-mapping of X into K.

The following lemma was proved by K. Morita (cf. [13, Theorem 47).

Lemma b, Let X be a fully normal space and Y a locally compact fully
normal space. Then the topological product of X and Y is fully normal, and we
have dim (XX V) =dim X+dim Y.

A topological group G is called to satisfy the minimal condition if, when-
ever {G;|i=1,2,--} is a decreasing sequence of closed subgroups of G, there
exists some integer » such that G,= G, =---. The following lemma is easily
proved and we omit the proof.

Lemma 6. Let {G,: w8} be an inverse system of compact topological groups
over a directed set £ = {a}® such that each G, satisfies the minimal condition.
Let G be the limit group of {G,}. For each a2 there exists an element B of
82 such that a < B and w,G = n,pGg, where ©, is the projection of G into G,.

Let ¢ be a positive integer such that ¢>1 and liet us denote the k-
sequence (g, g%, ¢% ) by a,. There is a natural homomorphism p, from Z(a,)
onto Z, defined by p,(c) =c;, where ¢, is the first coordinate of an element
c={c;|i=1,2} of Zay).

Lemma 7. Let (X, A) be a pair of n-dimensional fully normal spaces. If
H(X, A: Z(0)) # 0, then the homomorphism (pg)s: H,(X, A: Z(a))— H,(X, A: Z,)
induced by the homomorphism p,: Z(a,)— Z, is non-trivial.

Proor. Let {1,]asf} be a cofinal system of coverings of X each mem-
ber of which has the order »; let us denote by (K,, L,) the pair of the nerves
of 1, corresponding to (X, A) for a=f and by =8 a projection of (Kg, L)
into (K,, L,) for g >a. Let a= {a,|a=L2} be a non-zero element of H,(X, A:
Z(ay)), where a,=H,/(K,, L,: Z(a,)) for a=f. Since dim K,=#n, we can con-
sider @, as a cycle of (K,, L,) with coefficients in Z(a,) for each a=f2. Let
Ay = 20 tai0a;; 0 E L, where t,,€2Z(q,) and o0,’s are n-simplexes of K, for each

i. Put @u;=721/00, 7=1,2,-- and a8, where ¢7; is the j-th coordinate of

4) Let 8 ={V} be a covering of a topological space ¥ and let f be a mapping of
X into Y. By f-(®8) we mean the covering {f-1(V)} of X.
5) Cf. [6, Chap. VIII].
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the element ¢,; of the inverse limit group Z(a,). Then a,; is a cycle of
(Kyy Ly) mod ¢7® for j=1,2,-- and aef. If (0)sa % =0, (0)sa, =0 for
each a=f. Accordingly we have a,;=0 mod ¢” for j=1,2-- and acf.

Therefore, since —21[ a,; ¥ is a cycle of (K,, L,) mod ¢! for j=2,3--, —if a, 18

a cycle of (K,, L,) with coefficients in Z(a,). Since (xmﬁ)*(vé— aﬁ):%r» a, for

f>a, {—;— a,las } determines a non-zero element a(1) of H,(X, A: Z(a,)). If

(0g)xa(1) =0, by the same argument as above, we can see that {-qL awlaeﬂ}

determines a non-zero element «(2) of H,(X, A: Z(a,)). If we could repeat
infinitely this process, we should have ¢,;=0 mod ¢* for 7,5 =1, 2,--- and a= L.
This contradicts ¢ +0. Thus there exists an integer i such that the element

cz(i):{fqli— a,,|ae!2} of H,(X, A: Z(a,)) has a non-zero image under the homo-

morphism (0y)x.

Lemma 8. Let (X, A) be a pair of n-dimensional fully normal spaces such
that H(X,A: R)+0. Then there exist a prime number p and an element
{a,lae R} of H(X,A: R) =liE{Hn(Ka, Ly: R): (w,B).} such that for each a=

the ovder of a, is a power of p.

Proor. We may assume that dim K, == for each a=f. Let {b,|lac®}
be a non-zero element of H,(X, A: R,). Let g, be the order of b,. Let b, #0
for some a,=£2. Then ¢,,#0. Let p be a prime number which is a divisor
of g,,. For each g > a, put gz=p* - 75 where 1z is a positive integer, p and
7g are coprime numbers. If @, <a < B, we have 1,=< g and 7, is a divisor
of 7. Put cg=7g-bg for B> a. Since »3 and p are coprime numbers, ¢z is
a non-zero element of H,(Ks Lg: R;). Let us denote by Gp the subgroup of
H,(Kg, Lg: R,) generated by the element ¢z Then Gp is a finite group of the
order p*8. If a, < a < B, since 7, is a divisor of 74, we have (7,8).cg = (7,£)s7g- g
=75 (TaP)sbg = (Y5/7a)  7ubu = (rg/74)-cor Thus we have (7,8).Gs C G,. Therefore
the system {G,: (z,#)sx} forms an inverse system. Put Gz(lirg{Gw: T P)x) -

6) Let ¢ be a positive integer such that ¢ > 1. By a cycle mod ¢ we mean a cycle
with coefficients in Z;. By a cycle mod 1 we mean a cycle with coefficients in R;.
6a) These (pq)sx mean the homomorphisms induced by the homomorphism pg be-
tween the coefficient groups Z(aq) and Z.
7) Let ¢ =} t;0; be an integral chain of (K, L). By ¢=0 mod ¢, where g is an
?

positive integer, we mean that #; = 0 mod ¢ for each 7.
8) ¢ =3 gio; be a chain of (K, L), where g;& R, or g;&Z for each i. Let ¢ be an
i

. 1 . 1
integer. By v ¢ we mean the chain E? gio; of (K, L).
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Assume that G =0. Since each G, is a finite group, there exists a > «, such
that (z,,#)*G,=0 by On the other hand, we have (7,,%)xCo = ¥y ba..
Since 7, and p are coprime numbers and the order of b,, is p*«r,, we have
(T2, ) 5Co =74+ by, #0. This contradicts (7,,*)«G,=0. Therefore G#0. Since an
order of every element of G, is a power of p for each a¢= £, we can find an
element required in the lemma. This completes the proof.

