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Ordinal diagrams.
By Gaisi TAKEUTI
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In his paper [2] on the consistency-proof of the theory of natural
numbers, G. Gentzen assigned to every proof-figure an ordinal num-
ber. In modifying his method, we may do this as follows:
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Suppose, to fix our idea, a proof-figure (A) (in Fig. 1) is given.
This is composed of beginning sequences S,, S,, S, and inferences
(@), (b)y (c). To the inferences: weakening, contraction and exchange,
we assign the wvalue 0; to a cut of degree #, the value #n; to an
induction of degree n, the value #+41; and the value 1 to all other
inferences. We denote the values of inferences (a), (b), (¢) by @, b, ¢
respectively. We replace the beginning sequences by 1, and draw
the figure (B) according to the form of the proof-figure (A).

a f «
If we consider \/ and | (a, # being ordinal numbers and a a
a a

non-negative integer) as operations defining ordinal numbers (to be
defined properly, see below), then the figure like (B) represents itself
an ordinal number. This may be called ¢ Gentzen’s number’ for the
proof-figure (A). Although this is not the same ordinal number as
assigned to (A) by Gentzen himself, we can accomplish the consist-
ency-proof of the theory of natural numbers just as in [2] in
proving that this ¢ Gentzen’s number’ is diminished by the reduc-
tion of the proof-figure.
a p «
The operations \/ and | can be described by Ackermann’s
a a
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construction in We shall write for simplicity («, ) instead of
Ackermann’s (1, a, ), and use a+£ in the meaning of natural sum

a B
in general, while Ackermann uses it only in case a=p. Then V\/
a
a
and | mean (@, «+f) and (a, @) respectively. ((@, «) is defined in
a

only for ¢=1. We put (0, a)=a.)

The purpose of the present paper is to construct a system of
ordinal numbers of the second ¢ Zahlenkasse”, represented by what
we shall call “ordinal diagrams?”. Presumably our system contains
the system constructed by Ackermann [I], but it is not proved. We
have in view to apply our result to consistency-proof.

Ordinal diagrams are constructed in the following way. Consider
‘trees’ of the following form: e. g.
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Fig. 2

Such trees have two sorts of verticeg, ¢beginning vertices’
marked with o and ‘non-beginning vertices’ marked with . We
assign to each vertex a positive integer called ¢value’ of the vertex,
and to each non-beginning vertex a positive integer called ¢index’ of
the vertex, not exceeding an integer n(>0) fixed once for all, which
we shall call the order of the system. If we consider
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(2,1)

as ‘operation’ on diagrams and denote it by (i; @, a,+---+a;) (I is
the index and ¢ the value of the vertex (g, 7)), then a diagram like
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(C) can be descrived by
(25 by (5 by @y +a,+a,) +a,)+(y5 by @) -
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In the following lines, we shall give the formal definition of
ordinal diagrams and the ordering between them, and prove that
they are well-ordered.

In view of applications to consistency-proof, we should like to
add here the following remark. If we denote the system of ordinal
diagrams of order » with O(n), it is clear that we have O(1)cO(2)
c-..- and it will be proved as was said above, that O() is well-
ordered. It will be also proved that |/ O@) is not well-ordered.

Let N be some theory including the theory N of natural num-
bers. A consistency-proof of such theory N may be carried out as
follows. To each proof-figure P in 1\7, we assign an ordinal diagram
of a certain order n, and prove that the ordinal diagram is ¢dimini-
shed’ by a reduction of the proof-figure. This will not be in con-
tradiction with Godel’s result [8], that the consistency-proof of N
is not formulable in N,——just as Gentzen’s consistency-proof of N
is not in contradiction with [3]—and this, even when N is a fairly

¢rich’ theory, in the following sense.
Denote the ordinal number

@

with o, and let @Q(n) mean the system of ordinal numbers less than
w,. Then Gentzen has assigned to each proof-figure P in N an
ordinal number of Q(») for a certain s, and proved that this ordinal
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number is diminished by reduction. Although the transfinite induc-
tion in Q) for a given #, and the system \JQ(n) itself are both

formulable in N, the transfinite induction in \) @(#) is not formu-

lable in N, and thus Gentzen’s consistency-proof is not in contradic-
tion with Godel’s result. The same circumstances will arise when
we replace Q(n) by our O(n).

The author wishes to express his hearty thanks to Prof. Iyanaga
for his valuable advice during the preparation of this paper.

§1. Ordinal diagram of order n.

Hereafter let » be a fixed positive integer.
1. Ordinal diagram of order n is constructed by two operation (i; ,)
(¢=1,2,---,m) and #, and is defined recursively as follows. (If no
confusion is to be feared, we use ¢ordinal diagram’ or ‘o. d.’ in
place of ¢ordinal diagram of order n#’. O. d.’s are denoted by «, 5,
7y... (possibly with suffixes).

