
Journal of the Mathematical Society of Japan Vol. 11, No. 2, April, 1959

On a problem of Alexandroff concerning the dimension
of product spaces II.

By Yukihiro KODAMA

(Received Oct. 1, 1958)

\S 1. Introduction.

Let $Q$ be a class of topological spaces. A topological space $X$ is called
a dimensionally full-valued space for $Q$ , if, whenever $Y$ is a space of $Q$ , the
following equality holds:

$\dim(X\times Y)=\dim X+\dim Y$ .
Here $\dim X\leqq n$ means that every finite open covering of $X$ has a refinement
of order not greater than $n$ .

A sequence $Cl=(q_{1}, q_{2},\cdots, q_{i},\cdots)$ of positive integers is called a k-sequence1)

if $q_{i}$ is a divisor of $q_{i+1},$ $ i=1,2,\cdots$ , and $q_{i}>1$ for some $i$ . There exists a
natural homomorphism $h(a, i)$ from $Z_{qi+1}$ onto $Z_{qi},$ $ i=1,2,\cdots$ , where $Z_{q}$ means
the factor group $Z/qZ$ and $Z$ means the additive group of all integers. Let
us denote by $Z(a)$ the inverse limit group of the inverse system $\{Z_{Qi} : h(\alpha, i)\}$ .
Let (X, $A$) be a pair of topological spaces. We shall denote by $H_{n}(X, A:G)$

the n-dimensional $\check{C}ech$ homology group of (X, $A$) with $G$ as a coeffcient
group based on all open coverings of X. Consider the following property $P$

of an n-dimensional topological space $X$.

P. $\{H_{n}(X,A\cdot. Z(\mathfrak{a}))\neq 0k- sequence$

$a$ there exists a closed subset A. of $X$ such that

In the first paper under the same title [10] we have proved the follow-
ing theorem.

THEOREM. Let $Q$ be a class of all compact metric spaces. In order that an
n-dimensional compact metric space $X$ be a dimensionally full-valued space for
$Q$ , it is necessary and sufficient that $X$ have the property $P$.

In the proof of this theorem (cf. [10, pp. 391-393]) the compactness of $X$

played an essential role. By making use of the unrestricted $\check{C}ech$ homology
groups we can remove the compactness condition of $X$ from the sufficient
condition of the theorem. Throughout this paper $u\prime e$ shall denote by $Q$ the
class of all locally compact fully normal spaces. We shall prove the following
theorem.

1) Cf. [10, \S 1].
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THEOREM 1. An n-dimensional fully normal space $X$ is a dimensionally full-
valued space for $Q$ if $X$ has the property $P$.

By Theorem 1 we can prove the following main theorem of this paper.
THEOREM 2. In order that an n-dimensional locally compact fully normal

space $X$ be a dimensionally full-valued space for $Q$ , it is necessary and $suJ\pi cient$

that $X$ has the property $P$.
Our Theorem 2 is a generalization of the theorem [10] refered to above

in two respects. Firstly, Theorem 2 does not assume the metrizability of
spaces. Secondly, the compactness condition of spaces is weakened to the
local-compactness condition; this generalization seems not to be trivial since
in the formulation of property $P$ we do not assume the compactness of the
closed subset $A_{\alpha}$ of $X$. By the proof of Theorem 1 we can prove the follow-
ing K. Morita’s theorem.

THEOREM 3. (K. Morita [13, Theorem 6]). A l-dimensional fully normal
space $X$ is a dimensionally full-valued space for $Q$ .

Finally, as a consequence of Theorem 1, we have the following corollary.
$CoROLLARY$ . An n-dimensional fully normal space $X$ which contains a closed

subset $A$ such that $H_{n}(X, A:Z)\neq 0$ is a dimensionally full-valued space for $Q$ .
In Addendum of the previous paper [10] we have proved that our pro-

perty $P$ is equivalent to Boltyanskii’s property in compact metric spaces (cf.

\S 3, Remark). But, in case $X$ is non-compact, we do not know whether our
property $P$ is equivalent to Boltyanskii’s property even for locally compact
fully normal spaces. In \S 2 we shall prove several lemmas and introduce the
notations used later on. The theorems mentioned above are proved in \S 3.
In \S 4 we shall show that the converse of the corollary is not true even for
the case where $X$ is a two-dimensional compact metric space.

\S 2. Lemmas and notations.

A system $\mathfrak{W}$ of subsets in a topological space $X$ is called to be locally

finite if for each point $x$ of $X$ there exists a neighborhood $U(x)$ such that
$U(x)$ intersects a finite number of sets of $\mathfrak{W}$ . A normal space is called fully
normal if every open covering has a locally finite open refinement (cf. [14]

and [15]). Throughout this paper we mean by a covering a locally finite open
covering. Let X be a fully normal space. A system $U=\{U_{\alpha}|a\in\Omega\}$ of cover-
ings of $X$ is called a cofinial system of coverings of $X$ if for each open
covering $\mathfrak{U}$ of $X$ there exists a member $U_{a}$ of $U$ such that $\mathfrak{U}<\mathfrak{U}_{a}(U_{\alpha}$ is a
refinement of 11). If $U_{a}<\mathfrak{U}_{\beta}$ for $\alpha\in\Omega$ and $\beta\in\Omega$ , we denote it simply by
$\alpha<\beta$ . The order of a covering is the largest integer $n$ such that there exist
$n+1$ members of the covering which has a non-empty intersection. By the
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dimension of $X$ (we denote it by $\dim X$) we mean the least $i$ nteger $n$ such
that every (finite or infinite) open covering has a locally finite refinement of
the order $n$ . By [3, Theorem 3.5] or [12, Theorem 2.1], this dimension is
equivalent to the usual Lebesgue dimension. By the nerve of a covering we
mean the nerve with the Whitehead weak topology (cf. [16] or [5]). Let $K$

be the nerve of a covering U. We shall denote the vertex of $K$ corresponding
to an element $U$ of $\mathfrak{U}$ by the same notation $U$. Sinc$eX$ is a normal space,
for each covering $\mathfrak{U}$ there exists a canonical mapping2) of $X$ into the nerve
$K$ of the coveri $ng$ U. Let $A$ be a closed subset of $X$ Let $\mathfrak{U}$ and $\mathfrak{V}$ be cover-
ings of $X$ such that $\mathfrak{U}>\mathfrak{V}$ , and let $(K, L)$ and $(M, N)$ be the pairs of the
nerves of $\mathfrak{U}$ and $\mathfrak{V}$ corresponding to (X, $A$) respectively. A projection of
$(K, L)$ into $(M, N)$ defined as usual is continuous (cf. [5, \S 4]). Let $\{1I_{\alpha}|\alpha\in\Omega\}$

be a cofinal system of coverings of $X$, and let us denote by $(K_{a}, L_{\alpha})$ the pair
of the nerves of $\mathfrak{U}_{a}$ corresponding to (X, $A$) for $\alpha\in\Omega$ and by $\pi_{\alpha^{\beta}}$ a projection
of $(K_{\beta}, L_{\beta})i$ nto $(K_{\alpha}, L_{\alpha})$ for $\beta>\alpha$ . We mean by $H_{n}(K_{a}, L_{\alpha} : G)$ the n-dimen-
sional homology group of finite cycles of $(K_{a}, L_{a})$ with coefficients in $G$ . For
each pair $\beta>\alpha$ a projection $\pi_{\alpha}\theta;(K_{\beta}, L_{\beta})\rightarrow(K_{a}, L_{\alpha})$ induces the homomorphism
$(\pi_{\alpha^{\beta}})_{*}:$ $H_{n}(K_{\beta}, L_{\beta} : G)\rightarrow H_{n}(K_{\alpha}, L_{\alpha} : G)$ . The limit group $H_{n}(X, A:G)$ of the in-
verse system { $H_{n}(K_{\alpha},$ $L_{\alpha}$ : $ G):(\pi_{\alpha^{\beta}})_{*}|\alpha<\beta:\alpha\in\Omega$ and $\beta\in\Omega$ } is called the n-
dimensional unrestricted $\check{C}ech$ homology group of (X, $A$) with coefficient $s$ in $G$

(cf. [3] or [4]). In compact spaces unrestricted $\text{{\it \v{C}}}_{ech}$ homology groups are
equal to usual $\text{{\it \v{C}}}_{ech}$ homology groups based on all finite coverings. Let $R_{1}$

be the additive group of rational numbers $mod 1$ . The following lemmas
ar $e$ well known (cf. [11, \S 2] and [12, Theorem 3.2]).

LEMMA 1. (Hopf’s extension theorem). Let $A$ be a closed subset of an
$(n+1)$ -dimensional compact space X In order that a mapping $f$ of $A$ into the
n-dimensional sphere $S^{n}$ be extensible to a mapping of $X$ into $S^{n}$ , it is necessary
and sufficient that the condition $f_{*}\partial H_{n+1}(X, A:R_{1})=0$ hold, where $f_{*}$ is the
homomorphism of $H_{n}(A:R_{1})$ into $H_{n}(S^{n} : R_{1})$ induced by the mapping $f$ and $\partial$ is
the boundary homomorphism3) of $H_{n+1}(X, A:R_{1})$ into $H_{n}(A:R_{1})$ .

LEMMA 2. Let $X$ be a locally compact fully normal space. In order that
$\dim X=n$ it is necessary and suffcient that

(1) there exists a closed subset $A$ of $X$ such that $H_{n}(X, A:R_{1})\neq 0$ ,
(2) for every closed subset $A$ of $X$ and every integer $j>n$ we have

$H_{j}(X, A:R_{1})=0$ .
LEMMA 3. Let $X$ be a locally compact fully normal space. In order that

2) A mapping of $X$ into $K$ is called a canonical mapping if the inverse image of
the open star of each vertex $U$ is contained in the open set $U$. Throughout this
paper we shall mean by a mapping a continuous transformation.

3) Cf. [6, Chap. I and Chap. IX].
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$\dim X\leqq n$ it is necessary and $suJficient$ that for every compact subset $A$ of $X$ we
have $\dim A\leqq n$ .

Let $X$ be a topological space and let $\mathfrak{U}$ be a covering of $X$. Let $K$ be a
simplicial complex with the Whitehead weak topology and let $\mathfrak{B}$ be the
covering of $K$ consisting of its open stars. By an ( $\mathfrak{U}$ , K)-mapping of $X$ into
$K$ we mean a mapping $f$ of $X$ into $K$ such that $\mathfrak{U}<f^{-1}(\mathfrak{V})^{4)}$ . The followi $ng$

lemma is well known (cf. [9, Chap. V, \S 8]).
LEMMA 4. Let $X$ be a normal space. In order that $\dim X\leqq n$ it is neces-

sary and suJficient that for every covering $\mathfrak{U}$ of $X$ there exist an n-dimensional
simplicial complex $K$ and an $(\mathfrak{U}, K)$ -mapping of $X$ into $K$

The following lemma was proved by K. Morita (cf. [13, Theorem 4]).

LEMMA 5. Let $X$ be a fully normal space and $Y$ a locally compact fully
normal space. Then the topological product of $X$ and $Y$ is fully normat, and we
have $\dim(X\times Y)\leqq\dim X+\dim Y$.

A $topo$ ] $ogica1$ group $G$ is called to satisfy the minimal $co$ndition if, when-
ever $\{G_{i}|i=1,2,\cdots\}$ is a decreasing sequence of closed subgroups of $G$ , there
exists some integer $n$ such that $ G_{n}=G_{n+1}=\cdots$ . The following lemma is easily
proved and we omit the proof.

