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Introduction. Let S be a semigroup, 7. e. a non-vacuous set closed under
an associative binary operation. If a non-vacuous subset: A of S has the
property SACA or ASCA, A is called a left ideal or a right ideal of S, re-
spectively. If a non-vacuous subset A of S is a left ideal and at the same
time a right ideal, A is called simply an ideal of S. A minimal ideal of S
is determined uniquely, if it exists. (The term ‘minimal’ is always used
in the sense of the ordering by set inclusion.) The minimal ideal of S is
called the kernel/ of S. A semigroup S may or may not have the Kkernel.
Concerning this situation A.H. Clifford has shown the following result:

Lemma 1. If a semigroup S contains at least one minimal left ideal, then
it has the kernel K, and K is the union of all the minimal left ideals of S. (A.H.
Clifford '

In the following discussion, we treat exclusively a semigroup S having
at least one minimal left ideal. Following the above lemma, in this case
S has the kernel, which we denote always by K. v

The structure of the kernel K of such semigroups S has been determined
by D. Rees and A. H. Clifford [2], when S have also a minimal right
ideal. We shall consider in this paper semigroups S which contain minimal
left ideals but no minimal right ideals.

In §1, we shall prove that a semigroup S containing a minimal left
ideal contains also a minimal right ideal, if and only if the kernel K of S
contains an idempotent (Theorem 1). In the rest of the paper, we shall
consider therefore only the case where K has no idempotent.

Now, M. Teissier considered the semigroup S in which the equation
xa=>b is always solvable in x and has no idempotent. In this case, S itself
becomes clearly a minimal left ideal of S and coincides with the kernel K.
Teissier then constructed a certain semigroup, in generalizing a construc-
tion given by R. Baer and F. Levi [1], and proved that every semigroup S
of the above-mentioned type is isomorphic to a subsemigroup of this semi-
group, provided that the left cancellation law holds.
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In the present paper, we shall again generalize the construction of
Teissier, and obtain semigroups which we shall call B-L-semigroups (§ 3).

In §2, we shall prove some lemmas in preparation to §§3,4. In the final
§4, we shall prove that the kernel K of our semigroup S is always isomor-
phic to a subsemigroup of a B-L-semigroup, under the condition that ax=ay
for all ¢eK implies x=y (Theorem 2). The case, where this additional
condition is satisfied, will be treated as ‘Case 1’ and the general case as
‘Case 2°. Finally, we shall consider as ‘Case 3°, the case where the left
cancellation law holds.

§1. TFirst, we refer two lemmas which are needed in this note, but can
be proved easily.

Lemma 2. Two different minimal left ideals of S are disjoint.

Lemma 3. If L, L’ are minimal left ideals, and acL, then L=La=L'a
=Ka=>5a.

Now we shall prove

Turorem 1. Let S be a semigroup which has at least one minimal left ideal.
In order that S has at least one minimal vight ideal, it is necessary and sufficient
that the kernel K of S has at least one idempotent.

Proor. If S has at least one minimal left ideal and at least one minimal
right ideal, then K is completely simple without zero (A.H. Clifford [2])
and therefore K has at least one idempotent. Conversely, let S be a semi-
group which has at least one minimal left ideal and such that its kernel
K has at least one idempotent e. Then by Lemma 1, there is a minimal left
ideal L=e, and by Lemma 3 we have L=Se. Now, let f be any idempotent
of K such that ef=fe=f. Then Sf=SfeCSe=L. But since I is a minimal
left ideal, we have Sf=L. Hence there is an element s&S such that sf=e.
Then ef=(sf)f=sf=e. Therefore f=ef=e. This shows that e is a primitive
idempotent. Therefore K is completely simple without zero and S has a
minimal right ideal (D. Rees [4] and R.P. Rich [5]).

