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Existence of derivations in graded algebras.
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In the present paper we shall discuss on the existence of derivations in
the sense of C. Chevalley [1] in graded algebras. We shall give a new de-
finition of a homomorphism of graded algebras which is a generalization of
the usual one. Such a homomorphism will naturally lead us to a definition
of free graded algebras as a generalization of the concept of Z-graded free
algebras. The free graded algebras will play a fundamental r\^ole in our
study.

Section 1 shows the existence of derivations of the free graded algebras.
Section 2 deals with transferability between the derivation of a graded
algebra and that of its homomorphic image. In the last section 3 a criterion
for the existence of derivations in any graded algebras is obtained by using
new binary operations which are generalizations of the usual partial differ-
ential operators.

\S 1. Throughout this paper an algebra means an algebra with a unit
element 1, and a homomorphism of algebras means a ring homomorphism
which maps unit upon unit. We denote by $\Gamma,$ $\Delta,\cdots$ additive (commutative)

groups and by $(E, \Gamma)$ a $\Gamma$ -graded algebra over any fixed (commutative or
non-commutative) ring $A$ with a unit element.

Let $E=\Sigma_{r}\mathfrak{X}_{\Gamma}E_{\gamma}$ and $F=\Sigma_{c\in\Delta}^{ffl}F_{\delta}$ be decompositions of $(E, \Gamma)$ and $(F, \Delta)$

into homogeneous modules respectively. Let $\varphi_{R}$ be a homomorphism from $E$

onto (into) $F$ as algebras, and $\varphi_{G}$ a homomorphism from $\Gamma$ onto $\Delta$ . If $\varphi_{R}(E_{r})$

$\subseteqq F_{\varphi_{C}(7)}$ , then $\varphi=(\varphi_{R}, \varphi_{G})$ is called a homomorphism from $(E, \Gamma)$ onto (into)

$(F, \Delta)$ . For convenience, we write $\varphi(x)=\varphi_{R}(x)$ for $x\in E$, and $\varphi(\gamma)=\varphi_{G}(\gamma)$ for
$\gamma\in\Gamma$ ; the kernel of $\varphi$ means the kernel of $\varphi_{R}$ .

Let $(E, \Gamma)$ be a $\Gamma$-graded algebra over $A$ . Let $\Delta$ be a homomorphic image
or a factor group of $\Gamma$ . Then it is easy to see that $E$ is also a $\Delta$ -graded
algebra. An element in the homogeneous module $E_{\delta}$ of $E$ is called $\Delta$ -homo-
geneous of degree $\delta$ . A submodule $M$ of $E$ is said to be $\Delta$ -homogeneous if
$M=\Sigma_{\delta\in\Delta}^{\oplus}(M\cap E_{\delta})$ . If a submodule $ j\psi$ or an ideal $\mathfrak{A}$ of $E$ is generated by
$\Delta$ -homogeneous elements, then it is $\Delta$ -homogeneous by Theorem 1.3 in [1].

THEOREM 1. Let $(E, \Gamma)$ be a graded algebra over A. If $\Delta$ is a factor group
of $\Gamma$ , then there exists, for any $\Delta$ -homogeneous two-sided ideal QI of $E$, a homo-
morphism from $(E, \Gamma)$ onto $(E/\mathfrak{A}, \Delta)$ . Conversely, if $\varphi=(\varphi_{R}, \varphi_{G})$ is a homomor-
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phism from $(E, \Gamma)$ onto $(F, \Delta)$ , then there exists a $\Delta$ -homogeneous ideal $\mathfrak{A}$ of $E$

such that $(E/\mathfrak{A}, \Delta)$ and $(F, \Delta)$ are isomorphic.
PROOF. The former part of this theorem is easily obtained. We now

prove the latter part. It is clear that $E$ can be considered as a $\Delta$ -graded
algebra, and that $\varphi^{\prime}=(\varphi_{R}, I_{G})$ is a homomorphism from $(E, \Delta)$ onto $(F, \Delta)$ . Let
$a=\Sigma_{\delta\in 4}a_{\delta}$ be an element of the kernel $\mathfrak{A}$ of $\varphi_{R}$ . Then $0=\varphi_{R}(a)=\Sigma_{\delta\in\Delta}\varphi_{R}(a_{\delta})$ .
By the uniqueness of this representation, we have $\varphi_{R^{\prime}}a_{\delta}$) $=0,$ $i$ . $e$ . $a_{\delta}\in \mathfrak{A}$ .
Hence $\mathfrak{A}$ is $\Delta$ -homogeneous. Therefore $(F, \Delta)$ is isomorphic to $(E/\mathfrak{A}, \Delta)$ . This
completes the proof.

Let $(E, \Gamma)$ be a graded algebra over $A$ . If $\Gamma^{\prime}$ is the subgroup of $\Gamma$

generated by the set $\{\gamma;E_{\gamma}\neq 0\}$ , then it is clear that $\Gamma^{\prime}$ is uniquely deter-
mined by $(E, \Gamma)$ . Such a subgroup $\Gamma^{\prime}$ is called the irredundant subgroup of
$\Gamma$ with respect to $E$, and denoted by $\Gamma(E)$ . It is easily seen that $E$ is a
$\Gamma(E)$-graded algebra. Hereafter $[E, \Gamma]$ denotes the $\Gamma(E)$ -graded algebra $E$,
$i$ . $e$ . $[E, \Gamma]=(E, \Gamma(E))$ , and is called an irredundantly graded algebra.