1.1. If @ is a positive integer, then ¢ is an o. d.

1.2. If @ is a positive integer and « is an o. d., and ¢ is an integer
satisfying 0 <<i<#, then (¢; @, @) is an o. d.

1.38. If a and B are o.d.’s, then agfg is an o. d.

2. Let «, 8 be 0.d.’s, and ¢ an integer satisfying 0<<i<<n. We
define recursively the relation fc,;«a (to read: g is an i-section of «)
as follows:

21. If «a is an integer, then Ac,;«a never holds. (« has no i-section.)
2.2. Let a be of the form (5; a, ).

2.2.1. If j<<i, then fc;a if and only if fcC;«a,

2.2.2. If j=i, then fc;a if and only if B is «,

2.2.8. If j>i, then fc;a never holds.

2.3. Let a be of the form a,fa.. Then fc,a if and only if either
pfC,a, or BC;a, holds.

8. An o.d. ais called a c. 0. d. (connected ordinal diagram), if and only

if the operation used in the final step of construction of « is not #.
Let a be an o. d. We define components of « recursively as fol-

lows :

3.1. If « is a c.o0.d.,, then « hags only one component which is «

itself.
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8.2. If «a is an o.d. of the form «,#a, and components of «, and
a, are fB,--+, B, and r,---, 7, respectively, then components of «, fa,
are B,y fi Ty oy Toe

4, Let a and g be o.d.’s. We define a=p recursively as follows:
4.1. Let « be an integer. Then a=p, if and only if B is the same
integer as a.

4.2. Let « be an o, d. of the form (i; @, @;). Then a=p, if and only
if B is of the form (i; @, #,) and a,=4,.

4.3. Let a« be a non-connected o.d. with & components a,-, .
Then a=4g, if and only if # has the same number of components,
and B,--+, 8. being these components, there exists a permutation
(liy+-y &) of (1,---, k) such that a,=p,, m=1,--,k

4.4. p=a«a holds, if and only if a=4.

6. Let @ and B be two o.d.’s. We define the relations a<,f,
a< By, a<,B recursively as follows. Sometimes a<C A is denoted
by a&p and a<,f by a<<p.

5.1. Let « and B be two integers. Then «a<<,f8,---,a<,f all mean
a<<fA in the sense of integer.

5.2. Let the components of « and B be «,,--+, a; and B,,---, f, respec-
tively. a<p (=0,1,-.-,n) holds, if and only if one of the follow-
ing conditions is fulfilled.

5.2.1. There exists g, 1<m=~7r) such that for every / 1</<k)
a,<<;8,, holds.

5.2.2. k=1, h>1 and «,=4, for suitable m L=m=h).

528. k>1, h>1 and there exist o A1<I<E) and 6, A<m<))
such that «;=p, and

a1#"'#al—1#alﬂ#'”#“k<iﬂ1#"'#ﬁm—1#ﬂmﬂ#”'#ﬂh .

5.8. Let a@ and B be c.o.d.’s. Then a<,8 ((=1,2,.--,n), if and only
if one of the following conditions is fulfilled.

5.8.1. There exists an i-section g, of A such that a< 3,

6.8.2. a,<;f for every i-section «, of a, and a<7;_,fA.

5.4. Let a and B be c. o.d. of the form (¢; @ «,) and (5; b, B, Te-
spectively. «a&pB, if and only if one of the following conditions is
fulfilled.

54.1. a<<b.

5.4.2. a=b and j<i.

5.4.3. a=b, i=j and a,<;B,
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5.5. Let @ be a positive integer and B be a c.o.d. of the form
(j; b, B). Then a&p, if and only if ¢<b. And fLa, if and only
if b<<a.

Under these definitions the following propositions are easily
proved.

PROPOSITION 1. = is an equivalence relation between 0.d.’s, i.e. a=«
and a=p, f=r imply a=r.

PROPOSITION 2. «a,=a,, B,=8, imply a #p,=a, 88, (;a a)=
@; a, ay).

PROPOSITION 8. «a,=ay,, B,=F8, a,< B, imply a,<;fB,

PROPOSITION 4. Eweryone of the relations <<, (i=0,1,---,n) defines
a linear order between o.d.’s, i.e. a<<;B, B<<;v imply a<;r; and one
and only one relation «<.8, a—B, B< holds for every pair of o.d.”s
o, f.

§2. Transfinite induction.

1. Let © be a system with a linear order. An element s of & is
called ¢accessible in this system (or accessible for this order)’, if
the subsystem of & consisting of elements, which are not ‘greater’
than s, is well-ordered. The following propositions are easily proved.