§2. Hereafter we consider a semigroup S with at least one minimal
left ideal whose kernel K has no idempotent. Besides, since we shall discuss
exclusively the structure of K, all the elements which will appear will be-
long to K unless otherwise mentioned. We denote the family of all the
minimal left ideals of S as {Li; A4},

Lemma 4. For an element a, there is no element d such that ad=a.

Proor. Suppose there is such an element 4. If L,L’ are the minimal
left ideals of S, containing ¢ and d respectively, we have adeSL’'CL’. But
as ad=a and e¢€L, we have L=L’. Hence deL’=L=Ka, and so there is an
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element k2 such that d=ka. But then d=ka=kad=d? and d is an idempotent,
which contradicts our assumption.
Lemma 5. If ax=ay, and L is a minimal left ideal containing a, then px=py

for every element peL.
Proor. By assumption, a,pcL. Hence p& Ka, and therefore there is an

element 2 such that p=ka. Therefore px=kax=kay=py.

For two elements x,y of K, we write x=y (1) when pux=p,y for every
element p,L,;. By Lemma 5, eax=ay for one element a=L,, implies x=y (1).
This relation x=y (1) is evidently an equivalence relation. Therefore by this
relation, K is decomposed into mutually disjoint classes. These classes are
called A-classes and we denote the family of all the A-classes in K as K(2).
A-class containing an element g, i.e. {x;x=a ()} is denoted as a,.

Lemma 6. Fach A-class is contained in some minimal left ideal.

Proor. Suppose x=y (1) and x&La, y=Lg. Then by definition, ax=ay for
every ecL+r ButaxelL,, aye Ly, and therefore L,=Ls. Hence x and y belong
to the same minimal left ideal.

According to Lemma 6, the decomposition of K into K(Q) is a subdivision
of the decomposition of K into minimal left ideals. The family of all the
A-classes in a minimal left ideal L, is denoted as L,(2).

Lemma 7. Let x££y (). Then for any a<L, and pcA, we have axxay (1).

Proor. Suppose ax=ay (#). Then for any beL,, we have bax=bay. But
a& L implies baeLi and then x=y(d). q.e.d.

Now for a fixed a=Li we consider a mapping x,—ax. By the definition
of 2-class, it is evident that this mapping of the A-class into K is well defined
irrespective of the choice of element x; in the A-class. Besides, according
to Lemma 7, the mapping x;—(ex), is the one-one mapping of K(1) into
K(). We denote this mapping as @, i.e. a,A(x))=(ax),. Since x&L, implies
axeL,, a,» maps L,(4) one-one into L,(u) in particular.

For a set M, we denote the cardinal number of M as M.

Lemma 8. Lo(A)=La(p).

By considering b;# for beL,, we obtain the inverse inequality.

LemMma 9. xk=y implies xxy (1) for every A€ A.

Proor. Suppose that x=y(1). Then ax=ay for a=L,. Hence (ax)k=ay=ax,
which contradicts to Lemma 4.

Lemma 10. L () and L(u)—a (La(R)) are both infinite sets, where a<L,.

Proor. For aeL, there exists an element ¢, €L, such that e¢,a=a, since
L,a=L;. Then, since L,e,=L,, there exists e,&L, such that e,e;=e,. Con-
tinuing in this fashion, we obtain a sequence of elements {¢;} of L,, such
that e;,.e;=¢; for all i=1,2,3,---. Then we can easily prove that for any
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two integers i,7 such that i<<j, we have e¢;e;=¢;, and for any integer i, we
have e(ax)=ax. Therefore, by [Lemma 9, (ax),, (e, (ex)u -+ are all differ-
ent. Hence for any i, (e;),Ea, (LA), i.e. ELr)—a,(Ly(A). This shows
clearly L (u#)—a, (L,(2)) is an infinite set. Besides, since E&S:E@?z
L (1)—a, L), L2) is an infinite set.