§3. Theorems.

Tureorem 1. An n-dimensional fully normal space X is a dimensionally
Jull-valued space for Q if X has the property P.

Proor. Let Y be an m-dimensional locally compact fully normal space.
By Lemmas 3 and 2, there exists a pair (4, B) of compact subsets of ¥ such
that H,(A4, B: R)#0. Let W= {,|asf} be a cofinal system of finite cover-
ings of A each member of which has the order m. Let us denote by (M,, N,)
the pair of the nerves of 28, corresponding to (4, B) and by =,f a projection
of (Mg, Np) into (M,, N,) for a, =2 and B >«. By Lemma 8 there exist a
prime number p and a non-zero element {a,|lacsf} of H,(A, BE:R)=
li_r_n_{Hm(Mm, N,: R): (=} such that the order of each «, is a power of p.

Since X has the property P, there exists a closed subset X, such that
H, (X, X,: Z(a,))+0, where a, is the k-sequence (p, p%---, p',---). Let U= {U,|nu<TI"}
be a cofinal system of coverings of X each member of which has the order
n. Let us denote by (K, L,) the pair of the nerves of W, corresponding
to (X, X,) and by 48, a projection of (K,,L,) into (K, L,) for v,ucsI" and
v>py. By Lemma 7, there exists an element {c,lusl'} of H,(X X,: Z(a,))
=li£n_{Hn(K,,, L,: Z(u,): (8,)} such that (0,)x{c,}#0. Since dim K,=#n, we

may consider ¢, as a cycle of (K, L,) with coefficients in Z(a,) for each
peI. Take an element g, of I' such that (o,)sc,,#0. This means that, if
Cpo={c@®|i=1,2,--}, where ¢, () is a cycle of (K,,L,) mod p*?, there
exists some positive integer j, such that ¢,,(7)=0 mod p !9 for each j=j,.
Take an element «, of £ such that «,,#0. We shall prove that the covering
0, xB®, ={Us,, and We2,,} of XXA has no refinement whose order
<m+n. Let B be a refinement of U, x%,,. Since A is compact, there
exist a covering ,= {U”|ker,} of U and coverings W, = {W}, ksk,, of
W such that the covering {U/*x W,|ke«x, and W,e%,.} is a refinement of
2. Obviously, I, is a refinement of 1,,. Let S, be the subcomplex of K,
consisting of all closed #n-simplexes with a non-zero coefficient in the cycle
¢, of (K, L,) with coefficients in Z(a,). Since ¢, is a finite chain, S, is a

9) Cf. the proof of
10) See footnote 7).
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finite subcomplex of K,. Let {Uy”|i=1,2,-,¢} be all vertexes of S,. Take
a covering W, of W which is a common refinement of coverings ¥8,, and
W, i=1,2,,¢ Put W={UGixW,|i=1.2,--,¢t and W,e¥,}. Let M* be
the nerve of I and let N* be the nerve of WN(XXxBUX;xA)™. By [1,
Theorem 12427, there exists a homomorphism into, 8: (S,, SN L,) X (M,, N,) 1
— (M*, N*), whose image is a deformation retract'® of (M*, N*). Let (M,*, N,*)
be the pair of the nerves of the coverings 1, x%8,, corresponding to (X, X;)
X (A, B). By [1, Theorem 12.427], there exists a homeomorphism into, 6,: (K,,,
L, )X (Mg, Ny,)— (My*, No*), whose image is a deformation retract of (My*, Ny*).
Define a simplicial mapping = of (M*, N*) into (M,*, N,*) by =(U, W)= (64,(U),
5 (W)), where U and W are vertexes of S, and M, respectively. Define a
cellular mapping'® =, of (S,,S,.NL,)xX(M, N,) into (K,, L)X (M, N,,) by
mo(x, ¥) = (04,(x), 75, (3), (x,»)ES, X M,. By the definition of § and 6, (cf. [1, p.
3177), we have n0=0,m,: (S, S,NL,) X (M,, N,)— (My*, Ny*)'». Let i be a posi-
tive integer such that the order of the element ¢, =p‘ Put i,=max (i j,).
Consider the product chain c¢,@i)xa,'® of the chain group C, ., ,(S,XM,: R)).
Since c,,) is a cycle of (S, S,AL,) mod p*, a, is a cycle of (M,, N,) mod 1
and the order of g, is a divisor of p’, we see that the chain ¢, ()xa, is a
cycle of (S,, S,NL,)*x (M, N,) mod 1. Since c,(,) =0 mod p, we have c,(i,) X
@, 0 mod 1.1%)  Since (84,)xC (i) = c,.(i) mod p*, (%), =a,, mod 1 and the
order of @, is a divisor of p*, we have

11) Let ® ={I¥;} be a collection of subsets of X and let A be a subset of X. By
WNA we mean the collection {W;NA} of subsets of A.

12) Let (X, A) and (Y, B) be pairs of topological spaces. By (X, A)x (Y, B) we
mean the pair (XxY, XxBUAXY) of spaces.

13) Let (X, A) and (Y, B) be pairs of topological spaces such that XcY, AcCB, X
and A are closed subsets of Y. It is called that (X, A) is a deformation retvact of
(Y, B) if there exists a homotopy F: (Y'xI, BxI) — (Y, B) such that F| XxI = the
identity, F| Yx0 = the identity, F(Y'x1)cX and F(Bx1)CA, where I is the closed
interval [0,17.

