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On Riemannian spaces admitting groups of conformal transfor-
mations, the following theorem was obtained independently by S.
Sasaki [3]’, A. H. Taub [4] and K. Yano [6]:

THEOREM 1. The maximum order of groups of conformal trans-
1formations in N-dimensional Riemannian spaces for $N\geqq 3$ is – $(N$

2
$+1)(N+2)$ and if a Riemannian space admits a group of conformal
transformations of the maximum order then the space is conformally
flat.

The author believes that it might not be useless to study the
structure of a Riemannian space admitting a group of conformal
transformations of order less than the maximum order. In this con-
nection, Y. Muto 2) recently obtained the following interesting

THEOREM 2. If an N-dimensional Riemannian space for $N>4$

admits a group of conformal transformations of order $r$ such that

$r>\frac{1}{2}(N+1)(N+2)-2N+6$

then the space is conformally flat.
The main purpose of the paper is to prove that in an N-dimen-

sional Riemannian space there exists no group of conformal transfor-
mations of order $\gamma$ such that

$\frac{1}{2}N(N+1)+2<r<\frac{1}{2}(N+1)(N+2)$

and that an N-dimensional Riemannian space admitting a group of

conformal transformations of order larger than $\frac{1}{2}(N-1)(N-2)+2$ is

1) See the Bibliography at the end of the paper.
2) Personal communication.
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conformally flat, under some restrictions for dimension $N$. The sec-
tions 1-4 are devoted to the preliminaries and the main theorems
will appear in the last section 5. Throughout the paper, we concern
essentially with local properties.

\S 1. We consider an N-dimensional Riemannian space $R_{N}$ with
positive definite metric $ds^{2}=g_{jk}dx^{j}dx^{k}$, referred to a coordinate system
$(x^{j})(a, b, c,\cdots, i,j, k,\ldots=1,2,\cdots, N)$ , and assume that $R_{N}$ admits a group
$G_{r}$ of conformal transformations

$T_{a}$ : $x^{;i}=f^{j}(x;a)\equiv f^{i}(x^{1},\cdots, x^{N} ; a^{1},\ldots, a^{\gamma})$

depending on $\gamma$ essential parameters $a^{\alpha}(\alpha=1,2,\ldots, r)$ . Then we have

(1.1) $g_{jk}(x^{\prime})=h^{2}(x;a)g_{ab}(x)\frac{\partial x^{a}}{\partial x^{j}}\frac{\partial x^{b}}{\partial x^{h}}$ ,

where I $\frac{\partial x^{\dot{f}}}{\partial x^{j}}\Vert$ is the inverse of the matrix $\Vert\frac{\partial x^{;i}}{\partial x^{j}}\Vert$ and $h(x;a)$ a posi-

tive valued function of $x^{j}$ and $a^{a}$. We notice that $h(x;a)$ is a scalar
in $R_{N}$. If we denote $h(x;a)$ by $\alpha(P, T_{a})$ symbolically, then we have

(1.2) $\alpha(P, T_{b}T_{a})=\alpha(T_{a}P_{f}T_{b})\alpha(P, T_{a})$ .
We take an arbitrary point $P_{0}$ with coordinates $x_{0}^{i}$ in $R_{N}$ and

denote the group of stability at $P_{0}$ by $G_{l_{0}}(P_{0})$ , where $l_{0}$ represents the
order. To each $T_{a}$ of $G_{l_{0}}(P_{0})$ corresponds a linear transformation $T_{a^{*}}$

defined by

$y^{\prime j}=f_{j}^{i}(x_{0} ; a)y^{j},$ $f_{j}^{i}(x_{0} ; a)\equiv\frac{\partial f^{i}(x_{0};a)}{\partial x_{0}^{j}}$ ,

where $y^{j}$ are coordinates of a point In the tangent Euclidean space
$E_{N}(P_{0})$ at $P_{0}$ , and the correspondence $\varphi$ is a homomorphism of $G_{l_{0}}(P_{0})$

into the linear group consisting of all the $T_{a^{\#}}$ . We denote the kernel
of $\varphi$ by $K_{s_{0}}(P_{0})$ , where $s_{0}$ is the order. Since the linear group is of
order $l_{0}-s_{0}$ , we put $p_{0}=l_{0}-s_{0}$ and denote it by $L_{p^{\star_{0}}}(P_{0})$ .

We shall say that a transformation $T_{a}$ of $G_{l_{0}}(P_{0})$ is isometric or
homothelic at $P_{0}$ according as $\alpha(P_{0}, T_{a})$ is equal to 1 or not and that
$G_{lo}(P_{0})$ is isometric or homothetic at $P_{0}$ according as all the transfor-
mations are isometric at $P_{0}$ or not.

First, in the case in which $G_{l_{0}}(P_{0})$ is isometric at $P_{0},$ $L_{p^{\star_{0}}}(P_{0})$ is a
rotation group. Next, we consider the case in which $G_{l_{0}}(P_{0})$ is homo-
thetic at $P_{0}$ . We see from (1.2) that a correspondence $\alpha$ defined by
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$T_{a}\rightarrow\alpha(P_{0}, T_{a})$ for $T_{a}$ of $G_{l_{0}}(P_{0})$ is a homomorphism of $G_{l_{0}}(P_{0})$ into the
multiplicative group $A$ of real positive numbers and the kernel of $\alpha$

is the maximal subgroup of $G_{l_{0}}(P_{0})$ , which is isometric at $P_{0}$ . Since
$A$ is of order one the kernel must be of order $l_{0}-1$ . We denote it
by $M_{l_{0}-1}(P_{0})$ . The image of $M_{l_{0}-1}(P_{0})$ by $\varphi$ is the maximal subgroup
of rotations of $L_{p^{\star_{0}}}(P_{0})$ and is of order $p_{0}-1=l_{0}-s_{0}-1$ . We denote it
by $R_{p-1}^{\star_{0}}(P_{0})$ .