LEMMA 6. Let $\{G_{\zeta t} : \pi_{\alpha^{\beta}}\}$ be an inverse system of compact topological groups
over a directed set $\Omega=\{\alpha\}^{o)}$

’ such that each $G_{\alpha}$ satisfies the minimal condition.
Let $G$ be the limit group of $\{G_{\alpha}\}$ . For each $\alpha\in\Omega$ there exis $ts$ an element $\beta$ of
$\Omega$ such that $\alpha<\beta$ and $\pi_{\alpha}G=\pi_{\alpha^{\beta}}G_{\beta}$ , where $\pi_{\alpha}$ is the projection of $G$ into $G_{\alpha}$ .

Let $q$ be a positive integer such that $q>1$ and Iet us denote the k-
sequenc $e(q, q^{2},\cdots, q^{i},\cdots)$ by $\sigma_{q}$ . There is a natural homomorphism $\rho_{q}$ from $Z(a_{q})$

onto $Z_{q}$ defined by $\rho_{q}(c)=c_{1}$ , where $c_{1}$ is the first coordinate of $an$ element
$c=\{c_{\dot{\lambda}}|i=1,2,\}$ of $Z(\mathfrak{a}_{q})$ .

LEMMA 7. Let (X, $A$) be a pair of n-dimensional fully normal spaces. If
$H_{n}(X, A:Z(0_{q}))\neq 0$ , then the homomorphism $(\rho_{q})_{*}:$ $H_{n}(X, A:Z(\mathfrak{a}_{q}))\rightarrow H_{n}(X, A:Z_{q})$

induced by the homomorphism $\rho_{q}$ : $Z(\mathfrak{a}_{q})\rightarrow Z_{q}$ is non-trivial.
PROOF. Let $\{U_{\alpha}|\alpha\in\Omega\}$ be a cofinal system of covering $s$ of $X$ each mem-

ber of which has the order $n$ ; let us denote by $(K_{\alpha}, L_{\alpha})$ the pair of the nerves
of $U_{\alpha}$ corresponding to (X, $A$) for $\alpha\in\Omega$ and by $\pi_{a^{\beta}}$ a projection of $(K_{\beta}, L_{\beta})$

into $(K_{\alpha}, L_{a})$ for $\beta>\alpha$ . Let $a=\{a_{\alpha}|\alpha\in\Omega\}$ be a non-zero element of $H_{n}(X,$ $A$ :
$Z(\mathfrak{a}_{q}))$ , where $a_{\alpha}\in H_{u}(K_{\alpha}, L_{\alpha} : Z(\mathfrak{a}_{q}))$ for $\alpha\in\Omega$ . Since $\dim K_{\alpha}=n$ , we can con-
sider $a_{\alpha}$ as a cycle of $(K_{\alpha}, L_{a})$ with coefficie$nts$ in $Z(\mathfrak{a}_{q})$ for each $\alpha\in\Omega$ . Let
$a_{\alpha}=\sum_{i}t_{at}\sigma_{ai},$

$\alpha\in\Omega$ , where $t_{ax}\in Z(\mathfrak{a}_{q})$ and $\sigma_{ai}’ s$ are n-simplexes of $K_{a}$ for each
$i$. Put $a_{aj}=\Sigma t_{\alpha^{j}i}\sigma_{ax},$ $ j=1,2,\cdots$ and $\alpha\in\Omega$ , where $t_{\alpha^{j_{i}}}$ is the j-th coordinate of

4) Let $\mathfrak{V}=\{V\}$ be a covering of a topological space $Y$ and let $f$ be a mapping of
$X$ into $Y$. By $f-1(\mathfrak{V})$ we mean the covering $\{f^{-1}(V)\}$ of $X$.

5) Cf. [6, Chap. VIII].
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the element $t_{ai}$ of the inverse limit group $Z(a_{q})$ . Then $a_{j}$ is a cycle of
$(K_{\alpha}, L_{\alpha})mod q^{j6)}$ for $ j=1,2,\cdots$ and $\alpha\in\Omega$ . If $(\rho_{q}\rangle_{*}a^{6a)}=0, (\rho_{q})_{*}a_{\alpha}^{6a)}=0$ for
each $\alpha\in\Omega$ . Accordingly we have $a_{aj}\equiv 0mod q^{7)}$ for $ j=1,2,\cdots$ and $\alpha\in\Omega$ .
Therefore, since $\frac{1}{q}a_{aj^{8)}}$ is a cycle of $(K_{\alpha}, L_{a})mod q^{j-1}$ for $j=2,3\cdots,$ $--a_{\alpha}q1$ is

a cycle of $(K_{a}, L_{a})$ with coefficients in $Z(\mathfrak{a}_{q})$ . Since $(\pi_{a^{\beta}})_{*}(\frac{1}{q}a_{\beta})=\frac{1}{q}a_{c\iota}$ for

$\beta>\alpha,$ $\{\frac{1}{q}a_{\alpha}|\alpha\in\Omega\}$ determines a non-zero element $a(1)$ of $H_{n}(X, A:Z(a_{q}))$ . If

$(\rho_{q})_{*}a(1)=0$ , by the same argume $nt$ as above, we can see that $\{\frac{1}{q^{2}}a_{\alpha}|\alpha\in\Omega\}$

determines a non-zero eleme$nta(2)$ of $H_{n}(X, A:Z(a_{q}))$ . If we could repeat
infinitely this process, we should have $a_{aj}\equiv 0mod q^{i}$ for $i,$ $ j=1,2,\cdots$ and $\alpha\in\Omega$ .
This contradicts $a\neq 0$ . Thus there exists $an$ integer $i$ such that the element
$a(i)=\{\frac{1}{q^{i}}a_{\alpha}|\alpha\in\Omega\}$ of $H_{n}(X, A:Z(a_{q}))$ has a non-zero image under the homo-

morphism $(\rho_{q})_{*}$ .
LEMMA 8. Let (X, $A$ ) be a pair of n-dimensional fully normal spaces such

that $H_{n}(X, A:R_{1})\neq 0$ . Then there exist a prime number $p$ and an element
$\{a_{\alpha}|\alpha\in\Omega\}$ of $H_{n}(X, A:R_{1})=\lim\{H_{n}(K_{a}, L_{\alpha} : R_{1}):(\pi_{\alpha^{\beta}})_{*}\}$ such that for each $\alpha\in\Omega$

the order of $a_{a\}}$ is a power of $p$.
PROOF. We may assume that $\dim K_{a}=n$ for each $\alpha\in\Omega$ . Let $\{b.|a\in\Omega\}$

be a non-zero element of $H_{n}(X, A:R_{1})$ . Let $q_{\alpha}$ be the order of $b_{\alpha}$ . Let $b_{a_{0}}\neq 0$

for some $\alpha_{0}\in\Omega$ . Then $q_{0}\neq 0$ . Let $p$ be a prime number which is a divisor
of $q_{\mathcal{O}0}$ . For each $\beta>\alpha_{0}$ , put $q_{\beta}=p^{\lambda_{\beta}}\cdot r_{\beta}$ , where $\lambda_{\beta}$ is a positive integer, $p$ and
$\gamma_{\beta}$ are coprime numbers. If $\alpha_{0}<\alpha<\beta$ , we have $\lambda_{\alpha}\leqq\lambda_{\beta}$ and $\gamma_{\alpha}$ is a divisor
of $\gamma_{\beta}$ . Put $c_{\beta}=r_{\beta}\cdot b_{\beta}$ for $\beta>\alpha$ . Since $r_{\beta}$ and $p$ are coprime numbers, $c_{\beta}$ is
a non-zero eleme $nt$ of $H_{n}(K_{\beta}, L_{\beta} : R_{1})$ . Let us denote by $G_{\beta}$ the subgroup of
$H_{\eta}(K_{\beta}, L_{\beta} : R_{1})$ generated by the element $c_{\beta}$ . Then $G_{\beta}$ is a finite group of the
order $p^{\lambda_{\beta}}$ . If $\alpha_{0}<\alpha<\beta$ , since $r_{\alpha}$ is a divisor of $\gamma_{\beta}$ we have $(\pi_{\alpha^{\beta}})_{*}c_{\beta}=(\pi_{\alpha^{\beta}})_{*}r_{\beta}\cdot b_{\beta}$

$=r_{\beta}\cdot(\pi_{\alpha^{\beta}})_{*}b_{\beta}=(r_{\beta}/r_{\alpha})\cdot r_{a}\cdot b_{\alpha}=(r_{\beta}/r_{\alpha})\cdot c_{a}$ . Thus we have $(\pi_{\alpha^{\beta}})_{*}G_{\beta}\subset G_{\alpha}$ . Therefore
the system $\{G_{\alpha} : (\pi_{a^{\beta}})_{*}\}$ forms an inverse system. Put $G=\varliminf\{G_{\alpha} : (\pi_{a^{\beta}})_{*}\}$ .

6) Let $q$ be a positive integer such that $q>1$ . By a cycle $mod q$ we mean a cycle
with coefficients in $Z_{q}$ . By a cycle $mod 1$ we mean a cycle with coefficients in $R_{1}$ .

$6a)$ These $(\rho_{Q})_{*}$ mean the homomorphisms induced by the homomorphism $\rho q$ be-
tween the coefficient groups $Z(a_{q})$ and $Z_{q}$ .

7) Let $c=\sum_{i}t_{i}\sigma_{i}$ be an integral chain of $(K, L)$ . By $c\equiv 0mod q$, where $q$ is an

positive integer, we mean that $t_{i}\equiv 0mod q$ for each $i$ .
8) $c=\sum_{i}g_{i}\sigma_{i}$ be a chain of $(K, L)$ , where $g_{i}\in R_{1}$ or $g_{i}\in Z$ for each $i$. Let $q$ be an

integer. By $\frac{1}{q}c$ we mean the chain $\sum\frac{1}{q}g_{i}\sigma_{i}$ of $(K, L)$ .
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Assume that $G=0$ . Since each $G_{\alpha}$ is a finite group, there exists $\alpha>\alpha_{0}$ such
that $(\tau_{\mathcal{O}0}^{a})^{*}G_{\alpha}=0$ by Lemma 6. On the other hand, we have $(\pi_{a_{0}}^{\alpha})_{*}c_{\alpha}=r_{a}\cdot b_{a_{0}}$ .
Since $r_{\alpha}$ and $p$ are coprime numbers and the order of $b_{\alpha_{0}}$ is $p^{\lambda_{a_{0}}}r_{cto}$ , we have
$(\pi_{\alpha_{\theta}}^{\alpha})_{*}c_{a}=r_{\alpha}\cdot b_{a_{0}}\neq 0$ . This contradicts $(\pi_{\alpha_{0}}^{\alpha})_{*}G_{\alpha}=0$ . Therefore $G\neq 0$ . Since an
order of every element of $G_{\alpha}$ is a power of $p$ for each $\alpha\in\Omega$ , we can find an
element required in the lemma. This completes the proof.

\S 3. Theorems.

THEOREM 1. An n-dimensional fully normal space $X$ is a dimensionally

full-valued space for $Q$ if $X$ has the property $P$.
PROOF. Let $Y$ be an m-dimensional locally compact fully normal space.