14) A mapping f of a cell complex K into a cell complex M is called a cellular
mapping if F(KY)CM?, where K means the i-section of K.

15) Let (X, A) and (Y, B) be pairs of topological spaces and let f, and f; be two
mappings of (X, A) to (Y, B). By fy=rf: (X, A) - (Y, B) we mean that there exists
a homotopy H: XxI— Y such that | Xx0 =f;,, H| Xx1 =, and H{AXI)CB.

16) Let G, and G, be two abelian groups paired to a third group G, that is, there
exist a function ¢ (g, &) of G1XG, into G which is distributive in both variable
and whose values are in G. Let ¢ =} ¢;% ¢,;% be a chain of (Kj;, L;) with coefficients
in G, i =1,2, where ¢,4’s are simplexes of K;,7=1,2. By the product chain ¢; x¢,
of ¢; and ¢, we understand the chain 3 ¢(¢;,1, £;,2)(s;,' X0;,2) of the cell complex
(K, L) x (Ky, L) with coefficients in G.

16a) Let ¢ = )] #;0; be a chain of (K, L) with coefficients in R;. By ¢ =0 mod 1

%

we mean that each #; is an integer.
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(m)sculio) X an) = (8%, X 7§ ) slc u(lo) X an)
= (5#0)*6/1(1'0 X () 5@y
= (i) X @y, mod 1.

Since (0p)5¢ (1)) #0, @y, #0 and dim (K, X M,,) = m-+n, c,,(i)) X a,, 1S a non-zero
cycle of (K, L,,)x(M,., N,,) mod 1. Since 6,(K,,, L)X (M,, N,,)) is a de-
formation retract of (My¥, No*), (00)x(cp,(iy) Xay,) is a non-zero element of
Hn(M*, Ny¥: R). Assume that the covering %8 has the order <m-+#n. Let
(C, D) be the pair of the nerves of B corresponding to (X, X;) X (A4, B) and let
m, and m, be projections of (M* N*) and (C,D) into (C, D) and (M*, Ny¥)
respectively. Then we have r=m,x, : (M*, N*)— (My*, N;*). Since dim C < m+#,
we have (00)x(cu,(i0) X @a,) = (00)5:(70)s(Cu(i0) X @) = (B0T0)5(C uli) X @) = (0) (i) X
@) = ()5 (7,0) (¢ .(iy) X @) = 0. This contradicts (8)s(c,.(f0) X @s,)#0. Therefore
the covering ¥ has the order =m+n. Since ¥ is any refinement of the
covering U, x%W,, of XxA, we have dim(XxA)=dim X+4dim A. Since
dim (XxY)=dim X+dim Y by and Xx A is a closed subset of
XxY, we have dim (XX Y)=dim X+dim Y. This completes the proof.

Tueorem 2. Let X be an n-dimensional locally compact fully normal space.
In order that X is a dimensionally full-valued space for Q, it is necessary and
sufficient that X has the property P.

Before proving we state the following lemma which is proved
easily (cf. [7, Theorem 5.17).

Lemmva 9. Let (X, A) be a pair of compact spaces. Let G be the limit group
of an inverse system {G,|h P} of abelian groups. Then we have an isomorphism

H(X, A:G)= lim {H(X, A: Ga): (heP)+}

where (h,P)y. is the homomorphism of H(X, A: Gp) into H,(X, A:G,) induced by
the homomorphism hp: Gg— G,.

Proor or Tueorem 2. The sufficiency of Theorem 2 is a consequence of
Theorem 1. To prove the necessity of Theorem 2, it is sufficient to prove
the following lemma.

Lemma 10. If an n-dimensional locally compact fully wnormal space X has
not the property P, there exists a 2-dimensional compactum Y such that
dim (XxY)=#»n-+1.

This lemma is proved by a similar way as [10, Lemma 18], but for com-
pletness we shall give the proof.

Proor or LEmma 10. Since X has not the property P, there exists a
k-sequence a= (g, ¢»,--) such that for each pair (4, B) of closed subsets of X
H,(A, B: Z(a)) =0 by [10, Lemma 7]. Let @(a) be the 2-dimensional compactum
constructed in [10, §3, 3]. We shall prove that dim (XxXQ(a)=#n-+1. It is
sufficient to prove that dim (AxXQ(a)) =#»+1 for each compact subset A of X
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by Take an n-dimensional compact subset X, of X. Let W=
{B,= L} be a cofinal system of coverings of X, each member of which has
the order #. Let us denote by ¢, a canonical mapping of X, into the nerve
M, of B,, acP, and by =,f a projection of My into M, for f>a. We shall
use the same notations as in the proof of [10, Lemma 18]. Let U be a cover-
ing of X, xQ(). Since X, and Q(n) are compact spaces, there exist an element
«, of £ and a positive integer i, such that, if 8B, is the covering of the
simplicial polytope Q(q,---,q;,) consisting of the open stars and 4,, is the
projection from Q(a) onto @(g,,-,q.) (cf. [10, §3, 3]), the covering 28, ¥
6;)718;, of X;xQ(a) is a star refinement!” of . Let ¢ be an n-dimensional
simplex of M,, and let # be a 2-dimensional simplex of Q(g, -+, ¢.). Put
A(o) = ¢zi(0), B(o) = ¢3z1(6), C(u) = 6;(») and D(u) = 0;'(f). For each « > «,, let
us denote by (A,, B,) the pair of the subcomplexes of M, corresponding to
(A(0), B(0)). For each j>i, let us denote by (C;, D,) the pair of the subcom-
plexes of Q(gy,'--, q;) which is the image of (C(u), D(¢)) under the projection
0;: Q(a)— Qlg,, -+, g5). Since A(s) and C(zx) are compact sets, we have an iso-
morphism  H,,,.,((A(0), B(0)) X (C(w), D(1)): R,) = im {H,,,,((Aa, Ba) X (C, D) (w,f
XO0Nlag<a< f and i, <i<j} by [10, Lemma 5], where #,f and 6,7 are the
restricted projections 78| Ag: (Ap, Bg)— (As B, and 6,7|C;: (Cy;, D)—(C;, D))
respectively. Take an element a¢={a,.la>a, and i=i,+1,i,+2,-} of
H,1,(A(0), B(a))x (C(»), D(»)) : R,)), where @,,:€ Hyo((Ay B)X(Ci, D) R). By a
similar way as in the proof of [10, Lemma 187, we have