Let $F$ be a free algebra with a free system of generators $\{x_{\lambda} ; \lambda\in\Lambda\}$ over
a ring $A$ , and $\Delta$ the additive group freely generated by $\Lambda$ . Let $\delta$ be any
element of $\Delta$ , and $\delta=\lambda_{1}+\cdots+\lambda_{n}$ an expression of $\delta$ in the normal form in $\Delta$ .
$F_{\delta}$ denotes the submodule of $F$ which is spanned by the set { $ y_{\pi(\delta)}=x_{\pi(\lambda_{1})}\cdots$

$ x_{\pi(\lambda n});\pi$ runs over the symmetric group $S_{n}$ }. Then $F$ forms an irredundantly
$\Delta$ -graded algebra. This algebra $[F, \Delta]$ is called a free graded algebra with
a free system of generators $\{x_{\lambda} ; \lambda\in\Lambda\}$ .

THEOREM 2. Let $[E, \Gamma]$ be any irredundantly graded algebra over A. Then
there exists a free graded algebra $[F, \Delta]$ such that a homomorphism from $[F, \Delta]$

onto $[E, \Gamma]$ exists.
PROOF. Let $\{a_{\lambda} ; \lambda\in\Lambda\}$ be a system of homogeneous generators of $[E, \Gamma]$ .

Take symbols $\{x_{\lambda} ; \lambda\in\Lambda\}$ . Then there exists a free graded algebra $[F, \Delta]$

with a free system of generators $\{x_{\lambda} ; \lambda\in\Lambda\}$ . The mapping $x_{\lambda}\rightarrow a_{\lambda}(\lambda\in\Lambda)$ can
be clearly extended to a homomorphism $\varphi_{R}$ from $F$ onto $E$ as algebras over
$A$ . If $x$ is a homogeneous element of degree $\delta$ in $[F, \Delta]$ , then we have $x=$

$\Sigma_{\pi\in S_{n}}\alpha_{\pi(\lambda_{1}),\cdots,\pi(\lambda_{n})X_{\pi}(\lambda_{1})}\cdots x_{\pi(\lambda_{n^{)}}}$. with $\delta=\lambda_{1}+\cdots+\lambda_{n}$ . Let $a$ be the $\varphi_{R}$-image of
$x$. Then $a=\Sigma_{\pi\in s_{n}}\alpha_{\pi(\lambda_{1}),\cdots,\pi(\lambda_{n})}a_{\pi(\lambda_{1})}\cdots a_{\pi(\lambda_{n})}$ . If $a_{\lambda}$ is a homogeneous element
of degree $\gamma(\lambda)$ , then $a$ is a homogeneous element of degree $\gamma=\gamma(\lambda_{1})+\cdots+\gamma(\lambda_{n})$ .
Since $\Delta$ is a free additive group, the mapping $\varphi_{G}$ : $\delta\rightarrow\varphi_{G}(\delta)=\gamma$ is clearly a
homomorphism from $\Delta$ onto $\Gamma(E)$ . Hence $\varphi=(\varphi_{R}, \varphi_{G})$ is a homomorphism
from $[F, \Delta]$ onto $[E, \Gamma]$ . This completes the proof.

Let $(E, \Gamma)$ be a graded algebra over $A$ . Let $\Gamma$ have a subgroup $\Gamma^{\prime}$ of
index 2. Then the main involution $J$ of $E$ with respect to $\Gamma/\Gamma^{\prime}$ can be defined
as in [1]. If $\Theta=\Gamma(E)\cap\Gamma^{\prime}\neq\Gamma(E)$ , then it is easily verified that $(\Gamma(E):\Theta)=2$ .
Hence we can form the main involution $J_{1}$ of $E$ with respect to $\Gamma(E)/\Theta$ .
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Then we have $J(x)=J_{1}(x)$ , and also the symbolical power $J^{\nu}(x)=J_{1}^{\nu}(x)$ for every
$\nu$ in $\Gamma(E)$ . On the other hand if $\Theta=\Gamma(E)$ , then we may define $J_{2}(x)=x$ for
every $x$ in $E$. Then we have $J(x)=J_{2}(x)$ , and $J^{\nu}(x)=J_{2}^{\nu}(x)$ for every $\nu$ in $\Gamma(E)$ .
In the following, we assume that $J$ and $J^{\nu}$ are defined on $[E, \Gamma]$ as above,
whether $\Gamma(E)$ has a subgroup of index 2 or not.

Let $(E, \Gamma),$ $(F, \Delta)$ be two graded algebras over $A,$ $\varphi$ a homomorphism from
$(E, \Gamma)$ into $(F. \Delta)$ , and let $\nu$ be a fixed element of $\Gamma$ . A linear mapping $D$

from $E$ into $F$ is called of degree $\varphi(\nu)$ , if $D(x)\in F_{\varphi(\mu+\nu)}$ for $x\in E_{J}$ . A linear
mapping $D$ of degree $\varphi(\nu)$ is called a $\varphi$ -derivation of degree $\varphi(\nu)$ from $(E, \Gamma)$

into $(F, \Delta)$ , if it satisfies

$D(xy)=D(x)\varphi(y)+\varphi(J^{\nu}(x))D(y)$

for every $x,$ $y$ in $E$.
THEOREM 3. Let $[F, \Delta]$ be a free graded algebra with a free system of