By Lemmas 3 and 2, there exists a pair $(A, B)$ of compact subsets of $Y$ such
that $H_{m}(A, B:R_{1})\neq 0$ . Let $W=\{\mathfrak{W}_{\alpha}|\alpha\in\Omega\}$ be a cofinal syst$em$ of finite cover-
ings of $A$ each member of which has the order $m$ . Let us denote by $(M_{a}, N_{a\}})$

the pair of the nerves of $\mathfrak{W}_{\alpha}$ corresponding to $(A, B)$ and by $\pi_{\alpha^{\beta}}$ a projection
of $(M_{|9}, N_{\beta})$ into $(M_{\alpha}, N_{\alpha})$ for $\alpha,$ $\beta\in\Omega$ and $\beta>\alpha$ . By Lemma 8 there exist a
prime number $p$ and a non-zero element $\{a_{\alpha}|\alpha\in\Omega\}$ of $H_{m}(A, B:R_{1})=$

$\varliminf\{H_{m}(M_{\alpha}, N_{\alpha} : R_{1}):(\pi_{\alpha}\theta)_{*}\}$ such that the order of each $a_{\alpha}$ is a power of $p$ .
Since $X$ has the property $P$, there exists a closed subset $X_{0}$ such that
$H_{n}(X, X_{0} : Z(a_{p}))\neq 0$ , where $a_{p}$ is the k-sequence $(p,p^{2},\cdots,p^{i},\cdots)$ . Let $U=\{U_{\mu}|\mu\in\Gamma\}$

be a cofinal system of coverings of $X$ each member of which has the order
$n$ . Let us denote by $(K_{\mu}, L_{\rho})$ the pair of the nerves of $U_{\mu}$ corresponding
to (X, $X_{0}$) and by $\delta_{\mu}^{\nu}$ a projection of $(K_{\nu}, L_{\nu})$ into $(K_{\mu}, L_{\mu})$ for $\nu,$ $\mu\in\Gamma$ and
$\nu>\mu$ . By Lemma 7, there exi $sts$ an element $\{c_{\mu}|\mu\in\Gamma\}$ of $H_{n}(X, X_{0} : Z(a_{p}))$

$=\varliminf\{H_{n}(K_{\rho}, L_{\mu}:Z(\mathfrak{a}_{p})):(\delta_{\mu}^{\nu})_{*}\}$ such that $(\delta_{p})_{*}\{c_{1}\}\neq 0$ . Since $\dim K_{\mu}=n$ , we
may consider $c_{\mu}$ as a cycle of $(K_{\mu}, L_{\mu})$ with coefficients in $Z(\mathfrak{a}_{p})$ for each
$\mu\in\Gamma$ . Take $an$ element $\mu_{0}$ of $\Gamma$ such that $(\rho_{p})_{*}c_{1_{0}}\neq 0$ . This means that, if
$c_{\mu_{0}}=\{c_{10}(i)|i=1,2,\cdots\}$ , where $c_{10}(i)$ is a cycle of $(K_{!0}, L_{u_{0},})mod p^{\iota_{9)}}$ , there
exists some positive integer $j_{0}$ such that $c_{\mu_{0}}(j)\equiv\in 0mod p^{10)}$ for each $j\geqq J_{0}$ .
Take an element $\alpha_{0}$ of $\Omega$ such that $a_{a}.\neq 0$ . We shall prove that the covering
$11_{\beta 0}\times \mathfrak{W}_{\alpha_{0}}=$ { $U\in \mathfrak{U}_{l^{10}}$ and $W\in \mathfrak{W}_{do}$ } of $X\times A$ has no refineme $nt$ whose order
$<m+n$ . Let $\mathfrak{W}$ be a refinement of $\mathfrak{U}_{1_{\phi}}\times \mathfrak{W}_{\mathcal{O}0}$ . Since $A$ is compact, there
exist a covering $\mathfrak{U}_{\mu}=\{U_{k^{l}}|k\in\kappa_{\mu}\}$ of $U$ and coverings $\mathfrak{W}_{a_{k}}=\{W_{l}\},$ $k\in\kappa_{\mu}$ , of
$W$ such that the covering { $U_{k}^{\prime 1}\times W_{\iota}|k\in\kappa_{\mu}$ and $W_{\iota}\in \mathfrak{W}_{a_{k}}$ } is a refinement of

$\mathfrak{W}$ . Obviously, $U_{\mu}$ is a refinement of $\mathfrak{U}_{\mu_{0}}$ . Let $S_{/1}$ be the subcomplex of $K_{1}$

consisting of all closed n-simplexes with a non-zero coefficient in the cycle
$c_{\mu}$ of $(K_{\mu}, L_{\mu})$ with coefficients in $Z(\mathfrak{a}_{p})$ . Since $c_{\mu}$ is a finite chain, $S_{\mu}$ is $a$

9) Cf. the proof of Lemma 7.
10) See footnote 7).
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finite subcomplex of $K_{\mu}$ . Let $\{U_{k_{i}}^{\rho}|i=1,2,\cdots, t\}$ be all vertexes of $S_{1}$ . Take
a covering $\mathfrak{W}_{\alpha}$ of $W$ which is a common refinement of coverings $\mathfrak{W}_{o’ 0}$ an $d$

$\mathfrak{W}_{\alpha_{ki}},$ $i=1,2,\cdots,$ $t$. Put $\mathfrak{W}=$ { $U_{ki}^{\prime 1}\times W_{\iota}|i=1,2,\cdots,$ $t$ and $W_{l}\in \mathfrak{W}_{a}$ }. Let $M^{*}$ be
the ner $ve$ of $\mathfrak{W}$ and let $N^{*}$ be the nerve of $\mathfrak{W}\cap(X\times B\cup X_{0}\times A)^{11)}$ . By [1,

Theorem 12.42], there exists a homomorphism into, $\theta:(S_{\mu}, S_{\mu}\cap L_{\mu})\times(M_{\alpha}, N_{\alpha})^{12)}$

$\rightarrow(M^{*}, N^{*})$ , whose image is a deformation retract13) of $(_{t}V^{*}, N^{*})$ . Let $(M_{0^{*}}, N_{0^{*}})$

be the pair of the nerves of the coverings $\mathfrak{U}_{\rho}.\times \mathfrak{W}_{\alpha_{0}}$ corresponding to (X, $X_{0}$ )
$\times(A, B)$ . By [1, Theorem 12.42], there exists a homeomorphism into, $\theta_{0}$ : $(K_{l}.$ ,
$L_{1_{\phi}})\times(M_{\alpha_{0}}, N_{ao})\rightarrow(M_{0^{*}}, N_{0^{*}})$ , whose image is a deformation retract of $(M_{0^{*}}, N_{0^{*}})$ .
Define a simplicial mapping $\pi$ of $(M^{*}, N^{*})$ into $(M_{0^{*}}, N_{0^{*}})$ by $\pi(U, W)=(\delta_{\mu_{0}}^{\mu}(U)$ ,
$\pi_{\alpha_{0}}^{\alpha}(W))$ , where $U$ an$dW$ are vertexes of $S_{1}$ and $M_{t}$ respectively. Define a
cellular mapplng14) $\pi_{0}$ of $(S_{1}, S_{\mu}\cap L_{\beta})\times(M_{\alpha}, N_{a})$ into $(K_{l0}, L_{/0})\times(M_{a_{0}}, N_{\alpha}.)$ by
$\pi_{0}(x, y)=(\delta_{\mu_{0}}^{\mu}(x), \pi_{a_{0}}^{a}(y)),$ $(x,y)\in S_{\mu}\times M_{\alpha}$ . By the definition of $\theta$ and $\theta_{0}$ (cf. [1, $p$ .
317]), we have $\pi\theta\cong\theta_{0}\pi_{0}$ : $(S_{1}, S_{1}\cap L_{1})\times(M_{\alpha}, N_{\alpha})\rightarrow(M_{0^{*}}, N_{0}^{*})^{16)}$ . Let $i$ be a posi-
tive integer such $t$hat the order of the element $a_{\alpha}=p^{i}$ . Put $i_{0}=\max(i,j_{0})$ .
Consider the product chain $c_{1}(i_{0})\times a_{\alpha}^{16)}$ of the chain group $C_{m+n}(S_{\mu}\times M_{a} : R_{1})$ .
Since $c_{\mu}(i_{0})$ is a cycle of $(S_{1}, S_{/1}\wedge L_{1})mod p^{i_{0}},$ $a_{\alpha}$ is a cycle of $(M_{a}, N_{a})mod 1$

and the order of $a_{\alpha}$ is a divisor of $p^{i_{0}}$ , we see that the chain $c_{\mu}(i_{0})\times a_{\alpha}$ is a
cycle of (S,m’ $S_{\mu}\cap L_{l^{l}}$) $\times(M_{\alpha}, N_{\alpha})mod 1$ . Since $c_{\mu}(i_{0})\not\equiv 0mod p$ , we have $ c_{\mu}(i_{0})\times$

$a_{\alpha}\not\equiv Omod 1^{16a)}$ Since $(\delta_{\alpha}^{\mu_{0}})_{*}c_{u,}(i_{0})\equiv c_{1’ 0}(i_{0})mod p^{i_{0}},$ $(\pi_{\alpha_{0}}^{\alpha})_{*}a_{\alpha}\equiv a_{a_{0}}mod 1$ and the
order of $a_{\alpha}$ is a divisor of $p^{i_{0}}$ , we have

11) Let $\mathfrak{W}=\{W_{i}\}$ be a collection of subsets of $X$ and let $A$ be a $s$ ubset of $X$. By
$\mathfrak{W}\cap A$ we mean the collection $\{W_{i}\cap A\}$ of subsets of $A$ .

12) Let (X, $A$) and (Y. $B$) be pairs of topological spaces. By (X, $A$) $\times(Y, B)$ we
mean the pair $(X\times Y, X\times B\cup A\times Y)$ of spaces.

13) Let (X, $A$) and $(Y, B)$ be pairs of topological spaces such that $X\subset Y,$ $\angle^{\angle 1\subset B},$ $X$

and $A$ are closed subsets of $Y$. It is called that (X, $A$) is a deformation retract of
$(Y, B)$ if there exists a homotopy $F:(Y\times I, B\times I)\rightarrow(Y, B)$ such that $F|X\times I=$ the
identity, $F|Y\times 0=$ the identity, $F(Y\times 1)\subset X$ and $F(B\times 1)\subset A$ , where $I$ is the closed
interval $[0,1]$ .

14) A mapping $f$ of a cell complex $K$ into a cell complex $M$ is called a cellular
mapping if $f(K^{i})\subset M^{i}$ , where $K^{i}$ means the i-section of $K$.

15) Let (X, $A$) and $(Y, B)$ be pairs of topological spaces and let $f_{0}$ and $f_{1}$ be two
mappings of (X, $A$) to $(Y, B)$ . By $f_{0}\cong f_{1}$ : (X, $A$) $\rightarrow(Y, B)$ we mean that there exists
a homotopy $H:X\times I\rightarrow Y$ such that $H|X\times 0=f_{0},$ $H|X\times 1=f_{1}$ and $H(A\times I)\subset B$ .

16) Let $G_{1}$ and $G_{2}$ be two abelian groups paired to a third group $G$ , that is, there
exist a function $\phi(g_{1}, g_{2})$ of $G_{1}\times G_{2}$ into $G$ which is distributive in both variable
and whose values are in $G$ . Let $c=\sum t_{j}\sigma_{j}$ be a chain of $(K_{i}, L_{i})$ with coefficients
in $G_{i},$ $i=l,$ $2$ , where $\sigma_{j^{i}i}’ s$ are simplexes of $K_{i},$ $i=1,2$ . By the product chain $c_{1}\times c_{2}$

of $c_{1}$ and $c_{2}$ we understand the chain $\sum\phi(t_{j_{1}^{1}}, t_{j_{2}^{2}})(\sigma_{j_{1}^{1}}\times\sigma_{j_{a}^{2}})$ of the cell complex
$(K_{1}, L_{1})\times(K_{2}, L_{2})$ with coefficients in $G$ .