1

To+1

Auyiot1 = Uy X 6(Zo+1) )

Ly

Qy,i0+9 = E <uar,h1 X E'l— 67L1(i0+2)> ’

To+2
hy=1

tp—1

iy
1 .
Qayio+k = E E <%ar,n.---nk_1 X ?:; 5h.--~nk_1(lo+k)) ’

Ri=1 hy_y=1

where #,,n,n,—; 1S @ cycle of (4, B,) mod ¢, and 0., (G,+k) is the
fundamental chain with the value +1 on each 2-simplex of the Mobius band
Myt 1 (o) Grorre=15 Giori)y 1 =1, 11, By = 1,4+, ly_y, of which the complex
Ci,4 consists (cf. [10, pp. 390 and 396]). Since (&XOLIE )@y, i0tki1 = Cayivts

17) Let 1 = {Uy|a=R} and B be coverings of topological space. It is called that
1 is a star refinement of B if the covering { U Upglacf} is a refinement of V
U Uk

(Cf. [15, Chap. V).

a
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if we denote by #; a natural homomorphism from Z, ; onto Z,, for j>1i, we
have (MEiE™)stha ning = Uapin—r-  Let g <a < B, Since (mfX0%kiE)sap,:046 =
Quyivr, W€ have (wof)ustg ningoy = thayping—y MOd @i Let ay<a<p and
iy <i<j. Define a homomorphism P& : H,(Ap, Bg:Zy)— Ho(Au, Bo: Zy;) by
a composition of homomorphisms (%,%)s: H.(A4s, Bg: 2y ,)— H,(Ag, Bg: Zy;) and
(TeP)s: H(Ap, Bg: Zy) = H(Au, By : Z,;). Since (A(o), B(o)) is a pair of compact
spaces, we have an isomorphism H,(A(o), B(o):Z(a)) = ‘IEI} {H(Ay, By: Zy;) :
PEBla,<a<f and i, <i<j} by Let ay<a<p. We have
gglﬁﬁi%;”(%ﬁ,hwhk) = (”wﬁ)*(hgﬁ1'7§+1)*uﬁ,71,1-~-hk = (”mB)*Mﬁ,n.-unk_l = Ug,hangi» Therefore,
a collection {#4 ..., |0 <@ and k=1,2,--} determines an element of the
group liin{Hn(Aw, B.:Z,)}. Since H,(A(0), B(o): Z(a)) =0, each u,,,.,, must
be zero. This means that u,, ..., =0 mod gj,x4 fOr >y, by =1, 1,y =
1 by by =1,--+, I, and k=1,2,---. Hence, we have @,;=0 for a > «, and
1=1,+1, i,+2,---. Thus we can conclude H,.,((A(c), B(o)) X (C(w), D(w)): R,) = 0.
By [Lemma 1, the restricted mapping (¢, x0;,)|(A®0)xD(e)JB(o)xC(w)) is
extended to a mapping Y (o, #) of A(e)xC(x) into (eX u)U(ox ). Define a
mapping ¥ of X,x Q(a) into (M,, x (g, -, g )" by ¥, y)=Y(o, u)(x,y) for
x, v)€ A(6) x C(¢), where L*¥ means the k-section of the cell complex L. Since
the covering 28, x(4,,)7'B,, is a star refinement of U, the mapping ¥ is a
I, K)-mapping, where K means the k-section of the cell complex M,, < Q(q, -,
q:,)- Since W is any covering of X, x Q(a), we have dim (X,X Q1)) =#n-+1 by
Lemma 4 Since dim (X, x Q(a)) =#n+1 by [8], we can conclude that dim (X, X
Q) =n+1. Since X, is any n-dimensional compact subset of X, this com-
pletes the proof.
By a slight modification of the proof of we can prove the
following lemma.
Lemma 11, An n-dimensional fully normal space X is a dimensionally full-
valued space for Q if X has the following property (x):
There exist a cofinal system U= {U,|ucI'} of coverings of X and a
covering W,, of U which satisfy the following condition; for each prime
number p there exists a closed subset A, of X such that, if p>u,,
(*) 0= (0p)(04)s : Ho(K, Lz Z(ap)) — H (K., Ly, 2 Zp), where (K, L,) is the
pair of the nerves of W, corresponding to (X, A,), 0k, iS a projection of
(K, L,) tnto (K,.,,L,,) and p, is a natural homomorphism from Z(a)
onto Z,.