In each of cases: the case in which $G_{l_{0}}(P_{0})$ is isometric at $P_{0}$ or
the case in which $G_{l_{0}}(P_{0})$ is homothetic at $P_{0}$ , we denote by $M(P_{0})$ the
totality of all the transformations of $G_{l_{0}}(P_{0})$ , which are isometric at
$P_{0}$ and by $R^{\#}(P_{0})$ the totality of all the rotations of $L_{p^{\star_{0}}}(P_{0})$ . In the
former case we have $M(P_{0})=G_{l_{0}}(P_{0})$ and $R^{\star}(P_{0})=L_{p^{\#_{0}}}(P_{0})$ and in the
latter case $M(P_{0})=M_{l_{0}-1}(P_{0})$ and $R^{\star}(P_{0})=R_{p- 1}^{\#_{0}}(P_{0})$ .

\S 2. Hereafter we assume that $R_{N}$ is of dimension $N\geqq 3$ . If we
denote by $\delta$ the covariant differential, then a conformal circle is
defined as a curve represented by a set of solutions of the system of
differential equations

(2.1) $\frac{\delta^{3}x^{j}}{ds^{3}}=H^{i}(x,$ $\frac{dx}{ds}$ , $\frac{\delta^{2}x}{ds^{2}})\equiv-[g_{ab}(x)\frac{\delta^{2}x^{a}}{ds^{2}}\frac{\delta^{2}x^{b}}{ds^{2}}$

$-\prod_{a^{0}b}(x)\frac{dx^{a}}{ds}\frac{dx^{b}}{ds}]\frac{dx^{i}}{ds}-g^{ia}(x)\prod_{a^{0}b}(x)\frac{dx^{b}}{\backslash ds}$

with the arc length $s$ as variable, where $\prod_{a^{0}b}$ are the components of
a tensor defined by

$\prod_{j^{0}k}=-\varpi_{-\overline{2}}^{R_{f}}k+\frac{Rg_{jk}}{2(N-1)(N-2)}(R_{jk}\equiv R_{jka}^{a}, R\equiv R_{a}^{a})$ ,

$R^{i_{jkl}}$ being the components of the curvature tensor of $R_{N}[5]$ .
A projective parameter $t$ on a conformal circle with the equations

$x^{j}=x^{j}(s)$ is uniquely determined by

(2.2) $\{t, s\}\equiv\frac{dt}{ds}\frac{\frac{d^{\delta}t}{ds^{3}}}{}-\frac{3}{2}(\frac{dt}{ds}\frac{\frac{d^{2}t}{ds^{2}}}{})^{2}$

$=\frac{1}{2}g_{ab}(x)\frac{\delta^{2}x^{a}}{ds^{2}}\frac{\delta^{2}x^{b}}{ds^{2}}-\prod_{a^{0}b}(x)\frac{dx^{a}}{ds}\frac{dx^{b}}{ds}$

up to linear fractional transformations [5].
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We shall denote briefly by

(2.3) $\frac{\delta^{3}x^{i}}{dt^{3}}=F^{i}(t,$ $x,$ $\frac{dx}{dt}$ , $\frac{\delta^{)}\lrcorner x}{dt^{2}})$

the system of differential equations of conformal circles which can
be obtained from (2.1) by a parameter transformation of the arc
length $s$ to a projective parameter $t$. Let $P_{0}$ be any given point in
$R_{N}$ and $p^{j}$ and $q^{j}$ be any given vectors at the point. Then (2.3) has
a unique set of solutions which have the initial conditions: $x^{;}=x_{0}^{j}$ ,
$(\frac{dx^{i}}{dt})_{t=0}=p^{i}$ and $(\frac{\delta^{2}x^{i}}{dt^{2}})_{t=0}=q^{j}$ for $t=0$ . We express the dependence

of the solutions on their initial conditions by writing

(2.4) $x^{i}=x^{i}(t;x_{0},p, q)$ .
Hereafter we shall not consider the solutions of (2.3) such that

$p^{j}$ is a zero-vector and we shall say that the conformal circle $C$

represented by (2.4) has the tangent vector $p^{t}$ at $P_{0}$ . Then to any
two different values in a small open interval $|t|<\mu$ correspond two
different points on $C$. We call the side of $C$ with respect to $P_{0}$ each
of two sets: a set of all the points on $C$ corresponding to all the
values of $0<t<l$ and a set of all the points corresponding to
$-\mu<t<0$ and say that one of these two sides is the opposite side
of the rest.

THEOREM 2.1. When $N\geqq 3$ , a necessary and sufficient condilion
that solutions (2.4) and

(2.5) $x^{j}=x^{j}(t;x_{0},p^{\prime}, q^{\prime})$

represent the same conformal circle is that we have a relation of the
form
(2.6) $p^{\prime j}=ap^{i},$ $q^{;j}=bp^{i}+a^{2}q^{i}(a\neq 0)$ .

For, if (2.4) and (2.5) represent the same conformal circle, then

there exists a suitable fractional function $\sigma(t)\equiv\underline{at}(a\neq 0)$ such
$ct+1$

that the functions $x^{i}(t;x_{0},p^{\prime}, q^{\prime})$ and $x^{i}(\sigma(t);x_{0},p, q)$ coincide as func-
tions of the argument $t$ and from this fact we have

$p^{;;}=ap^{j},$ $q^{\prime j}=-2acp^{j}+a^{2}q^{j}$ .
Conversely, if we have the relation of the form (2.6), then the

functions $x^{i}(t ; x_{0},p^{\prime}, q^{\prime})$ and $x^{j}(\sigma(t) ; x_{0},p, q)$ coincide as functions of the
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argument $t$ and consequently (2.4) and (2.5) represent the same con-
formal circle, where

$\sigma(t)\equiv\frac{at}{-\frac{b}{2a}t+1}$

.

We remark the following. When (2.4) and (2.5) represent the
same conformal circle $C$, for any value $t$ in a small open interval
containing zero, the points with coordinates $x^{j}(t;x_{0},p, q)$ and $x^{j}(t;x_{0}$ ,

$p^{\prime},$ $q^{\prime}$ ) lie on the same side of $C$ with respect to $P_{0}$ or lie respectively
on the opposite sides according as $a$ in (2.6) is positive or negative.

From the fact that a conformal circle is defined by a system of
ordinary differential equations of the third order, we have the fol-
lowing

THEOREM 2.2. When $N\geqq 3,$ $(I)$ for any given tzuo different points
$P_{0}$ and $P_{1}$ which are close to each other and any given vector $p^{j}$ at $P_{0}$

there exists one and only one conformal circle passing lhrough these
points and having $p^{\iota}$ as the tangent vector at $P_{0}$ , (II) for any given
three different points $P_{0},$ $P_{1}$ and $P_{2}$ which are close to each other lhere
exists one and only one conformal circle passing through these points.