generators $\{x_{\lambda} ; \lambda\in\Lambda\}$ . Let $(E, \Gamma)$ be an arbitrary graded algebra over $A$ , and $\varphi$

a homomorphism from $[F, \Delta]$ into $(E, \Gamma)$ . Assume that for each element $\lambda$ of $\Lambda$ ,
a $\Gamma$-homogeneous element $y_{\lambda}\in E$ of degree $\varphi(\lambda+\nu)$ is preassigned arbitrarily, where
$\nu$ is a fixed element in $\Delta$ . Then lhere exists one and only one $\varphi$ -derivation $D$ of
degree $\varphi(\nu)$ from $[F, \Delta]$ into $(E, \Gamma)$ , which is an extension of the mapping $x_{\lambda}\rightarrow y_{\lambda}$ .

PROOF. First we put $D(1)=0$ and $D(x_{\lambda})=y_{\lambda}$ . Next we set

$D(x_{\lambda_{1}}\cdots x_{\lambda_{n}})=\Sigma_{i}\varphi(J^{\nu}(x_{\lambda_{1}}\cdots x_{\lambda_{i-1}}))D(x_{\lambda_{i}})\varphi(x_{\lambda_{i+1}}\cdots x_{\lambda_{n}})$ ,
and define

$D(x)=\Sigma_{(\lambda)}\alpha_{(\lambda)}D(x_{\lambda_{1}}\cdots x_{\lambda_{n}})$ , $(\lambda)=(\lambda_{1},\cdots, \lambda_{\eta})$

for any element $x=\Sigma_{(\lambda)}\alpha_{(\lambda)}x_{\lambda_{1}}\cdots x_{\lambda_{n}}$ in $F$. Then $D$ forms a linear mapping
of degree $\varphi(\nu)$ from $[F, \Delta]$ into $(E, \Gamma)$ . Now we shall prove that $D$ satisfies
the condition:

$D(xy)=D(x)\varphi(y)+\varphi(J^{\nu}(x))D(y)$ .
If $y=\Sigma(_{/1})\beta_{()}x,,\cdots x_{\mu_{m}},$ $(\mu)=(\mu_{1},\cdots, \chi x_{m})$ , then

$xy=\Sigma\alpha\beta_{(\mu})X_{\lambda_{1}}\cdots X_{\lambda_{nm}}x_{\mu_{1}}\cdots x_{f}$ .
Then we have

$D(xy)=\Sigma\mu\alpha\beta_{()}/JD(x_{\lambda_{1}}\cdots x_{\lambda_{n}}x_{\mu_{1}}\cdots x_{\mu_{m}})$

$=\Sigma(r)(/J)\alpha_{(\lambda)}\beta_{()}\mu[\Sigma_{i}\varphi(J^{\nu}(x_{\lambda_{1}}\cdots x_{\lambda_{i-1}}))D(x_{\lambda_{i}})\varphi(x_{\lambda_{i+1}}\cdots x)_{n})\varphi(x_{\mu_{1}}\cdots x_{\nu_{m}})$

$+\Sigma_{1}\varphi(J^{\nu}(x_{\lambda_{1}}\cdots x_{\lambda_{n}}))\varphi(J^{\nu}(x_{\mu_{1}}\cdots x_{\mu_{j}-1}))D(x_{u_{j},l})\varphi(x_{\ell}u_{J^{+1}m} x_{1})]$

$=\Sigma(\lambda)(\mu)\alpha_{(\lambda)}\beta_{()}\mu[D(x_{\lambda_{1}}\cdots x_{\gamma_{n}})\varphi(x_{l^{l}}. x_{\rho_{m}})+\varphi(J^{\nu}(x_{\lambda_{1}}\cdots x_{1_{n}})D(x_{\mu_{1}}\cdots x_{1m})]$

$=[\Sigma\alpha D(x_{\lambda_{1}}\cdots x_{J_{I}n})]\varphi(\Sigma(\mu)\beta_{(\mu)}x_{\mu_{1}}\cdots x_{!^{1}m})$

$+\varphi(J^{\nu}(\Sigma_{(\lambda)}\alpha_{(\lambda)}x_{\lambda_{1}}\cdots x_{\lambda_{n}}))[\Sigma(\mu)\beta_{(\mu)}D(x_{\mu_{1}}\cdots x_{1^{\prime}\gamma n})]$

$=D(x)\varphi(y)+\varphi(\int^{\nu}(x))D(y)$ .
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Namely the mapping $x_{\lambda}\rightarrow y_{\lambda}$ is extended to a $\varphi$ -derivation $D$ of degree $\varphi(\nu)$

from $[F, \Delta]$ into $(E, \Gamma)$ . If a $\varphi$ -derivation $D^{\prime}$ of degree $\varphi(\nu)$ from $[F, \Delta]$ into
$(E, \Gamma)$ is any extension of the mapping $x_{\lambda}\rightarrow y_{\lambda}$ , then it is easily verified that
$D-D^{\prime}$ is a zero derivation. Hence $D$ is uniquely determined by the mapping
$x_{\lambda}\rightarrow D(x_{\lambda})=y_{\lambda}$ . This completes the proof.