Lemma 12, A 1-dimensional fully normal space has the property (x) men-
tioned in Lemma 11.
Proor. Let X be a 1-dimensional fully normal space. Since Ind X'® =1

18) By Ind X we mean the dimension of X defined inductively in terms of the
boundaries of neighborhoods of closed sets of X (cf. [2, p. 1027).
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by [2, 1.7], there exists a closed subset A such that, whenever U is an open
set of X containing A, we have U—U=¢, where U is the closure of U in X.
Let x be a point of X. Let U be a covering of X. By A~x in U we shall
mean that there exists a finite number of elements U, of U,i=1,2,---, %, such
that U NA#¢, x€U, and U, U,y #¢,i=1,2,--,m—1. Since the set \J{x|A~x
in U} is a closed and open set containing A, we have A~x for each x=X.
Take a point x, of X—A. Let (N,/|x=I'} be a cofinal system of coverings
of X each member of which has the order 1. Let U,/ = {U'|k<sk,}, usl'.
We may assume that there exists an open set U,,’ of W,/ such that U,/ NA
=¢, €U, and x,&U,’ for k+k,. By [12, Theorem 1.1], there exists a
covering B,={V,i|ker,} such that V,cU,’ for each ker, Put U,=
X—éfko Vs Uke = Vigo—%, and U= V. for k#k,. Then {1, = {U,g, Usrer Up

for kek,}luel'} forms a cofinal system U of coverings of X each member
of which has the order 1. Let (K, L,UJU,,) be the pair of the nerves of U,
corresponding to (X, AUx,), u<I', where U,, means the vertex corresponding
to the open set U,, containing x, Since A~x, in 1, for each px&rI, the
group H,(K,,L,UU, :Z) contains a non-zero cycle z, such that the 1-simplex
(Upo Ur,) of K, appears in z, with the coefficient =1, p=I'. Let p be the
homomorphism of Z into Z(a,) defined by p(1)= {A;1)|i=1,2,--}, where %; is
a natural projection of Z into Zyj =Z/p'Z,i=1,2,---. The image %, of z,
under the induced homomorphism (o), is a non-zero element of H,(K,, L,U
Uu:Z(,). Let I, be a refinement of 1, and let 6,” be a projection of
(K,,L,JU,) into (K,,L,UU,). By the construction of the coverings {1},
the image of z, under the induced homomorphism (3,)s: Hi(K,, L,UU,,: Z)—
H/(K,,L,JU,:Z) is a cycle which has the coefficient +1 on the 1-dimensional
simplex (U, Uu,) of K,. Therefore we have (0,)«(8,)x2,#0, where (3,)x:
H(K,, L,U U, : Z(ap)— H{(K,, L,U Uy : Z(ay)) and (pp)s: Hi(K,, L,U Uyt Z(ap))
—H(K,, L,JU,: Z,). This shows that, if we put A,=AUx for each prime
number p and U, =any covering of U, X has the property (¥). This com-
pletes the proof.

By making use of the proof of shows that the fol-
lowing lemma holds.

Lemma 13. A 1-dimensional locally compact fully normal space has the
property P.

The following theorem is a consequence of Lemmas [ and

TueoreMm 3. A 1-dimensional fully normal space is a dimensionally full-
valued space for Q.

The following lemma is proved by a similar way as in the proof of [10,
Lemma 207 and we omit the proof.

Lemma 14. If an n-dimensional fully normal space contains a closed subset
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A such that H(X, A: Z)#0, then X has the property P9,

By and [Theorem 1 we have the following corollary.

CoroLLarY 1. If an n-dimensional fully normal space X contains a closed
subset A such that H (X, A: Z)#0, then X is a dimensionally full-valued space
for Q.

The following corollary which is a generalization of [10, Corollary 2] is
a consequence of and [10, Lemmas 21-23].

CoroLLary 2. The following spaces are dimensionally full-valued spaces for
Q.

1) Finite or infinite polytopes with the Whitehead weak topology.

2) Two dimensional locally compact ANR’s.20

3) M-dimensional ANR’s containing points which are HL™ ' and (m—1)-HS*D.

4) Finite dimensional and locally compact ANR’s which have the property A
in the sense of Borsuk®®.

Remark. Consider the following properties of an n-dimensional fully
normal space X.
For every prime number p and every k-sequence a each member of which

P,. iS @ power of p there exists a closed subset A, of X such that H,(X, A,
Z(a))+0.
p { For every prime number p theve exists a closed subset A, of X such
¥ that H(X, A,: Z(a,))#0, where a, is the k-sequence (p, %, b

By a similar way as [10, Lemmas 2 and 3 in Addendum], we can prove that
the three properties P, P, and P, of an n-dimensional fully normal space are
equivalent. Therefore we have

Turorem 2. In order that an wn-dimensional locally compact fully normal

19) In this case we can prove easily that X has the property () mentioned in
[Cemma 11, too.

20) A metric space X is called an ANR if, whenever X is a closed subset of a
metric space Y, there exists a mapping from some neighborhood of X in Y into X
which keeps X point-wise fixed.

21) Let Ei+l be a (j+1)-cell whose boundary is a j-sphere Si. A point x, of a
topological space is called HL* if for each neighborhood U of x, there exists a neigh-
borhood V of x, such that any mapping f: S/ — V—x, is extensible to a mapping
F: Ej+1 > U—x, for j =0,1,..., 2 A point x, of a topological space is called &-HS if
there exists a neighborhood U of x, such that for any neighborhood V of x, there
exists a mapping f: S¥* - V—x, which has no extension F: E*¥+1 > U—x, (Ci.Y.
Kodama, On homotopically stable points and product spaces, Fund. Math., 44 (1957),
171-185.) '

22) A topological space X is said to have the property A if for each point x of X
and each neighborhood U of x there exists a neighborhood V of x such that every
compact subset A of V is contractible in a subset of U of the dimension < dim A+1.
(Cf. K. Borsuk, Ensembles dont les dimensions modulaires de Alexandroff coincident
avec la dimension de Menger-Urysohn, Fund. Math., 27 (1936), 77-93.)
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space X be a dimensionally full-valued space for Q, it is necessary and sufficient
that X have any one property of P, P, and P,.