$16a)$ Let $c=\sum_{i}t_{i}\sigma_{i}$ be a chain of $(K, L)$ with coefficients in $R_{1}$ . By $c\equiv 0mod 1$

we mean that each $t_{i}$ is an integer.
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$(\pi_{0})_{*}(c_{\mu}(i_{0})\times a_{\alpha})\equiv(\delta_{\mu_{0}}^{l}\times\pi_{\alpha_{0}}^{\alpha})_{*}(c_{\mu}(i_{0})\times a_{\alpha})$

$\equiv(\delta_{u,}^{l_{0}})_{*}c_{\mu}(i_{0})\times(\pi_{\alpha_{0}}^{\alpha})_{*}a_{a}$

$\equiv c_{/\prime_{0}}(i_{0})\times a_{\alpha_{0}}$ mod 1.
Since $(\rho_{p})_{*}c_{l}$m $o(i_{0})\neq 0,$ $a_{\alpha_{0}}\neq 0$ and $\dim(K_{t_{0}}\times M_{\alpha_{0}})=m+n,$ $c_{\mu_{0}}(i_{0})\times a_{\alpha_{0}}$ is a non-zero
cycle of $(K_{\mu_{0}}, L_{\rho_{0}})\times(M_{\alpha 0}, N_{\alpha}.)$ $mod 1$ . Since $\theta_{0}((K_{\mu_{0}}, L_{\mu_{0}})\times(M_{\alpha_{0}}, N_{a_{0}}))$ is a de-
formation retract of $(M_{0^{*}}, N_{0^{*}}),$ $(\theta_{0})_{*}(c^{y_{0}}(i_{0})\times a_{\alpha 0})$ is a non-zero element of
$H_{m+n}(M_{0^{*}}, N_{0^{*}} : R_{1})$ . Assume that the covering $\mathfrak{W}$ has the order $<m+n$ . Let
$(C, D)$ be the pair of the nerves of $\mathfrak{W}$ corresponding to (X, $X_{0}$) $\times(A, B)$ and let
$\pi_{1}$ and $\pi_{2}$ be projections of $(M^{*}, N^{*})$ and $(C, D)$ into $(C, D)$ and $(M_{0^{*}}, N_{0^{*}})$

respectively. $Thenwehave\pi\cong\pi_{2}\pi_{1};(M^{*}, N^{*})\rightarrow(M_{0^{*}}, N_{0^{*}})$ . Since dimC $<m+n$ ,
we have $(\theta_{0})_{*}(c_{10}(i_{0})\times a_{\alpha_{0}})=(\theta_{0})_{*}(\pi_{0})_{*}(c_{1^{J}}(i_{0})\times a_{\alpha})=(\theta_{0}\pi_{0})_{*}(c_{1}(i_{0})\times a_{a})=(\pi\theta)_{*}(c_{\mu}(i_{0})\times$

$a_{\alpha})=(\pi_{2})_{*}(\pi_{1}\theta)_{*}(c_{1}(i_{0})\times a_{\alpha})=0$ . This contradicts $(\theta_{0})_{*}(c_{\beta 0}(i_{0})\times a_{\alpha_{0}})\neq 0$ . Therefore
the covering $\mathfrak{W}$ has the order $\geqq m+n$ . Since $\mathfrak{W}$ is any refinement of the
covering $11_{\beta 0}\times \mathfrak{W}_{o_{0}}$, of $X\times A$ , we have $\dim(X\times A)\geqq\dim X+\dim A$ . Since
$\dim(X\times Y)\leqq\dim X+\dim Y$ by Lemma 5 and $X\times A$ is a closed subset of
$X\times Y$, we have $\dim(X\times Y)=\dim X+\dim Y$. This completes the proof.

THEOREM 2. Let $X$ be an n-dimensional locally compact fully normal space.
In order that $X$ is a dimensionally full-valued space for $Q$ , it is necessary and
suJficient that $X$ has the property $P$.

Before proving Theorem 2 we state the following lemma which is proved
easily (cf. [7, Theorem 5.1]).

LEMMA 9. Let (X, $A$) be a pair of compact spaces. Let $G$ be the limit group
of an inverse system $\{G_{a}|h_{\alpha^{\beta}}\}$ of abelian groups. Then we have an isomorphism

$H_{n}(X, A:G)\approx\varliminf\{H_{n}(X, A:G_{\alpha}) : (h_{\alpha^{\beta}})_{*}\}$ ,

where $(h_{\alpha^{\beta}})_{*}$ is the homomorphism of $H_{n}(X, A:G_{\beta})$ into $H_{n}(X, A:G_{\alpha})$ induced by
the homomorphism $h_{a^{\beta}}$ : $G_{\beta}\rightarrow G_{\alpha}$ .

PROOF OF THEOREM 2. The sufficiency of Theorem 2 is a consequence of
Theorem 1. To prove the necessity of Theorem 2, it is sufficient to prove
the following Iemma.

LEMMA 10. If an n-dimensional locally compact fully normal space $X$ has
not the property $P$, there exists a 2-dimensional compactum $Y$ such that
$\dim(X\times Y)=n+1$ .

This lemma is proved by a similar way as [10, Lemma 18], but for com-
pletness we shall give the proof.

PROOF OF LEMMA 10. Since $X$ has not the property $P$, there exists a
k-sequence $a=(q_{1}, q_{2},\cdots)$ such that for each pair $(A, B)$ of closed subsets of $X$.
$H_{n}(A, B:Z(\mathfrak{a}))=0$ by [10, Lemma 7]. Let $Q((\iota)$ be the 2-dimensional compactum
constructed in [10, \S 3, 3]. We shall prove that $\dim(X\times Q(()))=n+1$ . It is
sufficient to prove that $\dim(A\times Q(a))=n+1$ for each compact subset $A$ of $X$
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by Lemma 3. Take an n-dimensional compact subset $X_{\gamma}|$ of $X$. Let $W=$

$\{\mathfrak{W}_{\alpha}\in\Omega\}$ be a cofinal system of coverings of $X_{0}$ each member of which has
the order $n$ . Let us denote by $\phi_{a}$ a canonical mapping of $X_{)}$ into the nerve
$M_{a}$ of $\mathfrak{W}_{\alpha},$ $\alpha\in\Omega$ , and by $\pi_{\alpha}^{\beta}$ a projection of $M_{\beta}$ into $M_{\alpha}$ for $\beta>\alpha$ . We shall
use the same notations as in the proof of [10, Lemma 18]. Let $\mathfrak{U}$ be a cover-
ing of $X_{0}\times Q(\mathfrak{a})$ . Since $X_{0}$ and $Q(a)$ are compact spaces, there exist $an$ element
$\alpha_{0}$ of $\Omega$ and a positive integer $i_{0}$ such that, if $\mathfrak{V}_{i_{0}}$ is the covering of the
simplicial polytope $Q(q_{1},\cdots, q_{i_{0}})$ consisting of the open stars and $\theta_{i_{0}}$ is the
projection from $Q(0)$ onto $Q(q_{1},\cdots, q_{0})$ (cf. [10, \S 3, 3]), the covering $\mathfrak{W}_{\alpha 0}\times$

$(\theta_{io})^{-1}\mathfrak{B}_{i}$ . of $X_{0}\times Q\langle a$) is a star refinement17) of U. Let $\sigma$ be $an$ n-dimensional
simplex of $11l_{\alpha_{0}}$ and let /1 be a 2-dimensional simplex of $Q(q_{1},\cdots, q_{\lambda 0})$ . Put
$A(\sigma)=\phi_{\overline{\alpha}_{0}^{1}}(\sigma),$ $B(\sigma)=\phi_{\overline{\alpha}_{0}^{1}}(\dot{\sigma}),$ $C(\mu)=\theta_{i_{0}}^{-1}(\mu)$ and $D(/\ell)=\theta_{i_{0}}^{-1}(\dot{\mu})$ . For each $\alpha>\alpha_{0}$ , let
us denote by $(A_{\alpha}, B_{\alpha})$ the pair of the subcomplexes of $M_{\alpha}$ corresponding to
$(A(\sigma), B(\sigma))$ . For each $j>i_{0},1$et us denote by $(C_{j}, D_{j})$ the pair of the subcom-
plexes of $Q(q_{1},\cdots, q_{J})$ which is the image of $(C(\mu), D(44))$ under the projection
$\theta_{j}$ : $Q(0)\rightarrow Q(q_{1},\cdots, q_{j})$ . Since $A(\sigma)$ and $C(\mu)are$ compact sets, we have $an$ iso-
morphism $H_{n+2}((A(\sigma), B(\sigma))\times(C(\mu), D(\mu)):R_{1})\approx\varliminf\{H_{n+2}((A_{\alpha}, B_{\alpha})\times(C_{i}, D_{i}):(\pi_{\alpha}^{\beta}$

$\times\theta_{i^{j}})_{*}|\alpha_{0}<\alpha<\beta$ and $i_{0}<i<j$ } by [10, Lemma 5], where $\pi_{\alpha^{\beta}}$ and $\theta_{i}^{j}$ are the
restricted projections $\pi_{\alpha}\theta|A_{\beta}:(A_{\beta}, B_{\beta})\rightarrow(A_{\alpha}, B_{a})$ and $\theta_{i^{j}}|C_{j}:(C_{j}, D_{j})\rightarrow(C_{i}, D_{i})$

respectively. Take an element $a=$ { $a_{\alpha,x}|\alpha>\alpha_{0}$ and $i=i_{0}+1,$ $ i_{0}+2,\cdots$ } of
$H_{n+2}(A(\sigma), B(\sigma))\times(C(\alpha), D(ll)):R_{1})$ , where $a_{\alpha,i}\in H_{n+2}((A_{\alpha}, B_{\alpha})\times(C_{i}, D_{i}):R_{1})$ . By a
similar way as in the proof of [10, Lemma 18], we have

$a_{\alpha,i_{0}+1}=u_{\alpha}\times\frac{1}{q_{io+1}}\delta(i_{0}+1)$ ,

$a_{a,i_{0}+2}=\sum_{h_{1}=1}^{\iota_{1}}(u_{\alpha,h_{1}}\times\frac{1}{q_{i_{0}+2}}\delta_{h_{1}}(i_{0}+2))$ ,

:.: :.$\cdot$

$a_{a^{},i_{0}+k}=\sum_{h_{1}=1h_{k}}^{\iota_{1}}\cdots\sum_{-1^{=1}}^{\iota_{k-1}}(u_{a,h_{1}\cdots h_{k}-1}\times\frac{1}{q_{i_{0}+k}}\delta_{h_{1}\cdots\hslash_{k}-1}(i_{0}+k))$ ,

:..$\cdot$

.

where $u_{a,h_{1}\cdots h_{k}-1}$ is a cycle of $(A_{a}, B_{\alpha})mod q_{i_{0}+k}$ and $\delta_{h_{1}\cdots h_{k}-1}(i_{0}+k)$ is the
fundamental chain with the value $\pm 1$ on each 2-simplex of the M\"obius band
$M_{h_{1}\cdots h_{k}-1}(q_{i_{0}+k}/q_{i_{0}+k-1}, q_{i_{0}+k}),$ $h_{1}=1,\cdots,$ $l_{1},\cdots,$ $h_{k-1}=1,\cdots,$ $l_{k-1}$ , of which the complex
$C_{i_{0}+k}$ consists (cf. [10, pp. 390 and 396]). Since $(\pi_{\alpha}^{a}\times\theta_{i^{0}}^{i_{0}}\ddagger_{k}^{k+1})_{*}a_{a.i_{0}+k+1}=a_{\alpha,i+k}$ ,