\S 2. Let $(E_{1}, \Gamma_{1}),$ $(E_{2}, \Gamma_{2}),$ $(E_{1}^{\prime}, \Gamma_{1}^{\prime})$ and $(E_{2}^{\prime}, \Gamma_{2}^{\prime})$ be four graded algebras
over $A$ , and $\varphi$ a homomorphism from $[E_{1}, \Gamma_{1}]$ into $(E_{2}, \Gamma_{2})$ . Let $\sigma_{1}$ be a
homomorphism from $[E_{1}, \Gamma_{1}]$ onto $[E_{1}^{\prime}, \Gamma_{1}^{\prime}]$ , and $\sigma_{2}$ a homomorphism from
$(E_{2}, \Gamma_{2})$ onto $(E_{2}^{\prime}, \Gamma_{2}^{\prime})$ . Let $\mathfrak{A}_{\prec}$ be the kernel of $\sigma_{\dot{t}}(i=1,2)$ as algebras, and
let $\varphi(\mathfrak{A}_{1})\subseteqq \mathfrak{A}_{2}$ . Moreover let $N_{i}$ be the kernel of $\sigma_{i}$ as groups, and let $\varphi(N_{1})$

$\subseteqq N_{2}$ . Then $\psi=(\psi_{R}, \psi_{G})$ defined by the pair of mappings $\psi_{R}$ : $\sigma_{1}(x)\rightarrow\sigma_{2}(\varphi(x))$

and $\psi_{G}$ : $\sigma_{1}(\gamma)\rightarrow\sigma_{2}(\varphi(\gamma))$ gives a homomorphism from $[E_{1}^{\prime}, \Gamma_{1}^{\prime}]$ into $(E_{2}^{\prime}, \Gamma_{2}^{\prime})$ .
Let $\Theta$ be a subgroup of $\Gamma_{1}(E_{1})$ which contains $N_{1}$ . Then the subgroup $\sigma_{1}(\Theta\rangle$

of $\Gamma_{1}^{\prime}(E_{1}^{\prime})$ has the same index as that of $\Theta$ in $\Gamma_{1}(E_{1})$ . Conversely, if $\Theta^{\prime}$ is a
subgroup of $\Gamma_{1}^{\prime}(E_{1}^{\prime})$ , then the subgroup $\sigma_{1}^{-1}(\Theta^{\prime})$ of $\Gamma_{1}(E_{1})$ has the same index
as that of $\Theta^{\prime}$ in $\Gamma_{1}^{\prime}(E_{1}^{\prime})$ . And we get

$\sigma_{1}^{-1}(\sigma_{1}(\Theta))=\Theta$ , $\sigma_{1}(\sigma_{1}^{-1}(\Theta^{\prime}))=\Theta^{\prime}$

Let $J_{\Theta}$ be the main involution of $[E_{1}, \Gamma_{1}]$ defined by the subgroup $\Theta$ of $\Gamma_{1}(E_{1})$ .
The main involution $J_{\sigma_{1}(\Theta)}$ of $[E_{1}^{\prime}, \Gamma_{1^{\prime}}]$ defined by $\sigma_{1}(\Theta)$ is said to be deduced
from $J_{0\aleph}$ . Conversely, let $J_{\Theta^{\prime}}$ be a main involution defined by the subgroup
$\Theta^{\prime}$ of $\Gamma_{1}^{\prime}(E_{1}^{\prime})$ . Then we get

$J_{\sigma_{1}}-1(\sigma_{1}(0\sim))=J_{\Theta}$ , $J_{\sigma_{1}(\sigma_{1}^{-1}(\Theta^{r}))}=J_{\Theta^{\prime}}$ .
If $D$ is a $\varphi$ -derivation of degree $\varphi(\nu)$ from $[E_{1}, \Gamma_{1}]$ into $(E_{2}, \Gamma_{2})$ with respect
to the main involution $J_{\Theta}$ , and if the mapping

$\overline{D}$ : $\sigma_{1}(x)\rightarrow\overline{D}(\sigma_{1}(x))=\sigma_{2}(D(x))$

forms a $\psi$-derivation of degree $\psi(\sigma_{1}(\nu))$ from $[E_{1}^{\prime}, \Gamma_{1^{\prime}}]$ into $(E_{2}^{\prime}, \Gamma_{2^{\prime}})$ with
respect to the involution $J_{\sigma_{1}(\Theta)}$ deduced from $J_{\Theta}$ , then we say that $\overline{D}$ is
deduced from $D$ .

Under the above assumptions, we prove the following Theorems 4 and 5.
THEOREM 4. If there exists a $\varphi$ -derivation $D$ of degree $\varphi(\nu)$ from $[E_{1},$ $\Gamma_{1}j$

into $(E_{2}, \Gamma_{2})$ , then in order that the mapping
$\overline{D}:\sigma_{1}(x)\rightarrow\overline{D}(\sigma_{1}(x))=\sigma_{2}(D(x))$

is a deduced $\psi$-derivation of degree $\psi(\sigma_{1}(\nu))$ from $[E_{1}^{\prime}, \Gamma_{1}^{\prime}]$ into $(E_{2}^{\prime}, \Gamma_{2}^{\prime})$ , it is
necessary and sufficient that $D(\mathfrak{A}_{1})\subseteqq \mathfrak{A}_{2}$ .