In [10, Addendum], we have proved that our property P is equivalent
to the following Boltyanskii’s property for zn-dimensional compact metric
spaces.

For every prime number p there exists a pair (A, By) of closed subsets
of X such that H™(A,, B,: Q,)#0, where Q, means the additive group
B. of all rational numbers of the form m/p* reduced modulo 1 and
H™A, B: G) means the n-dimensional wunrestvicted Cech cohomology
group of (A, B) with coefficients in G.
But we do not know whether Boltyanskii’s property B is equivalent to our
property P even for locally compact fully normal spaces, since it seems that
the duality between the unrestricted Cech homology groups and cohomology
groups does not hold generally.

§4. Examples.

Let p=(p, ps-+) be a sequence of positive integers. We shall construct
a 2-dimensional continuum R(p) for each p. Let E be a 2-cell whose boundary
is a 1-sphere S. For a positive integer ¢, let us denote by N(g) a polytope
obtained from £ by identifying points on S corresponding to each other
under the rotation of angle 2z/q. Let f be the identification mapping. We
shall call £(S) the “boundary” of N(g). The boundary of N(g) is a 1l-sphere.
In general, N(g) is a 2-dimensional curvilinear polytope. We shall consider
N(g) as a simplicial polytope with a fixed triangulation. Let T be the bound-
ary of N(g). Let us give an orientation to each 2-simplex of N(g) such that
the integral chain ¢(N(g)) which has the value 1 on each 2-simplex is a cycle
relative to 7. Obviously H,(N(), T:Z)=Z and c¢(N(g)) is a generator of
Hy(N(@), T: Z). We call ¢(N(q)) the fundamental chain of N(g). The following
lemma is proved easily by a similar way as in the proof of [10, Lemma 14].

Levma 15. Let f be a topological mapping from the boundary T of N(@)
onto the 1-sphere S which is the boundary of the 2-cell E and let F:(N(@),T)—
(E,S) be an extension of f.2 If Fy is the induced homomorphism of H,(N(g),
T:7) into Hy(E,S: Z), we have Fy(c(N(Q)) = q-v, where v is a generator of H,(E,
S:2).

Put R(p,) = N(p,). Let us replace every triangle = of R(p;) by N(p,)
such that N.(p,)N\N.(p,) = TNT’, where each N(p,) is a topological image?*»

23) Since E is contractible in itself, it is obvious that there exists at least one
extension F of f.

23a) By a topological image of a topological space X we mean a space homeomorphic
to X.
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of N(p,), T and T’ are the boundaries of N:p,) and N..(p,) respectively. We
have a 2-dimensional simplicial complex R(p,, p,) = \U N(p,). Let 4, be the

1-section of R(p,). We may consider 4, as a subset of R(p,, p,). There exists
a projection ¢,* from R(p,,p,) onto R(p,) such that the restricted mapping
¢.2|4, is topological. The integral chain c(p,, p,) = > c¢(N(p,)) is a cycle of

R(p,, p,) relative to the boundary T of R(p,), where ¢(N:(p,) is the funda-
mental chain of N«(p,), and c(p,, p,) is a generator of the group H,(R(p,D,),
T: Z) which is isomorphic to Z. Moreover, by Lemma 19, we have (¢,2)sc(p1, po)
= py-c(py), where c(p,) is the fundamental chain of R(p,). Let us suppose
that for some i we have constructed the following 2-dimensional simplicial
polytope R(py, -, p.): () R(p,, -, p,) contains the 1-section 4,_; of R(pi, -+, Pi-1)»
(2) there exists a projection ¢i_, from R(p,, .-, p;) onto R(p,, -, p;~;) such that
the restricted mapping ¢i_,|4;_; is topological, (3) Hy(R(p,,,p), T:2)=2Z,
(4) the integral chain ¢(p,, -, p;) which has the value 1 on each 2-simplex of
R(py,--, p) is a generator of H,(R(py,-,p), T:Z) and (@_)sc(pi,r 0:) =D+
c(py,+, piey). Let us replace every triangle g of R(p,, -, p) by N,(pi+;) such
that N, ()N Nu(pir) =T,NT,, where N, (p;+;) is a topological image of
N(pis1), T\ and T, are the bouudaries of N, (p;.,) and N,.(p;+,) respectively.
We have a 2-dimensional simplicial complex R(p,,-:, Pis1) = \U Nu(pis). I

4; is the 1-section of R(py,-,p:), we may consider 4, as a subget of R(p,,,
Dir)- There exists a projection ¢it! from R(p;, -+, p;+1) onto R(p,, -, p;) such
that the restricted mapping ¢i*!| 4, is topological. Obviously Hy(R(pi, ) Pisi)s
T:Z)=Z and the integral chain c(p,, -+, p.;) = 2 c(N.(p;+)) is a generator of

Hy(R(py,+, pirr), Where ¢(N,(p;.1)) is the fundameﬂntal chain of N,(p;+,). More-
over, by Lemma 15, we have (¢{*Dsc(pi, -, Diet) = Pisi-c(pi-, 0. Put R(p)=
lim {R(p,---, ps) : ¢i1}. Let ¢, be the projection from R(p) onto R(p, -, p:)-
WE shall call the boundary of R(p,) the “boundary” of R(p).

Lemma 16. For each sequence D of positive integers the space R(D) is a
2-dimensional continuum.