Referring the calculations done by K. Yano [5] we have, after
some calculations,

THEOREM 2.3. When $N\geqq 3$ , any conformal circle $C$ is transformed
by any $T_{a}$ of $G_{r}$ into a conformal circle C’ and a projective parameter
on $C$ is at the same time a projective parameter on $C^{\prime}$ .

Therefore if $C$ is represented by (2.4) then the functions

(2.7) $x^{\prime j}=f(x(t;x_{0},p, q);a)$

representing C’ are also solutions of (2.3). From (2.4) and (2.7), we
have

(2.8) $\left\{\begin{array}{l}\frac{dx^{\prime i}}{dt}=\frac{\partial f^{i}(x.\cdot a)}{\partial x^{a}}\frac{dx^{a}}{dt}\\\frac{\delta^{2}x^{ri}}{dt^{2}}=\frac{\partial f^{i}(x.\cdot a)}{\partial x^{a}}[\frac{\delta^{2}x^{a}}{dt^{2}}+\frac{2}{h(x.\cdot a)}\frac{\partial h(x.\cdot a)dx^{b}dx^{a}}{\partial x^{b}dtdt}\end{array}\right.$

$-\frac{1}{h(x;a)}g_{bc}(x)\frac{dx^{b}}{dt}\frac{dx^{c}}{dt}\frac{\partial h(x;a)}{\partial x^{d}}g^{ad}(x)]$

which shows the relation between the vectors at the corresponding
points on $C$ and $C^{\prime}$ .
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We remark the following. The property that any two different
points lie on the same side of $C$ with respect to $P_{0}$ or lie respectively
on the opposite sides is invariant under any transformation of $G_{r}$ .

\S 3. The discussions in this section hold no matter whether $G_{l_{0}}(P_{0})$

is isometric or homothetic at a point $P_{0}$ . We shall often use the fact
that the rotation corresponding to any transformation of $K_{s_{0}}(P_{0})$ is
the identity.

To each $T_{a}$ of $K_{s_{0}}(P_{0})$ corresponds a vector $\psi(P_{0}, T_{a})$ at $P_{0}$ with

components $\frac{\partial h(x_{0};a)}{\partial x_{0}^{a}}g^{ia}(x_{0}),$
$x_{0}^{i}$ being the coordinates of $P_{0}$ . If we

denote this correspondence by $\psi$ , then we have the following
THEOREM 3.1. If $N\geqq 3$ , then $K_{s_{0}}(P_{0})$ is isomorphic, under the $\psi$ ,

$lo$ an $s_{0}$-dimensional linear space $B_{so}(P_{0})co$nsisling of all the $\psi(P_{0}, T_{a})$

and consequently $K_{s_{0}}(P_{0})$ must be of order $0\leqq s_{0}\leqq N$.
For, take a transformation $T_{b}$ of $K_{s_{0}}(P_{0})$ . Then we have, from

(1.2),

$[\frac{\partial}{\partial x^{j}}\{h(x^{\prime};b)h(x;a)\}]_{x^{i}=x_{0}^{i}}=\frac{\partial h(x_{0};b)}{\partial x_{0}^{j}}+\frac{\partial h(x_{0};a)}{\partial x_{0}^{i}}(x^{;;}=f^{j}(x;a))$ ,

from which

$\psi(P_{0}, T_{b}T_{a})=\psi(P_{0}, T_{b})+\psi(P_{0}, T_{a})$ .
We consider any $T_{a}$ of $K_{s_{0}}(P_{0})$ such that $\psi(P_{0}, T_{a})$ is a zero-vector.
Let $P(\neq P_{0})$ be an arbitrary point which is near to $P_{0}$ and $C$ an
arbitrary conformal circle passing through $P_{0}$ and $P$. If $C$ is re-
presented by (2.4) then $C$ is transformed by $T_{a}$ into a conformal
circle represented by (2.7) which is a set of solutions of (2.3). By
using (2.8), we can see that (2.4) and (2.7) have the same initial
conditions and coincide well as functions with the argument $t$. This
shows that $T_{a}$ leaves $C$ point-wisely invariant and consequently leaves
$P$ invariant. Since $P$ was arbitrary $T_{a}$ must be the identity, and we
have the theorem.

THEOREM 3.2. When $N\geqq 3$ , if $R^{\star}(P_{0})$ is of order $\frac{1}{2}N(N-1)$

then $K_{S0}(P_{0})$ must be of order $s_{0}=0$ or $s_{0}=N$

We take an arbitrary vector at $P_{0}$ and denote it by $v^{j}$. If we
assume that $K_{S0}(P_{0})$ is of order $s_{0}\geqq 1$ , then we can take a transfor-
mation $T_{c}$ of $K_{so}(P_{0})$ such that the vector $\psi(P_{0}, T_{c})$ has the same
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length as that of $v^{i}$. Since $R^{\star}(P_{0})$ is of order $\frac{1}{2}N(N-1)$ , there

exists In $M(P_{0})$ a transformation $T_{b}$ such that the rotation $T_{b^{*}}$ carries
$\psi(P_{0}, T_{c})$ to $v^{j}$, that is,

$v^{j}=\frac{\partial f^{i}(x_{0};b)}{\partial x_{0}^{j}}\frac{\partial h(x_{0};c)}{\partial x_{0}^{k}}g^{jk}(x_{0})$ .
Putting $T_{a}=T_{b}T_{c}T_{b}^{-1}$ or $T_{a}T_{b}=T_{b}T_{c}$ , we have, from (1.2),

$[\frac{\partial}{\partial x^{k}}\{h(x^{\prime} ; a)h(x;b)\}]_{x^{j}=x_{0}^{i}}=\frac{\partial h(x_{0};a)\partial f^{j}(x_{0};b)}{\partial x_{0}^{i}\partial x_{0}^{k}}+\frac{\partial h(x_{0};}{\partial x_{0}^{k}}b\underline{)}$

$(x^{;j}=f^{i}(x;b))$

and

$[\frac{\partial}{\partial x^{k}}\{h(x^{\prime} ; b)h(x;c)\}]_{x^{j}-x_{0}^{t}}=\frac{\partial h(x_{0};b)}{\partial x_{0}^{k}}+\frac{\partial h(x_{0};c)}{\partial x_{0}^{k}}$

$(x^{\prime j}=f^{i}(x;c))$ ,
from which

$\frac{\partial h(x_{0};a)\partial f^{j}(x_{0};b)}{\partial x_{0}^{j}\partial x_{0}^{k}}=\frac{\partial h(x_{0};c)}{\partial x_{0}^{k}}$ .