17) Let $u=\{U_{\alpha}|\alpha\in\Omega\}$ and $\mathfrak{V}$ be coverings of topological space. It is called that
$U$ is a star refinement of $\mathfrak{V}$ if the coveri $ng$ $\{ \cup U_{\beta}|\alpha\in\Omega\}$ is a refinement of $V$

$ U_{a}\cap U_{\beta}\neq\phi$

\langle Cf. [15, Chap. V]).
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if we denote by $h_{i}^{j}$ a natural homomorphism from $Z_{q_{j}}$ onto $Z_{qt}$ for $j>i$, we
have $(h_{i_{0}^{0}}^{i}\ddagger_{k}^{k+1})_{*}u_{a,h_{1}\cdots h_{k}}=u_{\alpha,h_{1}\cdots h_{k}-1}$ . Let $\alpha_{0}<\alpha<\beta$ . Since $(\pi_{\alpha^{\beta}}\times\theta_{i_{0}+k}^{io+k})_{*}a_{\beta,i_{0}+k}=$

$a_{\alpha,io+k}$ , we have $(\pi_{\alpha^{\beta}})_{*}u_{\beta,\hslash_{1}\cdots h_{k}-1}\equiv u_{\alpha,h_{1}\cdots\hslash_{k}-1}$ $mod q_{i_{0}+k}$ . Let $\alpha_{0}<\alpha<\beta$ and
$i_{0}<i<j$. Define a homomorphism $\mathfrak{P}_{(\alpha,i)}^{(\beta,j)}:H_{n}(A_{\beta}, B_{\beta}:Z_{q_{j}})\rightarrow H_{n}(A_{\alpha}, B_{\alpha}:Z_{qi})$ by
a composition of homomorphisms $(h_{i}^{j})_{*}:H_{n}(A_{\beta}, B_{\beta}:Z_{q_{j}})\rightarrow H_{n}(A_{\beta}, B_{\beta}:Z_{qi})$ and
$(\pi_{a^{\beta}})_{*}:H_{n}(A_{\beta}, B_{\beta}:Z_{qi})\rightarrow H_{n}(A_{\alpha}, B_{\alpha}:Z_{qi})$ . Since $(A(\sigma), B(\sigma))$ is a pair of compact
spaces, we have an isomorphism $H_{n}(A(\sigma), B(\sigma):Z(0))\approx\varliminf\{H_{n}(A_{a}, B_{a}:Z_{qi})$ :
$\mathfrak{P}_{(\alpha,i)}(\beta,j)|\alpha_{0}<\alpha<\beta$ and $i_{0}<i<j$ } by Lemma 9. Let $\alpha_{0}<\alpha<\beta$ . We have
$\mathfrak{P}_{(,i^{0+k+1)}}(\alpha\beta_{?}:_{0+k)}(u_{\beta,h_{1}\cdots h_{k}})=(\pi_{\alpha^{\beta}})_{*}(h_{i_{0}}^{\dot{t}0}\ddagger_{k}^{k+1})_{*}u_{\beta,h_{1}\cdots h_{k}}=(\pi_{a}^{\beta})_{*}u_{\beta,h_{1}\cdots h_{k-1}}=u_{a,h_{1}\cdots\hslash_{k}-1}$ . Therefore,
a collection { $ u_{a,h_{1}\cdots h_{k}}|\alpha_{0}<\alpha$ and $ k=1,2,\cdots$ } determines an element of the
group $\varliminf\{H_{n}(A_{a}, B_{\alpha} : Z_{q_{i}})\}$ . Since $H_{n}(A(\sigma), B(\sigma):Z(\mathfrak{a}))=0$ , each $u_{\alpha,h_{1b}}\ldots,k$ must
be zero. This means that $u_{a,h_{1}\cdots h_{k}}\equiv 0mod q_{i_{0}+k+1}$ for $\alpha>\alpha_{0},$ $h_{1}=1,\cdots,$ $l_{1},$ $h_{2}=$

$1,\cdots,$ $l_{2},\cdots,$ $h_{k}=1,\cdots,$ $l_{k}$ and $ k=1,2,\cdots$ . Hence, we have $a_{\alpha,i}=0$ for $\alpha>\alpha_{0}$ and
$i=i_{0}+1,$ $ i_{0}+2,\cdots$ . Thus we can conclude $H_{n+2}((A(\sigma), B(\sigma))\times(C(\mu), D(\mu)):R_{1})=0$ .
By Lemma 1, the restricted mapping $(\phi_{ao}\times\theta_{i_{0}})|(A(\sigma)\times D(\mu)\cup B(\sigma)\times C(\mu))$ is
extended to a mapping $\psi(\sigma, \mu)$ of $A(\sigma)\times C(\mu)$ into $(\sigma\times\mu)\cup(\sigma\times\chi\ell)$ . Define a
mapping $\psi$ of $x_{0}\times Q(a)$ into $(M_{o},$ . $\times Q(q_{1},\cdots, q_{i_{0}}))^{n+1}$ by $\psi(x, y)=\psi(\sigma, \mu)(x, y)$ for
$(x, y)\in A(\sigma)\times C(\mu)$ , where $L^{k}$ means the k-section of the cell complex $L$ . Since
the covering $\mathfrak{W}_{do}\times(\theta_{to})^{-1}\mathfrak{B}_{i}$ . is a star refinement of 1\ddagger , the mapping $\psi$ is a
$(\mathfrak{U}, K)$ -mapping, where $K$ means the k-section of the cell complex $M_{\alpha}$ . $\times Q(q,\cdots$ ,
$q_{i_{0}})$ . Since $\mathfrak{U}$ is any covering of $X_{0}\times Q(\mathfrak{a})$ , we have $\dim(X_{0}\times Q(\mathfrak{a}))\leqq n+1$ by
Lemma 4. Since $\dim(X_{0}\times Q(\mathfrak{a}))\geqq n+1$ by [8], we can conclude that $\dim(X_{0}\times$

$Q(0))=n+1$ . Since $X_{0}$ is any n-dimensional compact subset of $X$, this com-
pletes the proof.

By a slight modification of the proof of Theorem 1 we can prove the
following lemma.

LEMMA 11. An n-dimensional fully normal space $X$ is a dimensionally full-
valued space for $Q$ if $X$ has the following property $(*)$ :

LEMMA 12. A l-dimensional fully normal space has the property $(*)$ men-
tioned in Lemma 11.

PROOF. Let $X$ be a l-dimensional fully normal space. Since $IndX^{I8)}\geqq 1$

18) By $IndX$ we mean the dimension of $X$ defined inductively in terms of the
boundaries of neighborhoods of closed sets of $X$ (cf. [2, p. 102]).
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by [2, 1.7], there exists a closed subset $A$ such that, whenever $U$ is an open
set of $X$ containing $A$ , we have $\overline{U}-U\neq\phi$ , where $\overline{U}$ is the closure of $U$ in $X$.
Let $x$ be a point of $X$. Let $\mathfrak{U}$ be a covering of $X$. By $A\sim x$ in $\mathfrak{U}$ we shall
mean that there exists $a$ finite number of elements $U_{i}$ of $\mathfrak{U},$ $i=1,2,\cdots,$ $n$ , such
that $U_{1}\cap A\neq\phi,$ $x\in U_{n}$ and $U_{i}\cap U_{i+1}\neq\phi,$ $i=1,2,\cdots,$ $n-1$ . Since the set $\cup\{x|A\sim x$

in $\mathfrak{U}$ } is a closed and open set containing $A$ , we have $A\sim x$ for each $x\in X$.
Take a point $x_{0}$ of $X-A$ . Let $\{\mathfrak{U}_{\mu^{\prime}}|\mu\in\Gamma\}$ be a cofinal system of coverings
of $X$ each member of which has the order 1. Let $\mathfrak{U}_{\mu^{\prime}}=\{U_{1k}^{\prime}|k\in\kappa_{J}\},$ $\mu\in\Gamma$ .
We may assume that there exists an open set $U_{\rho k_{0}}^{\prime}$ of $\mathfrak{U}_{\mu^{\prime}}$ such that $U_{Jk_{0}}^{\prime}\cap A$

$=\phi,$ $x_{0}\in U_{\mu k_{0}}^{\prime}$ and $x_{0}\in EU_{\mu k}^{\prime}$ for $k\neq k_{0}$ . By [12, Theorem 1.1], there exists a
covering $\mathfrak{V}_{1}=\{V_{/Jk}|k\in\kappa_{\mu}\}$ such that $\overline{V}_{\mu k}\subset U_{/1k}^{\gamma}$ for each $k\in\kappa_{1}$ . Put $U_{/1}$ . $=$

$X-\bigcup_{k\neq k_{\theta}}\overline{V}_{/1k},$ $U_{\mu k_{0}}=V_{\mu k_{0}}-x_{0}$ and $U_{\mu k}=V_{\mu k}$ for $k\neq k_{0}$ . Then $\{\mathfrak{U}_{\mu}=\{U_{\mu 0},$ $U_{\mu k_{0}},$ $U_{\mu k}$

for $k\in\kappa_{\mu}$ } $|\mu\in\Gamma$ } forms a cofinal system $U$ of coverings of $X$ each member
of which has the order 1. Let $(K_{f1}, L_{\mu}\cup U_{\beta}.)$ be the pair of the nerves of $U_{/t}$

corresponding to (X, $A\cup x_{0}$), $\mu\in\Gamma$ , where $U_{\mu 0}$ means the vertex corresponding
to the open set $U_{\rho 0}$ containing $x_{0}$ . Since $A\sim x_{0}$ in $U_{/t}$ for each $\mu\in\Gamma$ , the
group $H_{1}(K_{\mu}, L,$m $\cup U_{10} : Z)$ contains a non-zero cycle $z_{\alpha}$ such that the l-simplex
$(U_{\mu 0}, U_{1k_{0}})$ of $K_{\mu}$ appears in $z_{\mu}$ with the coefficient $\pm 1,$ $\mu\in\Gamma$ . Let $\rho$ be the
homomorphism of $Z$ into $Z(a_{p})$ defined by $\rho(1)=\{h_{i}(1)|i=1,2,\cdots\}$ , where $h_{i}$ is
a natural projection of $Z$ into $Z_{p^{i}}=Z/p^{i}Z,$ $ i=1,2,\cdots$ . The image $\tilde{z}_{\mu}$ of $z_{\mu}$

under the induced homomorphism $(\rho)_{*}$ is a non-zero element of $H_{1}(K_{fJ},$ $L_{\mu}U$

$U_{\mu 0}$ : $Z(\mathfrak{a}_{p}))$ . Let $\mathfrak{U}_{\nu}$ be a refinement of $U_{\mu}$ and let $\delta_{\mu}^{\nu}$ be a projection of
$(K_{\nu}, L_{\nu}\cup U_{\nu 0})$ into $(K_{\mu}, L_{/1}\cup U_{\beta 0})$ . By the construction of the coverings $\{U_{/J}\}$ ,

the image of $z_{\nu}$ under the induced homomorphism $(\delta_{\mu}^{\nu})_{*}:$ $ H_{1}(K_{\nu}, L_{\nu}\cup U_{\nu}. : Z)\rightarrow$

$H_{1}(K_{t}, L_{\rho}\cup U_{\mu 0} : Z)$ is a $c$ycle which has the coefficient $\pm 1$ on the l-dimensional
simplex $(U_{10}, U_{\rho k_{0}})$ of $K_{\mu}$ . Therefore we have $(\rho_{p})_{*}(\delta_{\mu}^{\nu})_{*}\tilde{z}_{\nu}\neq 0$ , where $(\delta_{1}^{\nu})_{*}:$

$H_{1}(K_{\nu}, L_{\nu}\cup U_{\nu 0} : Z(\mathfrak{a}_{p}))\rightarrow H_{1}(K_{/1}, L_{\mu}\cup U_{\mu 0} : Z(\mathfrak{a}_{p}))$ and $(\rho_{p})_{*}:$ $H_{1}(K_{\mu},$ $L_{1}\cup U_{\mu 0}$ : $ Z(\mathfrak{a}_{p})\rangle$

$\rightarrow H_{1}(K_{\mu}, L_{\rho}\cup U_{\mu 0} : Z_{p})$ . This shows that, if we put $A_{p}=A\cup x$ for each prime
number $p$ and $\mathfrak{U}_{u0}=any$ covering of $U,$ $X$ has the property $(*)$ . This com-
pletes the proof.