PROPOSITION 1. Let « be an o.d. If every o.d. less than « in the
sense of <<; is accessible for <<;, them « is accessible for <<.

PROPOSITION 2. Let « be an o.d. If a is accessible for <<, then
every o.d. less than « in the semnse of <<; is accessible for <<,

PROPOSITION 8. Let a,---,a; beo.d.’s. If a,--,a, are accessible
for <<, them o 8---Bay is accessible for <.

2. Let @ be an o.d. and i an integer satisfying 0<i<n. We
define recursively ¢« is an i-fan’ and ‘« is i-accessible’ as follows:
2.1. Every o. d. is an n-fan.
2.2. «a is i-accessible, if and only if « is an i-fan and « is accessible
for <<, in the system of i-fans.
28. «a is an i-fan (0<i<n), if and only if « is an (i-+1)-fan and
every (¢+1)-section of a is (¢4 1)-accessible.

Every O0-fan is also called a fon. A fan « is said to be
¢accessible in the sense of fan’ if « is 0-accessible. We see
clearly that propositions 1, 2, and 38 remain correct, if we replace
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‘0. d.> with ¢i-fan’ and ¢accessible for <<, with ¢i-accessible’.
We obtain easily the following propositions.
PROPOSITION 4. The following two conditions on an o.d. « are
equivalent :
2.4. « is accessible for <.
2.5. « is m-accessible.
PROPOSITION b. If «a is an i-fan, then a is an (i+1)-fan.
PROPOSITION 6. If every positive integer is i-accessible, then every
i-fan is i-accessible.

- PROOF. Let a« be an i{-fan and ¢ be the maximal number of
integers, of which « is composed. Then clearly a<Z; (¢+1), whence
the proposition 6 follows directly.

PROPOSITION 7. FEvery fan is accessible in the sense of fan.

3. Now we shall prove the following proposition.

PROPOSITION 8. If every (i—1)-fan is (i—1)-accessible, then every
i-fan is i-accessible (i=1,2,---,n).

PROOF. Let a be an arbitrary (z—1)-fan. By the proposition 6
we have only to prove that « is i-accessible. Without loss of gener-
ality, we may assume the following condition 8.1 on «a:

3.1. g is i-accessible, if g is an ((—1)-fan and A<, ,a.

Now, let y be an arbitrary connected i-fan and suppose r<<;a.
We have only to prove that r is i-accessible. We prove this by
induction on the number of operations in the construction of y. If
r has no i-section, then r is an ({—1)-fan and one of the following
conditions follows from 7 <;«a:

3.2. r<_,a.
3.8. There exists an i-section 6 of « such that r=<o.

In case 8.2, the proposition 8 follows from 38.1. In case 3.3,
the proposition 8 follows from the condition that « is an (1 —1)-fan.

Now, suppose 7 has an i-section. Since every i-section of 7 is
less than a« for <<; and is an i-fan, it follows from the hypothesis
of the induction, that every i-section of r is i-accessible. Hence 7
is an ({—1)-fan. Therefore, from 7 <« one of the following condi-

tions follows:
34. r<<,_,a.
3.5. There exists i-section 6, of a such that r <9,

In case 8.4, the proposition 8 follows from 38.1. In case 3.5,
the proposition 8 follows from the condition that « is an (:—1)-fan.
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From propositions 7 and 8 follows:

THEOREM. The system of all the o.d.’s is well-orderved for <<.

§ 3. Some properties of o. d.’s.

The following propositions on o.d.’s follow easily from the
above.

PROPOSITION 1. Let « and B be c.o0.d.’s and i be an integer satis-
fying 0<<i<n. If a,<<;8 holds for every j satisfying j=<i and for every
j-section «, of a and a& B, then a<p.

PROPOSITION 2. Let a be a c.o.d. and B be an i-section of «.
Then B <.

PROPOSITION 8. Let « and B be c.0.d.’s and i, k integers satis-
fying 0<<i<m, and 0 <<k =<1 respectively. If «, is a k-section of «a and
the following conditions 1.1~1.3 are fulfilled, then a<<p.

1.1. Let j be any integer satisfying 0<<j<7 and «, a j-section of
a other than «,. Then there exists a j-section B, of f such that
a =B,

L2, a,<h.

1.3. a&B.

PROPOSITION 4. In the notation of the introduction \_) O(n) is not
well-ordered.

PROOF. This is easily seen by the following example.

2 2 2
(1,12) (1,|3) (1,|4)

(2,|1) > (1,'2) > (1,13) >
(2,|1) (1,|2)

(2,|1)
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