Multiplying this relation by $\frac{\partial f^{i}(x_{0};b)}{\partial x_{0}^{l}}g^{kl}(x_{0})$ , summing with respect

to the index $k$ and using the relation

$g^{ij}(x_{0})=g^{kl}(x_{0})\frac{\partial f^{i}(x_{0};b)}{\partial x_{0}^{k}}\frac{\partial f^{j}(x_{0};b)}{\partial x_{0}^{l}}$

which can be obtained from (1.1), we have $\frac{\partial h(x_{0};a)}{\partial x_{0}^{j}}g^{ij}(x_{0})=v^{j}$. Since

$K_{S0}(P_{0})$ is a normal subgroup of $M(P_{0}),$ $T_{a}$ is contained In $K_{so}(P_{0})$ .
Thus we see that, for any vector $v^{j}$ at $P_{0}$ , there exists a transfor-
mation $T_{a}$ of $K_{so}(P_{0})$ such that $\psi(P_{0}, T_{a})=v^{j}$. Hence $B_{S0}(P_{0})$ must
coincide with the tangent space at $P_{0}$ and $K_{S0}(P_{0})$ is of order $s_{0}=N$

by virtue of Theorem 3.1.
From now, we shall prove some lemmas useful to prove the next

Theorem 3.3.
LEMMA 1. When $N\geqq 3$ , a necessary and sufficient condition that

a transformation $T_{a}$ of $K_{so}(P_{0})$ leave invariant a conformal circle pass-
ing through $P_{0}$ is that the vector $\psi(P_{0}, T_{a})$ be proportional to the
tangent vector of the conformal circle at the point.
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For, take a conformal circle $C$ passing through $P_{0}$ and assume
that $C$ is represented by (2.4). By $T_{a}$ of $K_{s_{0}}(P_{0})C$ is transformed
into a conformal circle represented by (2.7) which is a set of solutions
of (2.3), and we have, from (2.8),

$\left\{\begin{array}{l}(\frac{dx^{\prime i}}{dt}\\(\frac{\delta^{2}x^{;i}}{dt^{2}}\end{array}\right\}t=0=p^{i}aab$

By using the above relation, Theorem 2.1 and the fact that $g_{ab}(x_{0})pap^{b}$

is different from zero, we obtain the lemma.
LEMMA 2. When $N\geqq 3$ and $K_{S0}(P_{0})$ is of order $s_{0}\geqq 1$ , if we take

an arbitrary conformal circle such that the tangent vector at $P_{0}$ is
contained in $B_{s_{0}}(P_{0})$ and two arbitrary point $P$ and $P^{r}$ on the same side
of the conformal circle with respect to $P_{0}$ , then there exists in $K_{so}(P_{0})$

a transformation which carries $P$ to $P^{\prime}$ .
We take a conformal circle $C$ such that the tangent vector at $P_{0}$

is contained in $B_{s_{0}}(P_{0})$ . By Theorem 3.1 and Lemma 1, the totality
of all the transformations of $K_{s_{0}}(P_{0})$ leaving $C$ invariant forms a
subgroup of order one of $K_{s_{0}}(P_{0})$ . Any group of transformations of
order one is isomorphic to a group of translations in a one-dimensional
Euclidean space. As was stated in \S 2, each of the two sides of $C$

with respect to $P_{0}$ is respectively homeomorphic to some small open
interval. Therefore, we see that the above stated subgroup acts
transitively on each of the sides.

LEMMA 3. When $N\geqq 3$ and $K_{s_{0}}(P_{0})$ is of order $s_{0}=N$, if we take
two arbitrary conformal circles $C$ and $C^{\prime}$ which are tangent at $P_{0}$ then
there exists in $K_{s_{0}}(P_{0})$ a transformation which carries $C$ to $C^{\prime}$ .

By using Theorem 2.1, we can assume without loss of generality
that $C$ and $C^{\prime}$ are respectively represented by (2.4) and $x^{j}=x^{j}(t;x_{0},p, q^{\prime})$

and that $p^{i}$ is a unit vector. We shall examine whether $K_{s_{0}}(P_{0})$

contains a transformation which carries $C$ to C’ or not. To do this,
if we consider a set of equations

$q^{j}+2\frac{\partial h(x_{0};a)}{\partial x_{0}^{j}}p^{j}p^{i}-\frac{\partial h(x_{0};a)}{\partial x_{0}^{j}}g^{ij}(x_{0})=q^{\prime i}$

with unknown vector $\frac{\partial h(x_{0};a)}{\partial x_{0}^{j}}g^{ij}(x_{0})$ and solve these equations, then
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we have

$\frac{\partial h(x_{0};a)}{\partial x_{0}^{j}}g^{ij}(x_{0})=q^{i}-q^{\prime j}-2(q^{a}-q^{\prime a})p_{a}p^{t}(p_{a}=g_{ab}(x_{0})pb)$ .
Since $K_{s_{0}}(P_{0})$ is of order $s_{0}=N$, from Theorem 3.1, for the vector
$q^{j}-q^{\prime i}-2(q^{a}-q^{;_{a}})p_{a}p^{j}$ at $P_{0}$ there exists a transformation $T_{a}$ of $K_{s_{0}}(P_{0})$

such that

$\psi(P_{0}, T_{a})=\frac{\partial h(x_{0};a)}{\partial x_{0}^{j}}g^{ij}(x_{0})=q^{j}-q^{\prime i}-2(q^{a}-q^{\prime a})p_{a}p^{j}$ .