PROOF. Suppose that $D(\mathfrak{A}_{1})\subseteqq \mathfrak{A}_{2}$ , First we prove that $\overline{D}$ is a linear map-
ping. Let $\sigma_{1}(x)=\sigma_{1}(y)$ for some elements $x,$ $y$ in $E_{1}$ , then $\sigma_{1}(x-y)=0,$ $x-y=$
$a\in \mathfrak{A}_{1}$ , and $\sigma_{2}(D(x))-\sigma_{2}(D(y))=\sigma_{2}(D(x)-D(y))=\sigma_{2}D(x-y)=\sigma_{2}D(a)$ . Since $D(\mathfrak{A}_{1})$

$\subseteqq \mathfrak{A}_{2}$ , we get $\sigma_{2}D(a)=0$ . Hence $\sigma_{2}(D(x))=\sigma_{2}(D(y)),$ $i$ . $e.\overline{D}$ is a well defined map-
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ping. The linearity of $\overline{D}$ can be easily obtained from the linearity of $D$ and $\sigma_{i}$ .
Next we shall show the relation $\sigma_{1}J_{\Theta}^{\nu}(x)=J_{\sigma_{1}t\Theta)}^{\sigma_{1}(\nu)}(\sigma_{1}(x))$ . This relation is

clear in the case of $\Theta=\Gamma_{1}(E_{1})$ . Hence we shall prove the relation in case
$(\Gamma_{1}(E_{1}):\Theta)=2$ . Let $x=x_{+}+x_{-}$ be the homogeneous decomposition for the
semi-graduation concerning $\Theta,$ $\sigma_{1}(x)=\sigma_{1}(x)_{+}+\sigma_{1}(x)_{-}$ the homogeneous decom-
position for the semi-graduation concerning $\sigma_{1}(\Theta)$ . Since it is easily verified
that $\sigma_{1}(x_{+})=\sigma_{1}(x)_{+}$ and $\sigma_{1}(x_{-})=\sigma_{1}(x)_{-}$ , we have

$\sigma_{1}J_{\Theta}(x)=\sigma_{1}J_{\Theta}(x_{+}+x_{-})=\sigma_{1}(x_{+}-x_{-})=\sigma_{1}(x_{+})-\sigma_{1}(x_{-})$

$=\sigma_{1}(x)_{+}-\sigma_{1}(x)_{-}=J_{\sigma_{1}(\Theta)}(\sigma_{1}(x)_{+}+\sigma_{1}(x)_{-})=J_{\sigma_{1}(\theta)}(\sigma_{1}(x))$ .
Hence we get $\sigma_{1}J_{\Theta}^{\nu}(x)=J_{\sigma_{1}(\Theta)}^{\sigma_{1}(\nu)}(\sigma_{1}(x))$ .

We obtain therefore
$\overline{D}(\sigma_{1}(x)\sigma_{1}(y))=\overline{D}(\sigma_{1}(xy))=\sigma_{2}(D(xy))$

$=\sigma_{2}[D(x)\varphi(y)+\varphi(J_{\Theta}^{\nu}(x))D(y)]$

$=\sigma_{2}D(x)\cdot\sigma_{2}\varphi(y)+\sigma_{2}\varphi(J_{\Theta}^{\nu}(x))\cdot\sigma_{2}D(y)$

$=\overline{D}(\sigma_{1}(x))\cdot\psi\sigma_{1}(y)+\psi\sigma_{1}(J_{\Theta}^{\nu}(x))\cdot\overline{D}(\sigma_{1}(y))$

$=\overline{D}(\sigma_{1}(x))\psi(\sigma_{1}(y))+\psi[J_{\sigma_{1(0)}}^{\sigma_{1}(\nu_{\aleph})}(\sigma_{1}(x))]\overline{D}(\sigma_{1}(y))$ .
This completes the proof of the sufficient part.

The necessary part can be easily obtained. Because, if $D(\mathfrak{A}_{1})\not\subset \mathfrak{A}_{2}$ , then
$\overline{D}$ is not well defined.

COROLLARY 4.1. Let $(E^{*}, \Gamma^{*}),$ $(E, \Gamma)$ and $(F, \Delta)$ be three graded algebras.
Let $\sigma$ be a homomorphism from $[E^{*}, \Gamma^{*}]$ onto $[E, \Gamma],$ $\psi$ a homomorphism from
$[E, \Gamma]$ into $(F, \Delta)$ and let $\varphi=\psi\sigma,$ $i$ . $e$ . $\varphi_{R}=\psi_{R}\sigma_{R}$ and $\varphi_{G}=\psi_{G}\sigma_{G}$ . Suppose that
there exists a $\varphi$ -derivation $D$ of degree $\varphi(\nu)$ from $[E^{*}, \Gamma^{*}]$ into $(F, \Delta)$ . Then in
order lhat the mapping $\overline{D}:\sigma(x)\rightarrow\overline{D}(\sigma(x))=D(x)$ is a deduced $\psi$-derivation of
degree $\psi(\sigma(\nu))$ from $[E, \Gamma]$ into $(F, \Delta)$ , it is necessary and sufficient that the
kernel of $\sigma$ is contained in the kernel of $D$ .