Lemma 11. For a€L, and bEL,, set c=ba. Then c=L;, and for any vEA,
we have ¢, =b/a

Proor. cE€L; is evident. And by definition, for any x,€K(1), we have
b," @, (x)=b,"((ax)u)=(bax),=(cx),. Therefore b,"a,=c,A.
Lemma 12. For a=Li and b L, set c=ba. Then for any a,ved, we have

L) — A La(A) = La(1t)— a,M(Laf2)) + La(v)— b, (Lal12)).

Proor. We decompose the family of v-classes of L,»)—c AL, () into
two disjoint subfamilies, one consisting of the v-classes which are images
of the mapping of 5,% and the other consisting of the v-classes which are
not. Since b,” is one-one and by Lemma 11 ¢, AL, (A)=0b,"(a,ML.(2)), the
first subfamily is b,"(L,(x) —a,A(L.(2))), which has the same cardinal number
as Ly(u)—a,M(L42)) since b is one-one. The second subfamily is clearly
L, W)—b,/(L ). Hence we get the result required.

Lemma 13. Lw@)i&;(Lm(lﬁ is determined by « only, irrespective of the
choice of A, neA and the choice of a<L,.

Proor. First we prove that Ly(u)—a,A(L.4)) is independent of ued,
acLi, i.e. for any u,ved and a,bel; L (w)—a, LyA)=Ly®)—bLA)).
Take ceLy such that b=ca. Such ¢ really exists since Li=Lna. Then by

Lemma 12, we have L) —bMLo(A)=Lo(1)— @, Lo+ La()—c,"(La(1t))
zi@)i—a;‘(l;;af))ﬁ By taking an element d€L, such that ¢=db, we get the
inverse inequality.

Now we consider the general case, i.e. we prove that L;(E)\—aEEL;(—Z)j
=L (£)—b(L, (V) for any A, u,v,ke€d and acL,, be L, Letc=ba,thencsl,;,

But since @,ceL;, by the result proved above lf;(u);a,}(LwO/))

=L (£)—ce*(La(3)). Therefore we get an inequality Lo(u)—a, /(L. (A)=
(L' —b(Lyv)). The inverse inequality is obtained similarly.

§3. Let A, 4 be arbitrary sets and let {Kj,; A4, a= A} be an arbitrary
family of mutually disjoint sets indexed by all the elements of Ax A, such

that, for fixed «, K,, has the same infinite cardinal number m,. And let m,’
be an arbitrarily given but fixed infinite cardinal number =m,. We denote

for each 2, K(A)=UK,, and K*(A)=K(2)U{6:}, where 6; is an ‘imaginary
@
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point’. Then it is clear that K*()=K(A)= 3 m, which is independent of 2.

Let us consider a one-one mapping f,* of K*(2) into K(#) such that for

each «, LA K;,)CK,, and K,w}}’,}(l{,;):mm’ That such a mapping really

exists, can be proved easily. The set of all such mappings is denoted as

&4 Next, we consider an element f4={f,*; u4} of the direct product IT &4,
n

such that the set K,, which contains f,4(61) has the second index « which
is independent of . The set of all such elements is denoted as F(A).
Finally, we denote %-:AU%(X).

c4

For two elements f4, g”g, we define a composition g#ef4 as follows:
if fFA={fA;ved}, g"={g/;ved}, then gt fi={g/ f,A;ved} where g, f,* is
the resultant mapping.

It is not difficult to show that with this composition & is a semigroup
having minimal left ideals, that its kernel coincides with § and that the
kernel has no idempotent. We call this semigroup B-L-semigroup.

§4. Now, we return to a semigroup S with at least one minimal left
ideal and whose kernel has no idempotent. We denote the family of all
minimal left ideals of S as in the preceding paragraphes by {Li(1€A)}.

Case 1. We assume that “ax=ay for all a€K implies x=y .

In this case, we obtain the following lemma :

Lemma 14. x=y Q) for all €A implies x=y.