By using (2.8), we can see that for this transformation the solutions
$f^{j}(x(t;x_{0},p;q);a)$ and $x^{j}(t;x_{0},p, q^{\prime})$ of (2.3) have the same initial con-
ditions and coincide well as functions with the argument $t$. This
means that $T_{a}$ carries $C$ to $C^{\prime}$ .

LEMMA 4. When $N\geqq 3$ and $R^{\star}(P_{0})$ and $K_{s_{0}}(P_{0})$ are of orders
$-\frac{1}{2}N(N-1)$ and $s_{0}=N$ respectively, if we take $lwo$ arbitrary conformal
circles $C$ and $C^{\prime}$ passing lhrough $P_{0}$ , then $M(P_{0})$ contains a transfor-
mation which carries $C$ to $C^{\prime}$ , especially contains a lransformation which
carries $C$ to its $opp$osite conformal circle, in other words, carries any
point on one of two sides of $C$ with respect to $P_{0}$ to a point on the
opposite side.

From Theorem 2.1, we can assume without loss of generality
that $C$ and C’ have the unit tangent vectors $p^{j}$ and $p^{;j}$ at $P_{0}$ respec-

tively. Since $R^{\star}(P_{0})$ is of order $\frac{1}{2}N(N-1)$ , there exists in $M(P_{0})$ a

transformation $T_{a}$ such that the rotation $T_{a}^{\star}$ carries $p^{j}$ to $p^{\prime_{l}}$ . Con-
sequently $T_{a}$ transforms $C$ into a conformal circle $C_{1}$ having $p^{\prime j}$ as
the tangent vector at $P_{0}$ . Since $C_{1}$ and $C^{\prime}$ are tangent at $P_{0}$ and
$K_{S0}(P_{0})$ is of order $s_{0}=N,$ $K_{s_{0}}(P_{0})$ contains a transformation $T_{b}$ which
carries $C_{1}$ to $C^{\prime}$ by virtue of Lemma 3. Hence the product $T_{b}T_{a}$

transforms $C$ to $C^{\prime}$ .
THEOREM 3.3. When $N\geqq 3$ and $R^{\star}(P_{0})$ and $K_{s_{0}}(P_{0})$ are of orders

$\frac{1}{2}N(N-1)$ and $s_{0}=N$ respectively, if we take two arbitrary different
$po$ints $P(\neq P_{0})$ and $P^{\prime}(\neq P_{0})$ which are close to $P_{0}$ , then lhere exists in
$M(P_{0})$ a transformation which carries $PloP^{\prime}$ .

From Theorem 2.2, there exists one and only one conformal circle
$C_{1}$ passing through the point$sP_{0},$ $P$ and $P^{\prime}$ . First we consider the
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case in which $P$ and $P^{\prime}$ lie on the same side of $C_{1}$ with respect to $P_{0}$ .
From Lemma 2, $K_{So}(P_{0})$ contains a transformation which carries $P$ to
$P^{\prime}$. Next we consider the case in which $P$ and $P^{\prime}$ lie respectively on
the opposite side. From Lemma 4, $M(P_{0})$ contains a transformation
$T_{a}$ which carries $C_{1}$ to the opposite conformal circle. Therefore, if
$P_{1}$ is the transformed point of $P$ by $T_{a}$ , then $P_{1}$ and $P^{\prime}$ lie on the
same side of $C_{1}$ . Since a suitable transformation $T_{b}$ of $K_{s_{0}}(P_{0})$ carries
$P_{1}$ to $P^{\prime}$ , the product $T_{b}T_{a}$ carries $P$ to $P^{\prime}$ .

$CoROLLARY$. When $N\geqq 3$ , if we assume lhat $R^{*}(P_{0})$ and $K_{s_{0}}(P_{0})$

are of orders $\underline{1}N(N-1)$ and $s_{0}=N$ respeclively at each point of the
2

space, then $G_{r}$ is lransitive.
If there are given arbitrary different points $P$ and $P^{\prime}$ , then we

can take suitable odd points $P_{1},$ $P_{2},\cdots,$ $P_{2m+1}$ in such a way that any
two neighboring points of a series of points: $P,$ $P_{1},$ $P_{2},\cdots,$ $P_{2m+I}$ and
$P^{\prime}$ are sufficiently near. Since Theorem 3.3 holds at each point of
the space, a suitable transformation belonging to $M(P_{1})$ carries $P$ to
$P_{2}$ , a suitable transformation belonging to $M(P_{8})$ carries $P_{2}$ to $ P_{4},\ldots$

and a suitable transformation belonging to $M(P_{2m+1})$ carries $P_{2m}$ to $P^{f}$ .
Thus the product of these transformations carries $P$ to $P^{\prime}$ .

Hereafter the Greek indices take the following values:

$\left\{\begin{array}{l}\alpha,\beta,\gamma=1,\cdots,r.\cdot\delta=1,\cdots,l_{0}.\cdot\theta=1,\cdots,s_{0}\cdot\\\lambda=s_{0}+1,\cdots,l_{0}.\cdot\pi,\omega=l_{0}+l,\cdots,r.\end{array}\right.$

If we put $\xi_{a}^{i}\equiv\frac{\partial f^{i}(x;a_{0})}{\partial a_{0}^{a}}$ , then we have

(4.1) $\xi_{\alpha}^{a}\frac{\partial\xi_{\beta}^{i}}{\partial x^{a}}-\xi_{\beta}^{a}\frac{\partial\xi_{a}^{i}}{\partial x^{a}}=C_{\alpha\beta^{\gamma}}\xi_{\gamma}^{i}$ ,

where $a_{0}^{a}$ are the values of parameters of the identity of $G_{r}$ and $C_{\alpha\beta^{\gamma}}$

are the constants of structure of the group. Let $L_{\alpha}$ be the operator
giving Lie derivative [6] with respect to the vector $\xi_{a}^{i}$ , then we have,
by using (1.1),

$L_{\alpha}g_{jh}\equiv\xi_{\alpha j;h}+\xi_{ak;j}=2\phi_{a}g_{jk}(\xi_{aj}=g_{ij}\xi_{\alpha}^{j})$ ,

where the semi-colon denotes covariant differentation and $\phi_{a}$ is a

scalar defined by $\phi_{a}\equiv\frac{\partial h(x;a_{0})}{\partial a_{0}^{\alpha}}$ . We have