THEOREM 5. Assume that $[E_{1}, \Gamma_{1}]$ is a free graded algebra with a free
system of generators $\{x_{\lambda} ; \lambda\in\Lambda\}$ , and that $(\sigma_{2})_{G}$ is an isomorphism from $\Gamma_{2}$ onto
$\Gamma_{2}^{\prime}$ . If there exists a $\psi$-derivation $\overline{D}$ of clegree $\psi(\sigma_{1}(\nu))$ from $[E_{1}^{\prime}, \Gamma_{1}^{\prime}]$ into
$(E_{2}^{\prime}, \Gamma_{2}^{\prime})$ with respect to the main involution $J_{\Theta^{\prime}}$ , then there exists a $\varphi$ -derivation
$D$ of degree $\varphi(\nu)$ from $[E_{1}, \Gamma_{1}]$ into $(E_{2}, \Gamma_{2})$ which deduces $\overline{D}$ , i. e. $\overline{D}(\sigma_{1}(x))=$

$\sigma_{2}(D(x))$ for every $x$ in $E_{1}$ .
PROOF. For each generator $x_{\lambda}$ of $[E_{1}, \Gamma_{1}]$ , we consider the set $\sigma_{2^{-1}}\overline{D}\sigma_{I}(x_{\lambda})$ .

Since
$\overline{D}\sigma_{1}(x_{\lambda})\in(E_{2}^{\prime})_{\psi(\sigma_{1}(\lambda+\nu))}=(E_{2}^{\prime})_{o_{2}(\varphi(\lambda+\nu))}$

and since $\sigma_{2}$ gives a module-homomorphism from $(E_{2})_{\varphi(\lambda+\nu})$ onto $(E_{2}^{\prime})_{\sigma_{2}\varphi(\lambda+\nu)}$ ,
it is easy to see that there exists an element $a_{\lambda}$ contained in $\sigma_{2}^{-1}\overline{D}\sigma_{1}(x_{\lambda})\cap$
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$(E_{2})_{\varphi(\lambda+\nu)}$ . Hence by Theorem 3, the mapping $x_{\lambda}\rightarrow a_{\lambda}$ can be extended to a
$\varphi$ -derivation $D$ of degree $\varphi(\nu)$ from $[E_{1}, \Gamma_{1}]$ into $(E_{2}, \Gamma_{2})$ which concerns the
main involution $J_{\sigma^{1}(\theta,)}$ . Now we shall prove that the derivation $D$ deduces
the given derivation D. $\overline{D}\sigma_{1}$ is a $\psi\sigma_{1}$ -derivation of degree $\psi\sigma_{1}(\nu)$ from $[E_{1}, \Gamma_{1}]$

into $(E_{2}^{\prime}, \Gamma_{2}^{\prime})$ , and $\sigma_{2}D$ is a $\sigma_{2}\varphi$ -derivation of degree $\sigma_{2}\varphi(\nu)$ from $[E_{1}, \Gamma_{1}]$ into
$(E_{2}^{\prime}, \Gamma_{2}^{\prime})$ . Since $\psi\sigma_{1}=\sigma_{2}\varphi$ , and since $\overline{D}\sigma_{1}(x_{\lambda})=\sigma_{2}D(x_{\lambda})$ for every generator $x_{\lambda}$ ,
it is easy to see that $\overline{D}\sigma_{1}$ and $\sigma_{2}D$ are the same derivation, $i$ . $e.\overline{D}\sigma_{1}(x)=\sigma_{2}D(x)$

for every element $x$ in $E_{1}$ . If $\sigma_{1}(x)=0$ , then $\overline{D}\sigma_{1}(x)=0$ , i. e. $\sigma_{2}D(x)=0$ . Hence
the kernel $\mathfrak{A}_{1}$ of $\sigma_{1}$ is contained in the kernel of $\sigma_{2}D,$ $i$ . $e$ . $D(\mathfrak{A}_{1})\subseteqq \mathfrak{A}_{2}$ . Then
by Theorem 4 the mapping

$\tilde{D}:\sigma_{1}(x)\rightarrow\tilde{D}(\sigma_{1}(x))=\sigma_{2}D(x)$

is a deduced $\psi$-derivation of degree $\psi(\sigma_{1}(\nu))$ from $[E_{1}^{\prime}, \Gamma_{1}^{\prime}]$ into $(E_{2}^{\prime}, \Gamma_{2}^{\prime})$ ,
which concerns the main involution $J_{\Theta^{\prime}}$ . Now we have

$\tilde{D}(\sigma_{1}(x))=\sigma_{2}(D(x))=\overline{D}(\sigma_{1}(x))$

for every element $x$ of $E_{1}$ . Hence we get $\tilde{D}(\sigma_{1}(x))=\overline{D}(\sigma_{1}(x))$ for every element
$\sigma_{1}(x)$ in $E_{1}$ i. This completes the proof.

\S 3. Let $(E, \Gamma)$ be any graded algebra over $A$ , and $[F, \Delta]$ a free graded
algebra with a free system of generators $\{x_{\lambda} ; \lambda\in\Lambda\}$ over $A$ . Let $\varphi$ be a
homomorphism from $[F, \Delta]$ into $(E, \Gamma)$ . Let $f$ be any element of $F$, and let

$(*)$ $f=\Sigma_{\lambda_{1},\cdots,\lambda_{n}}\alpha_{\lambda_{1},\cdots,l_{n}}x_{\lambda_{1}}\cdots x_{\lambda_{n}}$

be an expression of normal form in the free algebra $F$. Let $\Lambda_{f}$ denote the
set of all \‘A each of which appears in $(*)$ . Let $a$ be any element of $E$. Now

we define a binary operation $\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle$ from $E\times F$ into $E$ as follows:

$a\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle f=\left\{\begin{array}{l}\sum_{\lambda_{l_{\prime}}\cdots,)_{n}}\alpha_{\lambda_{1},\cdots,l_{n}}\sum_{\lambda_{i}=\lambda}\varphi(J^{\nu}(x_{\lambda_{l}}\cdots x_{\lambda_{i-1}}))\cdot a\cdot\varphi(x_{\lambda_{i+1}}\cdots x_{\prime_{n}})if\lambda\in\Lambda_{f},\\0 if\lambda\not\in\Lambda_{f}.\end{array}\right.$

If $D$ is a $\varphi$ -derivation of degree $\varphi(\nu)$ from $[F, \Delta]$ into $(E, \Gamma)$ , then, by using

the above operation $\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle$ , we have

$D(f)=\sum_{\lambda\in\Lambda}D(x_{\lambda})\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle f$ .