Proor. For any e¢eK, a belongs to some Li(A€A4). Then by definition
ax=ay. Accordingly x=y.

Now let us define a B-L-semigroup as follows:

We consider A, 4 in §3 both as the set 4 of index of the minimal left
ideals of S. We consider Kiz in §3 as L, (1) i.e. the set of all A-classes
contained in L, It is evident that {K,(d);«a,1€4} are the family of
mutually disjoint sets, and by Lemmas 8 and 10, for fixed «, K, (1) has an
infinite cardinal number m, which is independent of AeA. Finally, we
m,’ is well defined by «, irrespective of the choice of 2, pn=4 and a€L,, and
it is clear that m,/’=<ma.. Under the above determination, a B-L-semigroup
is defined.

For any e€K, when ¢L,, we consider ¢*,4 as the mapping of K*(2)
into K(u) as follows:

a* A x)=a,(x) for x€KA); a*AO)=a,.

As @, is one-one and by Lemma 9, (ax),#a,, a*,! is a one-one mapping. More-
over, a*MKi)=a, La)CLA)=Kus and K,,—a* Kaw=La(1)—a, (L)
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=m,’, by definition. Hence a* ey A Besides, a*A(0,)=a,=Lin) where 2
is the index of Li which contains ¢ and therefore independent of u. Ac-
cordingly a*={a*; neA}eFA)CT.

Now we make correspond ¢€K to ¢*F.

This correspondence is one-one. For, let @ and b be two distinct elements
of K. When ¢ and b belong to the distinct minimal left ideals L; and L,
respectively, then a*eF(R), b*eF(w) and a*+#b* since A#u. Next we suppose
that ¢,b=L;. Then, by there exists ucAd for which a=%d (n).
Then a* 0)=a,+b,=b*,40,). Therefore a*+0b*.

Moreover, the above correspondence a—a* is isomorphism, i.e. (ba)*
=b*oq*, For, if aeL, and beL,, we have by Lemma 11, (ba),*=b,"a, for
any ved. Hence, for x=K(2), we have (ba)*,4(x)=(ba),*(x)=0b,"a, (x)="b*"a* (x)
and (ba)*,%(0,)=(ba),=b*,"(ax)=0%" a*,(0,;). Therefore (ba)*=0b*-a*.

Thus we obtain the following theorem:

TueoreMm 2. Let S be a semigroup which has at least one minimal left ideal
and whose kernel K has no idempotent. Besides, we assume that if ax=ay for
all aeK then x=y. Then K is isomorphic with a subsemigroup of a B-L-semi-
group.

Case 2. Let us consider the general case. For x,ye K, we write x~y if
and only if ax=ay for all ¢=K. Then x~y is evidently an equivalence
relation. We denote the set {x:;x~a}=[a]. Moreover this equivalence rela-
tion is a congruence relation i.e. a~b and c~d imply ac~bd. In fact, for
any k, we have ka=kb, and so kac=kad=kbd. Accordingly, we can define the
product [e][d] as [ab], which is independent of the choice of the element
in the equivalence class. This multiplication among the equivalence classes
clearly yields a semigroup. We denote this semigroup by K.

This semigroup K satisfies the conditions assumed in Case 1. For, let
[elix]=[elly] for all [a], then for any ¢, [ex]1=[ay]. Therefore bax=bay
for all @,b. Taking especially b as an element such that be=a, we conclude
that ex=ay for all ¢, which shows that [x]1=[»].

Thus we can apply to K.

Case 3. Let us assume the cancellation law: “ax=ay implies x=y”.

In this case each ZA-class consists of a single element. It is shown in
the same way as in Case 1, that B-L-semigroups in §3, in which the index-
set A consists of a single element, are semigroups which satisfy the assump-
tion of Case 3, and conversely that every semigroup which satisfies the
assumption of Case 3 is isomorphic to a subsemigroup of such a B-L-semi-

group.

Tokyo Gakugei University.
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