\S 4.
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$[L_{a}, L_{\beta}]g_{jh}\equiv(L_{a}L_{\beta}-L_{\beta}L_{\alpha})g_{jk}=2(L_{\alpha}\emptyset_{\theta}-L_{\beta}\phi_{a})g_{jk}$

and, on the other hand [6],

$[L_{\alpha}, L_{\beta}]g_{jh}=C_{a\beta^{\gamma}}L_{\gamma}g_{jk}=2C_{a\beta^{\gamma}}\phi_{T}g_{jk}$

and consequently

(4.2) $\xi_{\alpha}^{a}\frac{\partial\phi_{\beta}}{\partial x^{a}}-\xi_{\beta}^{a}\frac{\partial\phi_{a}}{\partial x^{a}}=C_{\alpha\beta^{\gamma}}\phi_{\gamma}$ .
If we define the so-called Weyl’s conformal curvature tensor

$C_{jkl}^{j}$ and the tensor $C^{0_{jkl}}$ by

$C_{jkl}^{i}\equiv R^{i_{jkl}}+\prod_{j^{0}k}\delta_{l}^{i}-\prod_{jl}^{0}\delta_{k}^{i}+g_{jk}g^{ia}\prod_{a^{0}l}-g_{jl}g^{ia}\prod_{a^{0}k}$

and
$C^{0_{jkl}}\equiv\prod_{jk_{i}l}^{0}-\prod_{j^{0}l;k}$

respectively, then we have the identities:

(4.3) $\left\{\begin{array}{l}C_{jha}^{a}=0 C^{i_{jhl}}+C_{hlj}^{i}+C_{ljk}^{i}=0\\C_{ijkl}=-C_{ijlk}=C_{klij}(=-C_{jikl})\end{array}\right.$

and

(4.4) $C^{0_{jkl}}=-C^{0_{J^{lk}}},$ $C^{0_{jkl}}+C^{0_{klj}}+C^{0_{ljh}}=0,$ $g^{jk}C^{0_{jkl}}=0$ .
We have

$L_{a}C^{i_{jhl}}=C^{i_{jkl;a}}\xi_{a}^{a}-\xi_{af}^{i}C^{f_{jkl}}+\xi_{\alpha j}^{f}C^{i_{fkl}}$

$+\xi_{ak}^{f}C^{i_{jfl}}+\xi_{al}^{f}C^{i_{jkf}}=0$

and
$L_{a}C^{0_{jhl}}=C_{jkl;a}^{0}\xi_{a}^{a}+\xi_{\alpha j}^{f}C^{0_{fkl}}+\xi_{\alpha k}^{f}C_{jfi}^{0}$

$+\xi_{\alpha l}^{f}C_{jkf}^{0}=-\phi_{\alpha i}C^{i_{jkl}}$ ,

from which, by using $\xi_{ajk}=\phi_{\alpha}g_{jk}+\frac{1}{2}(\xi_{\alpha jh}-\xi_{ahj})$ ,

(4.5) $C_{ijkl;a}\xi_{a}^{a}+2\phi_{\alpha}C_{ijkl}+\frac{1}{2}(\xi_{abc}-\xi_{acb})E_{ijkl}^{bc}=0$

and

(4.6) $C^{0_{jkl;a}}\xi_{a}^{a}+3\phi_{a}C^{0_{jkl}}+\frac{1}{2}(\xi_{abc}-\xi_{acb})F_{jkl}^{bc}+\phi_{\alpha}{}_{d}C_{jkl}^{d}=0$ ,

where
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$E^{bc_{ijhl}}\equiv g^{bf}(\delta_{i}^{c}C_{fjkl}+\delta_{j}^{c}C_{if/\iota l}+\delta_{k}^{c}C_{ijfl}+\delta_{l}^{c}C_{ijkf})$ ,
$F_{jkl}^{b_{C}}\equiv g^{jf}(\delta_{j}^{c}C_{fkl}^{0}+\delta^{c_{i}}C^{0_{jfl}}+\delta_{l}^{c}C^{0_{jkf}})$

and

$\xi_{aj}^{i}\equiv\xi_{\alpha;j}^{i}$ , $\xi_{ajk}\equiv\xi_{aj;k}$ , $\emptyset_{\alpha j}\equiv\emptyset_{\alpha;j}=\frac{\partial\phi_{a}}{\partial x^{j}}$ .
Now, when $G_{l_{0}}(P_{0})$ is isometric at $P_{0}$ , we can take parameters of

$G_{r}$ such that when and only when a transformation $T_{a}$ is contained
in $G_{l_{0}}(P_{0})$ the $T_{a}$ has values of parameters of the form $(al?, a_{0}^{\pi})$ and
when and only when a transformation $T_{a}$ is contained in $K_{s_{0}}(P_{0})$ the
$T_{a}$ has values of parameters of the form $(a^{\theta}, a_{\cup}^{\lambda}, a_{0}^{\pi})$ , where $a_{0}^{\alpha}$ are
the values of parameters of the identity transformation in such
parameters. From now, we shall adopt such parameters. From the
relations $x_{0}^{i}=f^{i}(x_{0} ; a^{\delta}, a_{0}^{\pi}),$ $h(x_{0} ; a^{\delta}, a_{0}^{\pi})=1$ and $f_{J}^{i}(x_{0} ; a^{\theta}, a_{0}^{\lambda}, a_{0}^{\pi})=\delta_{i}^{i}$ , we

have $\xi_{\delta}^{i}(x_{0})=0,$ $\phi_{\delta}(x_{0})=0$ and $\frac{\partial\xi_{\theta}^{i}(x_{0})}{\partial x_{0}^{j}}=0$ respectively, and consequently

$\xi_{\delta jk}(x_{0})=\frac{\partial\xi_{\delta j}(x_{0})}{\partial x_{0}^{k}}$ .
THEOREM 4.1. When $N\geqq 3$ , if $G_{l_{0}}(P_{0})$ is isometric at $P_{0}$ then the

order $s_{0}$ of $K_{s_{0}}(P_{0})$ satisfies $lhe$ relations $s_{0}\leqq N-r+l_{t)}$ or $p_{0}=l_{0}-s_{0}$

$\geqq r-N$

In fact, from the relations (4.1), $\xi_{\theta}^{i}(x_{0})=0$ and $\frac{\partial\xi_{\theta}^{i}(x_{0})}{\partial x_{0}^{j}}=0$ and the

fact that the matrix $||\xi_{\pi}^{i}(x_{0})||$ is of rank $r-l_{0}(\leqq N)$ , we have $C_{\theta\pi^{\omega}}=0$.
Hence, from the relations (4.2), $\xi_{\theta}^{i}(x_{0})=0$ and $\phi_{\delta}(x_{0})=0$ , we have

$\phi_{\theta i}(x_{0})\xi_{n}^{i}(x_{0})=0$ .
On the other hand, since, as was stated in Theorem 3.1, $K_{s_{0}}(P_{0})$ is
isomorphic to $B_{s_{0}}(P_{0})$ , it follows that the matrix $||\phi_{\theta j}(x_{0})||$ is of rank
$s_{0}$ . Hence we can obtain the relations in the theorem.