It is convenient to consider $ a\langle\frac{\partial}{(;\varphi(x_{\lambda})}\rangle$ as an operator for $F$. We now
define an addition ffl of the operators as follows:

$(a\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle fflb\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle)f=a\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle f+b\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle f$ .
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Then we have

$D(f)=\sum_{\lambda\in\Lambda}D(x_{\lambda})\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle f=(\sum_{H\exists}\in\Lambda D(x_{\lambda})\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle)(f)$ .

If $E$ is commutative, then defining

$\frac{\partial}{\partial\varphi(x_{\lambda})}J=1\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle f$ ,

we have

$a\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle f=(a\cdot 1)\langle\frac{\partial}{\partial\varphi(x_{\lambda})}\rangle f=a(1\langle-\partial\frac{\partial}{}-\rangle f_{)}=a(\frac{\partial}{\partial\varphi(x_{\lambda})}f)$ .

REMARK. Let $[F, \Delta]$ be a free graded algebra freely generated by
$\{x_{\lambda} ; \lambda\in\Lambda\}$ over a field $k$ , and let $K$ be the polynomial ring generated by
$\{X_{\lambda} ; \lambda\in\Lambda\}$ over $k$ . Then $K$ forms a $\Delta$ -graded algebra, and the mapping

$x_{\lambda}\rightarrow X_{\lambda}$ can be extended to a homomorphism $\sigma$ from $[F, \Delta]$ onto $[K, \Delta]$ :
$\sigma:f\rightarrow\sigma f=f^{\sigma}(X_{\lambda})$ , $f\in F,$ $f^{\sigma}(X_{\lambda})\in K$ .

Let $(E, \Gamma)$ be any commutative graded algebra over $k,$ $\psi$ a homomorphism
from $[K, \Delta]$ into $(E, \Gamma)$ , and $\varphi=\psi\sigma$ . lf $J^{\nu}$ is identity on $F$, then the above
$\frac{\partial}{\partial\varphi(x_{\mu})}f$ coincides with the usual symbol $\frac{\partial f^{\sigma}}{\partial\psi(X_{\mu})}$ , which is the result of

the substitution of $\psi(X_{\lambda})(=\varphi(x_{1}))$ for $X_{\lambda}$ in the partial derivative $\frac{\partial f^{\sigma}}{\partial X_{\mu}}$

[ $2$ ; p. 12].

THEOREM 6. Let $[F, \Delta]$ be a graded algebra over $A$ with a system of homo-
geneous generators $\{a_{\lambda} ; \lambda\in\Lambda\}$ , and $[F^{*}, \Delta^{*}]$ a free graded algebra over $A$ with
a free system of generators $\{x_{\lambda} ; \lambda\in\Lambda\}$ . Let $\sigma$ be a homomorphism from $[F^{*}, \Delta^{*}]$

onto $[F, \Delta]$ which is an extension of the mapping $x_{\lambda}\rightarrow a_{\lambda}$ , and let $\mathfrak{A}=(f_{\rho} ; \rho\in P)$

be the kernel of $\sigma$ . Let $(E, \Gamma)$ be a graded algebra over $A$ , and $\psi$ a homomor-
phism from $[F, \Delta]$ into $(E, \Gamma)$ . Then in order that the mapping

$d:a_{\lambda}\rightarrow d(a_{A})=b_{\lambda}\in E_{\psi(\sigma(\lambda)\sigma(\nu))}+(\text{\‘{A}}, \nu\in\Delta^{*})$

can be extended to a $\psi$-derivation $\overline{D}$ of degree $\psi(\sigma(\nu))$ from $[F, \Delta]$ into $(E, \Gamma)_{r}$

it is necessary and sufficient that

$\sum_{\lambda\in\Lambda}b_{\lambda}\langle\frac{\partial}{\partial\psi\sigma(x_{\lambda})}\rangle f_{\rho}=0$

for every $\rho\in P$.
PROOF. By Theorem 3, the mapping $x_{\lambda}\rightarrow b_{\lambda}$ can be extended to a $\psi\sigma-$

derivation $D$ of degree $\psi\sigma(\nu)$ from $[F^{*}, \Delta^{*}]$ into $(E, \Gamma)$ . It is verified by
Corollary 4.1 and Theorem 5 that the mapping

$d:a_{\lambda}=\sigma(x_{\lambda})\rightarrow D(x_{\lambda})=b_{4}$

can be extended to a $\psi$-derivation $\overline{D}$ of degree $\psi(\sigma(\nu))$ from $[F, \Delta]$ into $(E, \Gamma)$,
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if and only if the kernel $\mathfrak{A}$ of $\sigma$ is contained in the kernel of $D$ . Hence it
is sufficient to prove that

$1(**)$ $\mathfrak{A}\subseteqq kernel(D)\Leftrightarrow\sum_{\lambda\in\Lambda}b_{\lambda}\langle\frac{\partial}{\partial\psi\sigma(x_{\lambda})}\rangle f_{\rho}=0$ $(\rho\in P)$ .