Proor. Let p=(p,, -, pi,>-r). Put ¢, =p,-py - +p; fori=1,2,---. Let T be
the boundary of R(p). By the continuity theorem of Cech homology groups
(cf. [6, Chap. X7), we have an isomorphism H,(R(p), T: R)=lim {H,(R(p,, -+, D:)>
T:R):(¢¥Y}. Consider the collection {4; c(p, s p)li=1, 2,---}, where
(P, pi) is a generator of the group Hy(R(p., - p:), T:Z). Since (¢F)uc(ps,

1
“"pi-H) :pi+1'c(ply'“;pi)) we have ((ﬁ?‘l)*(__l‘ B C(py"'yp'i+l)):bv—c(ply"Bpi) for'
qi+1 4

i=1,2,--. Therefore {qL c(Pyyees pi)} determines a non-zero element of H(R(p),
T:R). By we have dim R(p) =2. Since dim R(p) <2 by [10, Lemma
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127, we have dim R(p) = 2.

The following lemma shows that the converse of is not true.

Lemma 17. There exists a 2-dimensional continuum X such that (1) X has
the property P, (ii) for each pair (A, B) of closed subsets we have Hy(A, B:Z)=0.

Proor. Let p be a prime number. Let p(p) be the sequence (p,p, ).
Let us prove that the continuum R(p(p)) has the following properties: (1)
Hy(R®(P)), T: Z(ag))#0 for each prime number ¢g+p, where T is the boundary
of R(p(p), (2) Hy(A,B:Z)=0 for each pair (4, B) of closed subsets. Let us

i-fold

denote by R; the 2-dimensional simplicial polytope R(pn), i=1,2,---. Put
¢ = ¢i*t...¢_,, j>i, where ¢i*' is the projection from R;,, onto R,. Let A4/
be a natural homomorphism from Zy onto Zg,j>i. For j>i and 7/ >,
define a homomorphism R{:43 1 Hy(R;, T: Zy)— H{R;, T: Zs) by a composition
of the homomorphisms (%%)s : Hy(R;, T: Zyi)— Hy(Rj, T: Zy) and (¢,7)s : Hy(R;, T':
Za)— Hy(R,;,, T: Zs#). By Lemma 9 we have an isomorphism H(R®(p)), T: Z(ag))

i-fold
zlii’l {H(R;, T: Zyt) : BE43}. Put ¢y =c(p,+-,p), i=1,2,~~-. Since ¢; is an inte-
gral cycle relative to 7, we may consider ¢, as a cycle relative to 7' mod 2/,
j=1,2- and i=1,2,---. Let j>i and j/>é. Since p and ¢ are coprime
numbers, we have P& ;= (0)(h))sc; = (@ D)sc; =p9 ;=0 mod ¢”.  Ac-
cordingly we have 0£R%13 Hy(R;, T': Zyg)CHy(R;, T: Zy). Since Hy(R;, T': Zyir)
is a finite group for i=1,2,--- and i’ =1, 2,---, we can conclude that H,(R((p)),
T:Z(a))#0 by Lemma 6. This completes the proof of (1). To prove (2), by
710, Lemma 7], it is sufficient to prove that H,(R®M(p)), A:Z)=10 for each
closed subset A of Rp(p)). Put A;=¢;(A),i=1,2,--, where ¢, is the projec-
tion from R(®(p)) onto R,. Let A, be the smallest closed subcomplex of the
simplicial polytope R; containing A,. Then the projection ¢i*! maps A;,,
into A;,,i=1,2,---. Since (R®(p)), A)z}iin {(R;, A) : ¢¥*1}29, by the continuity

theorem of Cech homology groups, we have an isomorphism H,(R(p(p)), A: Z)
~lim {H,(R;, A;: Z): (¢i*1)4}. Take a 2-simplex o of Ry—A; for some k. Put

0;=(¢) o, j > k. Let a={a;|i=1,2,--} be any element of H,(R(n(p)),A:Z),
where o, Hy(R,, A;:Z),i=1,2,---. Since a; is an integral cycle, for each j > &
«@; has the same integral coefficient #; on each 2-simplex of g;. Let j/>j> k.
Since (¢, )xtj-05 =t; (@7 )50 =t;-pY D 0;=1;-0;*» by Lemma 15, we have

24) Let (X, A) be a pair of topological spaces and let {(X,, Ay) : 7,8} be an inverse
system of pairs of topological spaces. By (X, A) :(li_m{(Xa, Ay nB} we mean that
X =lm{X,: 7,8} and A =1im{A,: 8| Ag}-

— —
- 25) In this case, we mean by ?¢;-¢; the integral chain which has the integral
coefficient #; on each 2-simplex of ¢; and by (¢;i")s the chain homomorphism induced
by ¢
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tj=1t;-p¥ ) for each j/>j. Therefore ¢; is zero for j>%. Since o is any
2-simplex of R,—A,;, we have @;=0,i=1,2,--. Since ¢ is any element of
H{(R(M(p), A: Z), we have Hy(R(v(p)), A: Z)=0. This completes the proof of
(2). To complete the proof of the lemma, let p and g be two different prime
numbers. Let 7 and 77 be the boundaries of R({»(p)) and R(p(g)) respectively,
and let f be a topological mapping of T into 7. Let us denote by X the
space obtained from RM(p))+R®(g)*® by identifying points on T+477 cor-
responding to each other under the homeomorphism f. Let g be the identi-
fication mapping and put S=g(T+7"'). Let » be a prime number. We have
p#r or g#r. Let p#r. Since H,(R(M(p)), T: Z(a,)+0 and Hy(R(M(p))+R(M(g)),
T+T7: Z(a,)=~HyX,S: Z(a,)) by the map excision theorem [17], we have
Hy(X,S: Z(a,))#0. Similarly, if g#7, we have HyX,S:Z(a,))#0, too. Put
X, =g(R®(p)) and X,=g(R®(g))). Let A be a closed subset of X. If H,(X,
A:2)#0 we have H,(X,AUS:Z)#0 by [10, Lemma 7]. On the other hand,
since Hy(X, AUS: 2)=~Hy,(X,, Xi\NA: Z2)+Hy(X,, X;NA:Z) and Hy(X,, X\NA:Z)
=H,(X,, X,NA:2)=0, H(X, ANS:Z) must be zero. Therefore: we have
Hy(X,A:Z)=0 for each closed subset A of X. By [10, Lemma 77, this shows
that the continuum X has the property (ii) mentioned in the lemma. This
completes the proof.