By making use of Lemma 9 the proof of Lemma 12 shows that the fol-
lowing lemma holds.

LEMMA 13. A l-dimensional locally compact fully normal space has the
property $P$.

The following theorem is a consequence of Lemmas 11 and 12.
THEOREM 3. A l-dimensional fully normal space is a dimensionally full-

valued space for $Q$ .
The following lemma is proved by a similar way as in the proof of [10,

Lemma 20] and we omit the proof.
LEMMA 14. If an n-dimensional fully normal space contains a closed subset
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$A$ such that $H_{n}(X, A:Z)\neq 0$ , then $X$ has the property $P^{19)}$ .
By Lemma 14 and Theorem 1 we have the following corollary.
COROLLARY 1. If an n-dimensional fully normal space $X$ contains a closed

subset $A$ such that $H_{n}(X, A:Z)\neq 0$ , then $X$ is a dimensionally full-valued space
for $Q$ .

The following corollary which is a generalization of [10, Corollary 2] is
a consequence of Corollary 1 and [10, Lemmas 21-23].

COROLLARY 2. The following spaces are dimensionally full-valued spaces for
$Q$ .

1) Finite or infinite polytopes with the Whitehead weak topology.
2) Two dimensional locally compact ANR’s
3) M-dimensional ANR’s containing points which are $HL^{m-1}$ and $(m-1)- HS^{21)}$ .
4) Finite dimensional and locally compact ANR’s which have the property $\Delta$

in the sense of Borsuk22).

REMARK. Consider the following properties of an n-dimensional fully
normal space $X$

$P_{1}$ . $\left\{\begin{array}{l}ForeveryPrimenumberpandeveryk\prime sequence\alpha eachmemberofwhich\\isapowerofpthereexistsaclosedsubsetA_{a}ofXsuchthatH_{n}(X,A_{a}\cdot.\\Z(\mathfrak{a}))\neq 0.\end{array}\right.$

$P_{2}$ . $\{$ $Foreverypri_{p}menumberpthereexistsathatH_{n}(X,A.\cdot Z(a_{p}))\neq 0,where\mathfrak{a}_{p}isthek_{Sequence(p,p^{2},\cdot,p}^{closedsubsetA_{p}..of_{i}.X_{)}}$

.
such

By a similar way as [10, Lemmas 2 and 3 in Addendum], we can prove that
the three properties $P,$ $P_{1}$ and $p_{2}$ of $an$ n-dimensional fully normal space are
equivalent. Therefore we have

THEOREM 2’. In order that an n-dimensional locally compact fully normal

19) In this case we can prove easily that $X$ has the property $(*)$ mentioned in
Lemma 11, too.

20) A metric space $X$ is called $an$ ANR if, whenever $X$ is a closed subset of a
metric space $Y$, there exists a mapping from some neighborhood of $X$ in $Y$ into $X$

which keeps $X$ point-wise fixed.
21) Let $E^{j+1}$ be $a(j+1)$ -cell whose boundary is a j-sphere Si. A point $x_{0}$ of a

topological space is called $HL^{k}$ if for each neighborhood $U$ of $x_{0}$ there exists a neigh-
borhood $V$ of $x_{0}$ such that any mapping $f$ : Si $\rightarrow V-x_{0}$ is extensible to a mapping
$F:Ei+1\rightarrow U-x_{0}$ for $j=0,1,\ldots,$ $k$ . A point $x_{0}$ of a topological space is called k-HS if
there exists a neighborhood $U$ of $x_{0}$ such that for any neighborhood $V$ of $x_{0}$ there
exists a mapping $f:S^{k}\rightarrow V-x_{0}$ which has no extension $F:E^{k+1}\rightarrow U-x_{0}$ . (Cf. Y.
Kodama, On homotopically stable points and product spaces, Fund. Math., 44 (1957),
171-185.)

22) A topological space X is said to have the property $\Delta$ if for each point $x$ of $X$

and each neighborhood $U$ of $x$ there exists a neighborhood $V$ of $x$ such that every
compact subset $A$ of $V$ is contractible in a subset of $U$ of the dimension $\leqq\dim A+1$ .
(Cf. K. Borsuk, Ensembles dont les dimensions modulaires de Alexandroff coincident
avec la dimension de Menger-Urysohn, Fund. Math., 27 (1936), 77-93.)
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space $X$ be a dimensionally full-valued space for $Q$ , it is necessary and sufficient
that $X$ have any one property of $P,$ $P_{1}$ and $P_{2}$ .

In [10, Addendum], we have proved that our property $P$ is equivalent
to the following Boltyanskii’s property for n-dimensional compact metric
spaces.

But we do not know whether Boltyanskii’s property $B$ is equivalent to our
property $P$ even for locally compact fully normal spaces, si $nce$ it seems that
the duality between the unrestricted $\check{C}ech$ homology groups and cohomology
groups does not hold generally.

\S 4. Examples.

Let $\mathfrak{p}=(p_{1},p_{2},\cdots)$ be a sequence of positive integers. We shall construct
a 2-dimensional continuum $R(\mathfrak{p})$ for each $\mathfrak{p}$ . Let $E$ be a 2-cell whose boundary
is a l-sphere S. For a positive integer $q$, let $us$ denote by $N(q)$ a polytope
obtained from $E$ by identifying points on $S$ corresponding to each other
under the rotation of angle $2\pi/q$. Let $f$ be the identification mapping. We
shall call $f(S)$ the “ boundary ‘ of $N(q)$ . The boundary of $N(q)$ is a l-sphere.
In general, $N(q)$ is a 2-dimensional curvilinear polytope. We shall consider
$N(q)$ as a simplicial polytope with a fixed triangulation. Let $T$ be the bound-
ary of $N(q)$ . Let us give $an$ orientation to each 2-simplex of $N(q)$ such that
the integral chain $c(N(q))$ which has the value 1 on each 2-simplex is a cycle
relative to $T$. Obviously $H_{2}(N(q), T:Z)\approx Z$ and $c(N(q))$ is a generator of
$H_{2}(N(q), T:Z)$ . We call $c(N(q))$ the fundamental chain of $N(q)$ . The following
lemma is proved easily by a similar way as in the proof of [10, Lemma 14].

LEMMA 15. Let $f$ be a topological mapping from the boundary $T$ of $N(q)$

onto the l-sphere $S$ which is the boundary of the 2-cell $E$ and let $ F:(N(q), T)\rightarrow$

$(E, S)$ be an extension of $f^{23)}$ If $F_{*}$ is the induced homomorphism of $H_{2}(N(q)$ ,
$T:Z)$ into $H_{2}(E, S:Z)$ , we have $ F_{*}(c(N(q))=q\cdot\nu$ , where $\nu$ is a generator of $H_{2}(E$,
$S:Z)$ .

Put $R(p_{1})=N(p_{1})$ . Let us replace every triangle $\tau$ of $R(p_{1})$ by $N_{\tau}(p_{2})$

such that $N_{r}(p_{2})\cap N_{\tau},(p_{2})=T\cap T^{\prime}$ , where each $N_{r}(p_{2})$ is a topological image23a)

23) Since $E$ is contractible in itself, it is obvious that there exists at least one
extension $F$ of $f$.

$23a)$ By a topological image of a topological space $X$ we mean a space homeomorphic
to $X$.
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of $N(p_{2}),$ $T$ and $T^{\prime}$ are the boundaries of $N.-(p_{2})$ and $N_{\tau},(p_{2})$ respectively. We
have a 2-dimensional simplicial complex $R(p_{1}, p_{2})=\cup N_{\tau}(p_{2})$ . Let $\Delta_{1}$ be the

$\tau$

l-section of $R(p_{1})$ . We may consider $\Delta_{1}$ as a subset of $R(p_{1}, p_{2})$ . There exists
a projection $\phi_{1^{2}}$ from $R(p_{1},p_{2})$ onto $R(p_{1})$ such that the restricted mappi $ng$
$\phi_{1}^{2}|\Delta_{1}$ is topological. The integral chain $c(P_{1},P_{2})=\sum_{r}c(N_{\tau}(p_{2}))$ is a cycle of
$R(p_{1}, p_{2})$ relative to the boundary $T$ of $R(p_{1})_{y}$ where $c(N\vee\rightarrow(p_{1}))$ is the funda-
mental chain of $N_{\tau}(p_{2})$ , and $c(p_{1},p_{2})$ is a generator of the group $H_{2}(R(p_{1},p_{2})$ ,
$T:Z)$ which is isomorphic to $Z$. Moreover, by Lemma 15, we have $(\phi_{1}^{2})_{*}c(p_{1},p_{2})$}

$=p_{2}\cdot c(p_{1})$ , where $c(p_{1})$ is the fundamental chain of $R(p_{1})$ . Let us suppose
that for some $i$ we have constructed the following 2-dimensional simplicial
polytope $R(p_{1},\cdots,p_{i})$ : (1) $R(p_{1},\cdots,p_{i})$ contains the l-section $\Delta_{i-1}$ of $R(p_{1},\cdots,p_{i-1})$ ,
(2) there exists $a$ projection $\phi_{i-1}^{i}$ from $R(p_{1},\cdots,p_{i})$ onto $R(p_{1},\cdots,p_{i-1})$ such that
the restricted mapping $\phi_{i-1}^{i}|\Delta_{i-1}$ is topological, (3) $H_{2}(R(p_{I},\cdots,p_{\iota}), T:Z)\approx Z$,
(4) the integral chain $c(p_{1},\cdots,p_{i})$ which has the value 1 on each 2-simplex of
$R(p_{1},\cdots,p_{i})$ is a generator of $H_{\sim^{)}}(R(p_{1},\cdots,p_{i}), T:Z)$ and $(\phi_{i-1}^{i})_{*}c(p_{1},\cdots,p_{i})=p_{i}$ .
$c(p_{1},\cdots,p_{i-1})$ . Let us replace every triangle $\mu$ of $R(p_{1},\cdots,p_{i})$ by $N_{\mu}(p_{t+1})$ such
that $N_{1}(p_{i+1})\cap N_{1},(p_{i+1})=T_{1}\cap T_{\mu},$ , where $N_{\mu}(p_{i+1})$ is a topological image of
$N(p_{i+1}),$ $T_{1^{I}}$ and $T_{\mu}$ , are the bouudaries of $N_{\mu}(p_{i+1})$ and $N_{1},(p_{i+1})$ respectively.
We have $a$ 2-dimensional simplicial complex $R(p_{1},\cdots,p_{i+1})=\cup N_{1}(p_{i+1})$ . If