Since $l_{0}=r-N$ holds if $G_{r}$ is transitive, we have
$CoROLLARY$. In Theorem 4.1, if we moreover assume that $G_{r}$ is

transitive, then $s_{0}=0$ .
THEOREM 4.2. When $G_{l_{0}}(P_{0})$ is isometric at $P_{0}$ , if $N\geqq 3$ and $L_{p^{\star_{0}}}(P_{0})$

is of order $\frac{1}{2}N(N-1)$ or if $N>4,$ $\neq 8$ and $L_{p^{\star_{0}}}(P_{0})$ is of order

1
– $(N-1)(N-2)$ , then $R_{N}$ is conformally flat at $P_{0}$ , that is, $C^{i_{jkl}}=C^{0_{jkl}}$

$2$

$=0$ at $P_{0}$ .
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We introduce in $R_{N}$ a coordinate system such that $g_{jk}(x_{0})=\delta_{jk}$ . In
such a coordinate system we see that $p_{0}(=l_{0}-s_{0})\xi_{\lambda \mathfrak{j}k}(x_{0})$ satisfying the
relations

$\xi_{\lambda jh}(x_{0})+\xi_{\lambda kj}(x_{0})=0$

derived from the fact that $||f_{j}^{i}(x_{0} ; a_{0}^{\theta}, a^{\lambda}, a_{0}^{\pi})||$ is an orthogonal matrix
form a basis of the Lie ring of the orthogonal group of order $p_{0}$

corresponding to the rotation group $L_{p^{\star_{0}}}(P_{0})$ . Hence the matrix $||\xi_{\lambda jh}(x_{0})||$

$(j<k)$ of $\frac{1}{2}N(N-1)$ columns and $p_{0}$ rows, $\lambda$ indicating the rows

and $(j, k)$ the columns, must be of rank $p_{0}$ .
From the relations (4.5), (4.6), $\xi_{\lambda}^{i}(x_{0})=0$ and $\phi_{\lambda}(x_{0})=0$ , we have

(4.7) $\sum_{b<c}\xi_{\lambda bc}(x_{0})[E^{bc_{ijkl}}(x_{0})-E^{cb_{ijkl}}(x_{0})]=0$

and
(4.8) $\sum_{b<c}\xi_{\lambda bc}(x_{0})[F_{jkl}^{bc}(x_{0})-F_{jhl}^{cb}(x_{0})]+\phi_{\lambda d}(x_{0})C^{d_{jkl}}(x_{0})=0$

with $g_{jh}(x_{0})=\delta_{jh}$ . Since $L_{p}^{\star}(P_{0})$ is of the maximum order, that is, of

order $\frac{1}{2}N(N-1)$ , we have, from (4.7),

$E^{bc_{ijkl}}(x_{0})-E^{cb_{ijkl}}(x_{0})=0$ ,

from which, by using (4.3), $C^{i_{jkl}}(x_{0})=0$ . Consequently, we have, from
(4.8),

$F^{bc_{jkl}}(x_{0})-F^{cb_{jkl}}(x_{0})=0$

from which, by using (4.4), $C^{0_{jkl}}(x_{0})=0$ . Thus the first half of the
Theorem is proved.

Next we shall prove the latter half of the theorem. Since $L_{p^{*_{0}}}(P_{0})$

1is of order – $(N-1)(N-2)$ and $N\neq 4,8,$ $L_{p^{\#_{0}}}(P_{0})$ fixes one and only
2

one direction by virtue of the theorem due to D. Montgomery and
H. Samelson [2]. Consequently there exists a coordinate system of
$R_{N}$ in which $g_{jk}(x_{0})=\delta_{jk}$ and moreover the first vector of the natural
frame of reference at $P_{0}$ is in the direction. In such a coordinate
system, we have $f_{j^{1}}(x_{0} ; a_{0}^{\theta}, a^{\lambda}, a_{0}^{\pi})=\delta_{j}^{1}$ from which $\xi_{\lambda 1c}(x_{0})(=\xi_{\lambda b1}(x_{0}))=0$ ,
and consequently the matrix $||\xi_{\lambda pq}(x_{0})||(p<\mathcal{G})(p, q, r, s, l, u=2,3,\cdots, N)$

is of rank $\frac{1}{i)}(N-1)(N-2)$ .
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We have, from (4.7),

$E^{pq_{ijkl}}(x_{0})-E^{qp_{ijkl}}(x_{0})=0$ ,

from which, by using (4.3),

$C_{1slu}(x_{()})=C_{r11u}(x_{0})=C_{2stu}(x_{0})=0$ .
$C_{ijkl}(x_{0})=0$ follows from (4.3) and the above relations. We get, from
(4.8),

$F^{pq_{jkl}}(x_{0})-F^{qp_{jkl}}(x_{0})=0$ .
By using (4.4) and the assumption that $N$ is not equal to 3, we have

$C^{0_{s1u}}(x_{0})=C^{0_{11u}}(x_{0})=C^{0_{stu}}(x_{0})=0$ .
$C^{0_{jkl}}(x_{0})=0$ follows from (4.4) and the above relations. Thus we have
the theorem.

Here we mention the theorem which was obtained by S. Ishihara
and M. Obata [1]: When $N\geqq 3$ , if $G_{l_{0}}(P_{0})$ is homothelic $alP_{0}$ lhen
$R_{N}$ is conformally flat at $P_{0}$ .