LemMma 18. For each prime number p, theve exists a 2-dimensional continuum
X(p) such that () there exists a closed subset A of X(p) such that H(X(p), A:
Z(ap))#0, (i) for any prime number q+p and any pair (A, B) of closed subsets
of X(p) we have HXA, B: Z(ag)) = 0.

Proor. Let p,={p, -, Di--} be a sequence consisting of all positive
integers of the form ¢* where g ranges over all prime numbers except p
and % ranges over all positive integers. Put X(p)=R(p,). Let 7 be the
boundary of R(p,). Since each member p; of the sequence p, and p are coprime
numbers, we can see by a similar way as in the proof of Lemma 18 that
Hy(X(p), T: Z(a,))#0. To prove that X(p) has the property (ii) mentioned in
the lemma, let ¢ be a prime number different from p. Let A be a closed
subset of X(p). Put R;,= R(p, -, p:;) and A;=¢,(A),i=1,2,--, where ¢; is the
projection from X(p) onto R;. Let A; be the smallest subcomplex of R; con-
taining A;,i=1,2,---. By Lemma 9 and the continuity theorem of Cech
homology groups, we have an isomorphism H,(X(p), A: Z(ay)~1lim {Hy(R;, A;:
Zov): P43 7> and j/ > i}, where P4} is a composition of the homomor-
phisms (4%, : H,y(R;, Aj : Zoi) — Hy(R;, zj : Zgt) and ($y)sy : Hy(R;, Ej : Zg)— Hy(R;,
A Zyw). Assume that Hy(X(p), A: Z(ag))#0. Let {a;|i=1,2, and i’ =1, 2,--+}

26) Let {X,|acsf} be a collection of topological spaces. By ) X, we under-
€2
stand a topological space X such that X is an union of topological images X,’s of
Xys and X,/ NXp' = ¢, a# .
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be a non-zero element of Hy,(X(p), A: Z(ay)), where a, ;€ Hy(R;, A;: Zg), i =1, 2,
and i/=1,2,--. Let @;,,#0. There exist integers i, and j, such that i, > i,
jo=i’ and the zth member p,, of the sequence p,=¢g’”. Take any 2-simplex
o of Ryy_,~—A;_;. Put r=(¢¥_,)"lo. Since a;,, is a cycle mod ¢%, @;,,;, must
have the same coefficient # on each 2-simple of ¢, where t=Z,». Let { be an
integer such that p(f)=¢, where p is a natural homomorphism from Z onto
Z¢. Suppose that a@;,_;,; has the coefficient s on the 2-simplex g, where
seZw. Let § be an integer such that p(3)=s. Since j,=i, we have §.0=
(Pl st t=F-(ph_ Dyt =1-¢""-6=0% mod ¢”. Therefore we have s=0. Since
o is any 2-simplex of R,_,—A4;,_,, @;,-1,;» must be zero. Since P& @y, =
@, this contradicts a;,#0. Thus, we have Hy(X(p), A: Z(a))=0. By [10,
[Lemma 7], we see that the continuum X(p) has the property (ii) mentioned

in the lemma. This completes the proof.
Lemma 19. There exists a 2-dimensional continuum which has the property

P but not the property (%) mentioned in Lemma 11.

Proor. First, let us remark that in compact spaces the property () is

equivalent to the following property ().
[ For each prime number p there exist a closed subset A, of X and «a
covering W of X such that 0+ (¢)xH,(X, A,: Z(a,))TH,(K, L: Z(ay)),
() 1 wherve (K, L) is the pair of the nevves of W corresponding to (X, A) and

¢ is a canonical mapping of (X, A) into (K, L).

Thus, to prove the lemma, it is sufficient to construct a 2-dimensional con-
tinuum X which has the property P but not the property (xx). Let (p,, ps-*)

be a sequence of all prime numbers. Put X’ =x0+i X(p)*®, where x, is one
i=1

point space and X(p,) is the continuum constructed in i=12--.
Let x, be a point on the boundary of X(p;).i=1,2,--. Let X be a continuum
obtained from X’ by retopologizing X such that x, is the topological limit
of a sequence {X’(p,)}, where X'(p,) is the subspace, homeomorphic to X(p,),

of X', and by identifying the set }E‘xi with the point x,. Let f be the
i=1
identification mapping. Put X,=AX'(p)),i=1,2,---, and T=f(x,). Let U=
k-
{U;li=1,2,--,k} be a covering of X such that f=U, and X« \U U;. Put
i=2

V=X- C} U,. There exists an integer i, such that, if i=4, X,;CV. Let A4
i=2

be a closed subset of X. Let (K,L) be the pair of the nerves of U corre-

sponding to (X, A) and let ¢ be a canonical mapping of (X, A) into (K, L).

Since ¢(\ X)) = U, and Hy(Xi, XeNA: Z(ap)) =0 for k<iy,=j by

i=1,

27) Cf. footnotes 7) and 25).
28) See footnote 26).
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we have (¢).Hy(X, A: Z(apj)) =0, j =14, i,-+1,---. Since U is any covering of X,

the
the

continuum X has not the property (xx). Since it is obvious that X has
property P, this completes the proof.

National Defence Academy.
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