$\mu$

$\Delta_{i}$ is the l-section of $R(p_{1},\cdots,p_{i})$ , we may consider $\Delta_{i}$ as a subset of $ R(p_{1},\cdots$ ,
$p_{i+1})$ . There exists a projection $\phi_{i}^{i+1}$ from $R(p_{1},\cdots,p_{x+1})$ onto $R(p_{1},\cdots,p_{i})$ such
that the restricted mapping $\phi_{i}^{?:+1}|\Delta_{i}$ is topological. Obviously $H_{2}(R(p_{1},\cdots,p_{i+1})_{r}$

$T:Z)\approx Z$ and the integral chain $c(p_{1},\cdots,p_{\iota+1})=\sum_{u,}c(N_{1}(p_{i+1}))$ is a generator of
$H_{2}(R(p_{1},\cdots,p_{i+1})$ , where $c(N_{\mu}(p_{i+1}))$ is the fundamental chain of $N_{\mu}(p_{\dot{t}+1})$ . More-
over, by Lemma 15, we have $(\phi_{i}^{i+1})_{*}c(p_{1},\cdots,p_{i+1})=p_{i+1}\cdot c(p_{1},\cdots,p_{i})$ . Put $R(\mathfrak{p})=$

$\varliminf\{R(p_{1},\cdots,p_{i}):\phi_{i-1}^{i}\}$ . Let $\phi_{i}$ be the projection from $R(\mathfrak{p})$ onto $R(p_{1},\cdots,p_{i})$ .
We shall call the boundary of $R(p_{1})$ the ( boundary “ of $R(p)$ .

LEMMA 16. For each sequence $\mathfrak{p}$ of positive integers the space $R(p)$ is a
2-dimensional continuum.

PROOF. Let $\mathfrak{p}=(p_{1},\cdots,p_{\iota},\cdots)$ . Put $q_{i}=p_{1}\cdot p_{2}$ . ... . $p_{i}$ for $ i=1,2,\cdots$ . Let $T$ be
the boundary of $R(\mathfrak{p})$ . By the continuity theorem of $\check{C}ech$ homology groups
(cf. [6, Chap. X]), we have an isomorphism $H_{\lrcorner}$

) $(R(\mathfrak{p}), T:R_{1})\approx\varliminf\{H_{2}(R(p_{1},\cdots,p_{t})$,

$T:R_{1}):(\phi_{i}^{i+1})_{*}\}$ . Consider the collection $\{--c(p_{1},\cdots,p_{\iota})q^{1_{i}}|i=1,2,\cdots\}$ , where
$c(p_{1},\cdots,p_{i})$ is a generator of the group $H_{2}(R(p_{1},\cdots,p_{i}), T:Z)$ . Since $(\phi_{i}^{i+1})_{*}c(p_{1}$ ,

$p_{i+1})=p_{i+1}\cdot c(p_{1},\cdots,p_{i})$ , we have $(\phi_{i}^{i+1})_{*}(\overline{q}_{i+1}^{1_{-}}-c(p,\cdots,p_{i+1}))=\frac{1}{q_{t}}c(p_{1},\cdots,p_{i})$ for

$ i=1,2,\cdots$ . Therefore $\{\frac{1}{q_{i}}c(p_{1},\cdots,p_{t})\}$ determines a non-zero element of $H(R(\mathfrak{p})$ ,

$T:R_{1})$ . By Lemma 2 we have $\dim R(\mathfrak{p})\geqq 2$ . Since $\dim R(p)\leqq 2$ by [10, Lemma
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12], we have $\dim R(\mathfrak{p})=2$ .
The following lemma shows that the converse of Corollary 1 is not true.
LEMMA 17. There exists a 2-dimensional continuum $X$ such that (i) $X$ has

$fhe$ property $P$, (ii) for each pair $(A, B)$ of closed subsets we have $H_{2}(A, B:Z)=0$ .
PROOF. Let $p$ be a prime number. Let $\mathfrak{p}(p)$ be the sequence $(p,p,\cdots)$ .

Let us prove that the continuum $R(\mathfrak{p}(p))$ has the following properties: (1)
$H_{2}(R(\mathfrak{p}(p)), T:Z(a_{q}))\neq 0$ for each prime number $q\neq p$ , where $T$ is the boundary
of $R(\mathfrak{p}(p))$ , (2) $H_{2}(A, B:Z)=0$ for each pair $(A, B)$ of closed subsets. Let us

i-fold

denote by $R_{i}$ the 2-dimensional simplicial polytope $R(p,\cdots,p),$ $ i=1,2,\cdots$ . Put
$\phi_{i}^{j}=\phi_{i^{+1}}^{j}\cdots\phi_{j}^{j_{-1}},$ $j>i$, where $\phi_{i}^{i+1}$ is the projection from $R_{i+1}$ onto $R_{i}$ . Let $h_{i^{j}}$

be a natural homomorphi$sm$ from $Z_{q^{j}}$ onto $Z_{Q^{i}},$ $j>i$. For $j>i$ and $j^{\prime}>i^{\prime}$ ,
define a homomorphism $\mathfrak{P}_{(i.i)}^{(j.j^{f})}$ : $H_{2}(R_{j},$ $T;z_{qJ^{\prime})}\rightarrow H_{2}(R_{i}, T:Z_{q^{i^{\prime}}})$ by a composition
of the homomorphisms $(h^{j_{i^{\prime}}},)_{*}:$ $H_{2}(R_{j}, T:Z_{qJ^{\prime}})\rightarrow H_{2}(R_{j}, T:Z_{q^{i^{\prime}}})$ and $(\phi_{i}^{j})_{*}:$ $H_{2}(R_{j},$ $T$ :
$Z_{a^{i^{\prime}}})\rightarrow H_{2}(R_{i}, T:Z_{q^{i^{\prime}}})$ . By Lemma 9 we have an isomorphism $H_{2}(R(\mathfrak{p}(p)), T:Z(\mathfrak{a}_{q}))$

i-fold

$\approx\varliminf\{H_{2}(R_{i}, T:Z_{q^{i^{\prime}}}):\mathfrak{P}_{(}(j_{i}j_{i^{\prime}}‘\}$ . Put $c_{i}=c(p,\cdots,p),$ $ i=1,2,\cdots$ . Since $c_{i}$ is an inte-

gral cycle relative to $T$, we may co $ns$ ider $c_{i}$ as a cycle relative to $Tmod p^{j}$,
$ j=1,2,\cdots$ and $ i=1,2,\cdots$ . Let $j>i$ and $j^{\prime}>i^{\prime}$ . Since $p$ and $q$ are coprime
numbers, we have $\mathfrak{P}_{(i^{\prime}i^{\prime})}(j,j)c_{j}\equiv(\phi_{i^{j}})_{*}(h^{j_{i^{\prime}}^{\prime}})_{*}c_{j}\equiv(\phi_{i}^{j})_{*}c_{j}\equiv p(J^{-i}).c_{i}\not\equiv 0mod q^{i\prime}$ . Ac-
cordingly we have $0\neq \mathfrak{P}_{(i.i^{\prime})}^{(j,j_{/})}H_{2}(R_{j}, T:Z_{q^{j^{f}}})\subset H_{2}(R_{i}, T:Z_{q^{i^{\prime}}})$ . Since $H_{2}(R_{i}, T:Z_{q^{i^{J}}})$

is a finite group for $ i=1,2,\cdots$ and $ i^{\prime}=1,2,\cdots$ , we can $conc$ lude that $H_{2}(R(\mathfrak{p}(p))$ ,
$T:Z(\mathfrak{a}_{q}))\neq 0$ by Lemma 6. This completes the proof of (1). To prove (2), by
[10, Lemma 7], it is sufficient to prove that $H_{2}(R(\mathfrak{p}(p)), A:Z)=0$ for each
closed subset $A$ of $R(\mathfrak{p}(p))$ . Put $A_{i}=\phi_{i}(A),$ $ i=1,2,\cdots$ , where $\phi_{i}$ is the projec-
tion from $R(\{)(p))$ onto $R_{i}$ . Let $A_{t}$ be the smallest closed subcomplex of the
simplicial polytope $R_{i}$ containing $A_{i}$ . Then the projection $\phi_{i}^{i+1}$ maps $\overline{A}_{l+1}$

into $\overline{A}_{i},$ $ i=1,2,\cdots$ . Since $(R(\mathfrak{p}(p)), A)=\lim\{(R_{i},\overline{A}_{i}):\phi_{i}^{i+1}\}^{24)}$ , by the continuity

theorem of $\text{{\it \v{C}}}_{ech}$ homology groups, we have an isomorphism $H_{2}(R(\mathfrak{p}(p)), A:Z)$

$\approx\varliminf\{H_{2}(R_{i},\overline{A}_{t}:Z):(\phi_{i}^{i+1})_{*}\}$ . Take a 2-simplex $\sigma$ of $R_{k}-\overline{A}_{k}$ for some $k$ . Put
$\varpi_{j}=(\phi_{k}^{j})^{-1}\sigma,$ $j>k$ . Let $a=\{a_{i}|i=1,2,\cdots\}$ be any element of $H_{2}(R(\mathfrak{p}(p)), A:Z)$ ,
where $a_{i}\in H_{2}(R_{i},\overline{A}_{i} : Z),$ $ i=1,2,\cdots$ . Since $a_{i}$ is an integral cycle, for each $j>k$

$a_{j}$ has the same integral coefficient $t_{j}$ on each 2-simplex of $\sigma_{j}$ . Let $i^{\prime}>i>k$ .
Since $(\phi_{j}^{J^{J}})_{*}t_{J^{\prime}}\cdot\sigma_{j},$ $=t_{j},$ $.(\phi_{J^{J^{J}}})_{*}\sigma_{j},$ $=t_{j},$ $.p(J^{\prime}-j).\sigma_{j}=t_{j}\cdot\sigma_{j^{25)}}$ by Lemma 15, we have

24) Let (X, $A$ ) be a pair of topological spaces and let $\{(X_{a}, A_{\alpha}) : \pi_{a}\theta\}$ be an inverse
system of pairs of topological spaces. By (X, $A$) $=\varliminf\{(X_{\alpha}, A_{\alpha}) : \pi_{\alpha}\theta\}$ we mean that