\S 5. We first prove the following theorem:
THEOREM 5.1. In $R_{N}$ for $N\geqq 3,$ $\neq 4$ , lhere exists no group of con-

formal transformalions of order $\gamma$ such that

$\frac{1}{2}N(N+1)+2<r<\frac{1}{2}(N+1)(N+2)$ .

Assume that $G_{r}$ is of order $r>\frac{1}{2}N(N+1)+2$. When $G_{lo}(P_{0})$ is

isometric at $P_{0}$ ,

order $p_{0}$ of $R^{\star}(P_{0})=l_{0}-s_{0}\geqq r-N-s_{0}>\frac{1}{2}(N-1)(N-2)$ .
According to D. Montgomery and H. Samelson [2], in an N-dimensional
Euclidean space for $N\neq 4$ there exists no proper subgroup of order

greater than $\frac{1}{2}(N-1)(N-2)$ , and we must have $l_{0}-s_{0}=\frac{1}{2}N(N-1)$ .
Therefore we have

$\gamma\leqq l_{0}+N=\frac{1}{2}N(N+1)+s_{0}$ ,

from which $2<s_{0}\leqq N$ Hence we have $s_{0}=N$ from Theorem 3.2.
When $G_{\iota_{\cap}}(P_{0})$ is homothetic at $P_{0}$ ,
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order $p_{0}-1$ of $R^{\star}(P_{0})=l_{0}-s_{0}-1\geqq r-N-s_{0}-1>\frac{1}{2}(N-1)(N-2)$ .

Since $N\neq 4$ , we have $l_{0}-s_{0}-1=\frac{1}{2}N(N-1)$ . Therefore we have

$r\leqq l_{0}+N=\frac{1}{2}N(N+1)+s_{0}+1$ ,

from which $1<s_{0}\leqq N$ Hence we have $s_{0}=N$ Thus, from corollary
to Theorem 3.3, $G_{r}$ is transitive. If we assume that $G_{lo}(P_{0})$ is iso-
metric at $P_{0}$ , then, from corollary to Theorem 4.1, $K_{s_{0}}(P_{0})$ must be of
order $s_{0}=0$ . But, as was already stated, $s_{0}=N$ holds. This is a
contradiction. Therefore $G_{l_{0}}(P_{0})$ must be homothetic at $P_{0}$ and we
have $r=\frac{1}{2}(N+1)(N-\vdash 2)$ .

THEOREM 5.2. If $R_{N}$ for $N\geqq 3,$ $\neq 4$ admits $G_{\gamma}$ of order $r$ such
lhat

$\frac{1}{2}N(N-1)+1<\gamma\leqq\frac{1}{2}(N+1)(N+2)$ ,

then the $R_{N}$ is conformally flat.
When $G_{l_{0}}(P_{0})$ is isometric at $P_{0}$ , the order $p_{0}$ of $L_{p^{\star_{0}}}(P_{0})$ satisfies

$p_{0}=l_{0}-s_{0}\geqq r-N>\frac{1}{2}(N-1)(N-2)$

by virtue of Theorem 4.1. Therefore, from the assumption that

$N\neq 4$ , we have $p_{0}=\frac{1}{2}N(N-1)$ . Hence, from Theorem 4.2, $R_{N}$ is

conformally flat at $P_{0}$ . When $G_{l_{0}}(P_{0})$ is homothetic at $P_{0}$ , from a
theorem of S. Ishihara and M. Obata, $R_{N}$ is conformally flat at $P_{0}$ .
The point $P_{0}$ being arbitrary, we have the theorem.

THEOREM 5.3. If $R_{N}$ for $N>4,$ $\neq 8$ admits $G_{r}$ of order $\gamma=$

$\frac{1}{2}N(N-1)+1$ , then the $R_{N}$ is conformally flat.
When $G_{t_{0}}(P_{0})$ is isometric at $P_{0}$ , we have, from Theorem 4.1,

$p_{0}=l_{0}-s_{0}\geqq r-N=\frac{1}{2}(N-1)(N-2)$ .

Since $N\neq 4$ , we have $p_{0}=\frac{1}{2}(N-1)(N-2)$ or $p_{0}=\frac{1}{2}N(N-1)$ . There-
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fore, from the assumption that $N>4,$ $\neq 8,$ $R_{N}$ is conformally flat at
$P_{0}$ by virtue of Theorem 4.2. When $G_{lo}(P_{0})$ is homothetic at $P_{0},$ $R_{N}$ is
conformally flat at $P_{0}$ . The point $P_{0}$ being arbitrary, we have the
theorem.

THEOREM 5.4. Except for finife number of $N’ s$, if $R_{N}$ for $N\geqq 3$

admits $G_{r}$ of order $\gamma$ such that

$\frac{1}{2}(N-1)(N-2)+2<r<\frac{1}{2}N(N-1)+1$ ,

then the $R_{N}$ is conformally flat.
When $G_{lo}(P_{0})$ is isometric at $P_{0}$ , we have, from Theorem 4.1,

$p_{0}=l_{0}-s_{0}\geqq r-N>\frac{1}{2}(N-2)(N-3)$ .
According to D. Montgomery and H. Samelson [2], except for finite
number of $N’ s$ in an N-dimensional Euclidean space the rotation
group has no subgroup of order $t$ such that

$\frac{1}{2}(N-1)(N_{\backslash }-2)<t<\frac{1}{2}N(N-1)$ ,

$\frac{1}{2}(N-2)(N-3)<t<\frac{1}{2}(N-1)(N-2)$ ,

the exceptional values of $N’ s$ depending on the special types of the
Killing-Cartan’s classification of simple groups. Therefore, we must

have $p_{0}=\frac{1}{2}(N-1)(N-2)$ or $p_{0}=\frac{1}{2}N(N-1)$ , and $R_{N}$ is, from Theo-

rem 4.2, conformally flat at $P_{0}$ . When $G_{l_{0}}(P_{0})$ is homothetic at $P_{0}$ ,
$R_{N}$ is conformally flat at $P_{0}$ . The point $P_{0}$ being arbitrary, we have
the theorem.

We remark that the above theorems are true for a Riemannian
space admitting a group of motions or a group of homothetic trans-
formations which are special groups of conformal transformations.
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