Since $D(f_{\rho})=\sum_{\lambda\in\Lambda}b_{\lambda}\langle\partial\psi_{0}^{\partial}(x_{\lambda})\rangle f_{\rho}$ , the implication $=>$ is evident. To prove

the converse implication of $(**)$ , it suffices only to show that $D(gf_{\rho}h)=0$ for
any elements $g,$ $h$ of $F^{*}$ . Since $D(f_{\rho})=0$ and $\sigma(f_{\rho})=\sigma(J^{\nu}(f_{\rho}))=0$ , we have

$D(gf_{\rho}h)=D(g)\psi\sigma(f_{\rho})\psi\sigma(h)+\psi\sigma(J^{\nu}(g))D(f_{\rho})\psi\sigma(h)+\psi\sigma(J^{\nu}(g))\psi\sigma(J^{\nu}(f_{\rho}))D(h)$

$=0$ .
This completes the proof.

COROLLARY 6.1. If $E$ is commutative in Theorem 6, then in order that the
mapping $d$ can be extended to a $\psi$-derivation $D$ , it is necessary and sufficient
that

$\sum_{\lambda\in\Lambda}b_{\lambda}(\partial\frac{\partial}{\psi\sigma(x_{\lambda}})f_{\rho})=0$

for every $\rho\in P$.
THEOREM 7. Under the same assumption of Theorem 6, in order that a

system of equations

$G(\star**)$ $\sum_{\lambda\in\Lambda}Z_{\lambda}\langle\frac{\partial}{\partial\psi\sigma(x_{\lambda})}\rangle f_{\rho}=0$ $(\rho\in P)$

has a non-trivial solution for $Z_{\lambda}$ , it is necessary and sufficient that there exists a
system of one-variable equations

$Z_{\mu}\langle\frac{\partial}{\partial\psi\sigma(x_{\mu})}\rangle f_{\rho}=0$ $(\rho\in P)$

with a non-trivial solution for $Z_{/A}$ .
PROOF. Let $\{b_{\lambda} ; \lambda\in\Lambda\}$ be a non-trivial solution of $(***),$ $i$ . $e$ .

$\sum_{\lambda\in\Lambda}b_{\lambda}\langle\overline{\partial\psi}_{\sigma\overline{(x_{A})}}^{\partial}\rangle f_{\rho}=0$ $(\rho\in P)$ .

Then, by Theorem 6, the mapping $\sigma(x_{\lambda})\rightarrow b_{\lambda}$ can be extended to a $\psi$-derivation
$\overline{D}$ from $[F, \Delta]$ into $(E, \Gamma)$ , and by Theorem 3, the mapping $x_{\lambda}\rightarrow b_{\lambda}$ can be
extended to a $\psi\sigma$-derivation $D$ from $[F^{*}, \Delta^{*}]$ into $(E, \Gamma)$ . Then it is clear
that $D(x)=\overline{D}(\sigma(x))$ , and hence, by Corollary 4.1, the kernel of $\sigma$ is contained
in the kernel of $D$ . Suppose that $b_{\mu}\neq 0$ , and $c_{\lambda}=\delta_{\lambda\mu}b_{\mu}$ . It is clear from
Theorem 3 that the mapping $x_{\lambda}\rightarrow c_{\lambda}$ can be extended to a $\psi\sigma$-derivation $D^{\prime}$

from $[F^{*}, \Delta^{*}]$ into $(E, \Gamma)$ . Then the kernel of $D$ is clearly contained in the
kernel of $D^{\prime}$ . Hence the kernel of $\sigma$ is contained in the kernel of $D^{\prime}$ .
Therefore, by Corollary 4.1, there exists a $\psi$-derivation $\overline{D}^{\prime}$ : $\sigma(x)\rightarrow D^{\prime}(x)$ which
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is an extension of the mapping $a_{\lambda}=\sigma(x_{\lambda})\rightarrow D^{\prime}(x_{\lambda})=c_{\lambda}$ . By Theorem 6 we
obtain

$\sum_{\lambda\in\Lambda}c_{\lambda}\langle\frac{\partial}{\partial\psi\sigma(x_{\lambda})}\rangle f_{\beta}=0$ , i. e. $c_{\mu}\langle\frac{\partial}{\partial\psi\sigma(x_{\mu})}\rangle f_{\rho}=0$ $(\rho\in P)$ .

Conversely, if there exists a system of one-variable equations

$Z_{\mu}\langle\frac{\partial}{\partial\psi\sigma(x_{\mu})}\rangle f_{\rho}=0$ $(\rho\in P)$

with a non-trivial solution $c_{\mu}$, then putting $b_{\lambda}=\delta_{\lambda\mu}c_{\mu}$, we obtain

$\sum_{\lambda\in A}b_{\lambda}\langle\frac{\partial}{\partial\psi\sigma(x_{\lambda})}\rangle f\rho=c_{\mu}\langle\frac{\partial}{\partial\psi\sigma(x_{u})}\rangle f_{\rho}=0$ $(\rho\in P)$ .

This completes the proof.

Yamaguchi University.
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