$X=\lim\{X_{\alpha} : \pi_{a^{\beta}}\}$ and $A=\lim\{A_{a} : \pi_{a}^{\beta}|A_{\beta}\}$ .
25) In this case, we mean by $t_{j}\cdot\sigma_{j}$ the integral chain which has the integral

coefficient $t_{j}$ on each 2-simplex of $\sigma_{j}$ and by ( $\phi_{J^{i^{\prime})_{*}}}$ the chain homomorphism induced
by $\phi_{j^{j^{\prime}}}$
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$t_{j}=t_{j},$ $.P^{(j\prime-j)}$ for each $j^{\prime}>j$ . Therefore $t_{j}$ is zero for $j>k$ . Since $\sigma$ is any
2-simplex of $R_{k}-\overline{A}_{k}$ , we have $a_{i}=0,$ $ i=1,2,\cdots$ . Si$nce$ $a$ is any element of
$H_{2}(R(\mathfrak{p}(p)), A:Z)$ , we have $H_{2}(R(0(p)), A:Z)=0$ . This completes the proof of
(2). To complete the proof of the lemma, let $p$ and $q$ be two differe $nt$ prime
numbers. Let $T$ and $T^{\prime}$ be the boundaries of $R(\mathfrak{p}(p))$ and $R(p(q))$ respectivel $y$,
and let $f$ be a topological mapping of $T$ into $T^{\prime}$ . Let us denote by $X$ the
space obtained from $R(\mathfrak{p}(p))+R(\mathfrak{p}(q))^{26)}$ by identifying points on $T+T^{\prime}$ cor-
respondi $ng$ to each other under the homeomorphism $f$. Let $g$ be the identi-
fication mapping and put $S=g(T+T^{\prime})$ . Let $r$ be a prime number. We have
$p\neq r$ or $q\neq r$. Let $p\neq r$. Since $H_{2}(R(\mathfrak{p}(p)), T:Z(\mathfrak{a}_{r}))\neq 0$ and $H_{2}(R(\mathfrak{p}(p))+R(\mathfrak{p}(q))$ ,
$T+T^{\prime}:Z(a_{r}))\approx H_{2}(X, S:Z(a_{r}))$ by the map excision theorem [17], we have
$H_{2}(X, S:Z(\mathfrak{a}_{r}))\neq 0$ . Similarly, if $q\neq r$, we have $H_{2}(X, S:Z(0_{r}))\neq 0$ , too. Put
$X_{1}=g(R(\mathfrak{p}(p)))$ and $X_{2}=g(R(\mathfrak{p}(q)))$ . Let $A$ be a closed subset of $X$ If $H_{2}(X$,
$A:Z)\neq 0$ we have $H_{2}(X, A\cup S:Z)\neq 0$ by [10, Lemma 7]. On the other hand,
si $nceH_{2}$ ($X,$ $A$ US: $Z$) $\approx H_{2}(X_{1}, X_{1}\cap A:Z)+H_{2}(X_{2}, X_{2}\cap A;Z)$ and $H_{2}(X_{1}, X_{1}\cap A;Z)$

$=H_{2}(X_{2}, X_{2}\cap A:Z)=0,$ $H_{2}(X, A\cap S;Z)$ must be zero. $Therefore$ { we have
$H_{2}(X, A:Z)=0$ for each closed subset $A$ of $X$ By [10, Lemma 7], this shows
that the continuum $X$ has the property (ii) mentioned in the lemma. This
completes the proof.

LEMMA 18. For each prime number $p$ , there exists a 2-dimensional continuum
$X(p)$ such that (i) there exists a closed subset $A$ of $x(p)$ such that $H(X(p),$ $A$ :
$Z(\mathfrak{a}_{p}))\neq 0$ , (ii) for any prime number $q\neq p$ and any pair $(A, B)$ of closed subsets
of $x(p)$ we have $H_{2}(A, B:Z(a_{q}))=0$ .

PROOF. Let $\mathfrak{p}_{p}=\{p_{1},\cdots,p_{i},\cdots\}$ be $a$ sequence consisting of all positive
integers of the form $q^{k}$ , where $q$ ranges over all prime numbers except $p$

and $k$ ranges over all positive integers. Put $x(p)=R(\mathfrak{p}_{p})$ . Let $T$ be the
boundary of $R(\mathfrak{p}_{p})$ . Since each member $p_{i}$ of the seque $nce\mathfrak{p}_{p}$ and $p$ are coprime
numbers, we can see by $a$ similar way as in the proof of Lemma 18 that
$H_{2}(X(p), T:Z(\mathfrak{a}_{p}))\neq 0$ . To prove that $x(p)$ has the property (ii) mentioned in
the lemma, let $q$ be a prime number different from $p$ . Let $A$ be a closed
subset of $X(p)$ . Put $R_{i}=R(p_{1},\cdots,p_{i})$ and $A_{i}=\phi_{i}(A),$ $ i=1,2,\cdots$ , where $\phi_{i}$ is the
projection from $x(p)$ onto $R_{i}$ . Let $\overline{A}_{i}$ be the smallest subcomplex of $R_{i}$ con-
taining $A_{i},$ $ i=1,2,\cdots$ . By Lemma 9 and the continuity theorem of $\check{C}ech$

homology groups, we have $an$ isomorphism $H_{2}(X(p), A:Z(\mathfrak{a}_{q}))\approx\varliminf\{H_{2}(R_{i},\overline{A}_{i}$ :
$z_{Q^{i^{J}}}):\mathfrak{P}_{(i.i^{\prime})}(j,j)|j>i$ and $j^{\prime}>i^{\prime}$ }, where $\mathfrak{P}_{(i^{\prime})}^{(j_{i},j)}$ is a composition of the homomor-
phisms $(h^{j_{i}^{\prime}})_{*}:$ $H_{2}(R_{j},\overline{A}_{j} : Z_{q^{j^{\prime}}})\rightarrow H_{2}(R_{j},\overline{A}_{j} : Z_{q^{i^{\prime}}})$ and $(\phi_{i}^{j})_{*}:$ $H_{2}(R_{j},\overline{A}_{j} : Z_{q^{i^{\prime}}})\rightarrow H_{2}(R_{i}$ ,
$\overline{A}_{i}$ : $Z_{Q}i$m). Assume that $H_{2}(X(p), A:Z(\mathfrak{a}_{q}))\neq 0$. Let { $ a_{i.i^{l}}|i=1,2,\cdots$ and $ i^{\prime}=1,2,\cdots$ }

26) Let $\{X_{\alpha}1\alpha\in\Omega\}$ be a collection of topological spaces. By $\sum X_{a}$ we under-
$ a\in\Omega$

stand a topological space $X$ such that $X$ is an union of topological images $X_{\alpha^{\prime}}s$ of
$X_{\alpha}’ s$ and $X_{\alpha^{\prime}}\cap X_{\beta^{\prime}}=\phi,$ $\alpha\neq\beta$ .
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be a non-zero element of $H_{2}(X(p), A:Z(\mathfrak{a}_{q}))$ , where $a_{i,t},$
$\in H_{2}(R_{i},\overline{A}_{i} : Z_{Q}i^{J}),$ $ i=1,2,\cdots$

and $ i^{\prime}=1,2,\cdots$ . Let $a_{i,i^{J}}\neq 0$ . There exist integers $i_{0}$ and $j_{0}$ such that $i_{0}>i$,
$j_{0}\geqq i^{\prime}$ and the i-th member $p_{i_{0}}$ of the sequence $\mathfrak{p}_{p}=q^{j^{\alpha}}$ . Take any 2-simplex

$\sigma$ of $R_{i_{0}-1}-\overline{A}_{i_{0}-1}$ . Put $\tau=(\phi_{io-\downarrow}^{io})^{-1}\sigma$ . Since $a_{i_{0},t}$ , is a cycle $mod q^{i\prime},$
$a_{i_{0},i}$ , must

have the same coefficient $t$ on each 2-simple of $\tau$ , where $t\in Z_{\sigma^{i^{f}}}$ . Let $\tilde{t}$ be an
integer such that $\rho(\tilde{t})=t$ , where $\rho$ is a natural homomorphism from $Z$ onto
$Z_{Q^{i^{\prime}}}$ . Suppose that $a_{i_{0}-11}$ , has the coefficient $s$ on the 2-simplex $\sigma$ , where
$s\in Z_{q^{i^{\prime}}}$ . Let $ s\sim$ be $an$ integer such that $\rho(s\sim)=s$ . Since $j_{0}\geqq i^{\prime}$ , we have $s\sigma\sim\cdot\equiv$

$(\phi_{io-1}^{i_{0}})_{*}\tilde{t}\cdot\tau\equiv\tilde{t}\cdot(\phi_{i_{0}^{0}-1}^{i})_{*}\tau\equiv\tilde{t}\cdot q^{j_{0}}\cdot\sigma\equiv 0^{27)}mod q^{i!}$ . Therefore we have $s=0$ . Since
$\sigma$ is any 2-simplex of $R_{?0-1}-\overline{A}_{i_{0}-1},$

$ a_{i_{0}-1,*}\cdot$ , must be zero. Since $\mathfrak{P}_{(i^{0},i’ J}(i-1,i^{\prime})a_{l_{0}-1.i},$ $=$

$a_{i,i},$ , this contradicts $a_{i,i},\neq 0$ . Thus, we have $H_{2}(X(p), A:Z(a_{q}))=0$ . By [10,

Lemma 7], we see that the continuum $x(p)$ has the property (ii) mentioned
in the lemma. This completes the proof.

LEMMA 19. There exists a 2-dimensional continuum which has the property
$P$ but not the property $(*)$ mentioned in Lemma 11.

PROOF. First, let us remark that in compact spaces the property $(*)$ is
equivalent to the following property $(**)$ .

Thus, to prove the lemma, it is sufficient to construct a 2-dimensional con-
tinuum $X$ which has the property $P$ but not the property $(**)$ . Let $(p_{1},p_{2},\cdots)$

be a sequence of all prime numbers. Put $X^{\prime}=x_{0}+\sum_{i=1}^{\infty}X(p_{i})^{28)}$ , where $x_{0}$ is one

point space and $x(p_{i})$ is the continuum constructed in Lemma 18, $ i=1,2,\cdots$ .
Let $x_{i}$ be a point on the boundary of $X(p_{i})$ . $ i=1,2,\cdots$ . Let $X$ be a continuum
obtained from $X^{\prime}$ by retopologizing $X$ such that $x_{0}$ is the topological limit
of a sequence $\{X^{\prime}(p_{i})\}$ , where $X^{\prime}(p_{l})$ is the subspace, homeomorphic to $X(p_{i})$ ,

of $X^{\prime}$ , and by identifying the set $\sum_{i=1}^{\infty}x_{i}$ with the point $x_{0}$ . Let $f$ be the

identification mapping. Put $X_{i}=f(X^{\prime}(p_{i})),$ $ i=1,2,\cdots$ , and $\overline{x}=f(x_{0})$ . Let $\mathfrak{U}=$

$\{U_{i}|i=1,2,\cdots, k\}$ be a covering of $X$ such that $\overline{x}\in U_{1}$ and $\overline{x}\not\in\bigcup_{i=2}^{k}\overline{U}_{i}$ . Put

$V=X-\bigcup_{i\Rightarrow 2}^{k}\overline{U}_{i}$ . There exists $an$ integer $i_{0}$ such that, if $i\geqq i_{0},$ $X_{i}\subset V$. Let $A$

be a closed subset of $X$ Let $(K, L)$ be the pair of the nerves of $\mathfrak{U}$ corre-
sponding to (X, $A$) and let $\emptyset$ be a canonical mapping of (X, $A$) into $(K, L)$ .
Since $\phi(\bigcup_{i=i_{0}}^{\infty}X_{i})=U_{1}$ and $H_{2}(X_{k}, X_{k}\cap A:Z(\mathfrak{a}_{p_{j}}))=0$ for $k<i_{0}\leqq i$ by Lemma 18,

27) Cf. footnotes 7) and 25).
28) See footnote 26).
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we have $(\phi)_{*}H_{2}(X, A:Z(a_{p_{j}}))=0,$ $j=i_{0},$ $ i_{0}+1,\cdots$ . Since $\mathfrak{U}$ is any covering of $X$,

the continuum $X$ has not the property $(**)$ . Since it is obvious that $Xh$as
the property $P$, this completes the proof.

National Defence $Ac$ademy.
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