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I. Introduction

G. Szego [1] proved the following theorem on the partial sums
of the normalized schlicht functions in the unit circle;
Let the function

f(e)=z+ i az
be analytic and schlicht in |z|<<1. Thenr any one of the partial sums

z+ﬁayz” (n=2,38,.-+)

s also schlicht in |z| <*i , and the constant i can not be replaced

by any greater one.

Szego [1] proved also that in this theorem the word ¢schlicht’
may be replaced by ¢star-shaped with respect to the origin’ or by
‘convex’, both in the hypothesis and in the conclusion in correspond-
ing manner.

In this note, we shall prove a similar theorem for the class of
close-to-convex functions defined by W. Kaplan [2]

We call an analytic function f(z) close-to-convex for |z|<<R, if
there exists a function @(z), convex and schlicht for |z|< R, such
that f’(z)/9¢'(z) bhas positive real part for |z|<<R. This function ¢(2)
will be called an associaie function to the close-to-convex function
f(2), and we shall call f(z) close-to-convex with respect to @(z), when
it is needed to indicate an associate function. Close-to-convex func-
tions in the unit circle will be simply called close-to-convex functions.

Thus close-to-convex functions are clearly schlicht for |z]|<1,
and the class of these functions includes the classes of star-shaped
functions and convex functions for |z|<<1, ([2]). We aim at proving
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the following theorem:
Let the function

fla)y==z +§: a2
be close-to-convex for |z|<<1 with respect to the function
P(R)=2 —|—§2} bz .
Then the n-th partial sum

n
s.(2)=2+> a2

y=2
of f(z) is also close-to-convex for |z|<< 1 with respect to the partial
sum -
o (2) =2+ b2
y=2

1

of @(z). The constant vE can not be replaced by any greater one.

II. Lemmas

Following lemmas are needed in the proof of our theorem:
1°. Let f(z)=z+i‘,ﬁa,zv be close-to-convex, then the coefficients a,
satisfy the z'nequalitiesynu
la,|=n  (n=2,3,-)

(Reade [4]).
2°. Let f(z)=z+§) a, 2> be close-to-convex with respect to @(z)=
y=2
z+i‘ b,z> then

A—lz] —q fi2) ~1+lz]
1+]z]| = ¢a) ~ 1—|z2]
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1-jz] - fl(a) ~1+]|z]
1+]z| 7 #'(2) — 1-|z|
Sor |z|<1.

PROOF. Let F(z) be analytic and have positive real part for
|z|<1. If F(0) be real, then we have

1=l poy=wFe < 1112 o),
1+|z] 1—|z]

1—|z| 1+|z|
L Fo=siReIs 1 RO

for |z|<<1 (Pélya-Szegd [5], p. 140). Our conclusion follows in putting
Fl2)=1'@2)9(2).

3°. Let <p(z)=z+§] bzv be schlicht and convex for |z|<1, then,

y=a

as is well known, |b,| <1 (n=2,3,---) and

1 , 1
=< < .=
Azl = POI= G5

for |z]<1. (K. Lowner [7]).

II1. Proof of the theorem
1°. It is easy to show that i - is the best constant. In fact,

the function z/(1—z)2=z+i vz is analytic and star-shaped with re-

spect to the origin for |z]<<1 and so close-to-convex, but the deriva-

tive of the second partial sum s,(2) of this function has a zero at

the point z=—i~ , and hence s,(z) is mot schlicht, a fortiori not

close-to-convex, for |z|<<p, if p> —i—.
2°. As for the first half of the theorem, it is sufficient to

prove R{s, (2)/d,(2)}>0(n=2,38,---) for lz]<—i, as o,(2) is convex
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for |z|<~i by a result of Szegé.

If we put

P(R)=0,(2)+pP,(2) (n=23,.),

then p,(2)= i b,2» and

y=n+l

IU;(z)IZIq’,(Z)I—IP;(Z)[ (n=2’ 3"")-
By the lemma 3°, we have for |z|<1,
l9'(2) [ =1/(1+]2()*,

and

EEOIES A E

yv=n+

=S yjzp-t.
Hence we have for [zl=14
1
1 1 \n (n#—l)——nx—‘f
lo@lz »;—( 4) x -
e 3] =
4 4
~16 _ 3n+4
25  9x4r
16 b
e |
— 25 18>

for n=2. Therefore, the function

R S;;(z) =R 1 +2a22 e +nanzn—1
0’;(2) 1+2bQZ—]—... +nbnzn—1 4

is harmonic for |z|< --i—» .

n=2
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If we put
f(z)=sn(z)+rn(z) (n=2, 3:) ’

then we have 7,(2)= i a2z and

R S8 _q fl(2)—7,(2)
a,(2) P'(2) —p,(2)
: , _f’(z)__ ,
5 F@ 5" g
?'(2) ?'(2)—p,(2)
r el £ R Ly
g S _ [PL(2)] (p,(z)ﬁlfn(Z)l
92 |9 (2)] —|Pn(2) ]

By the lemma 2°, we have

R j”(zl_:Z 1'_|Z|;

2@ < 1+|z| (I21=D
3 1
~ 5 [121= 3 )-

On the other hand, by lemmas 1°, 2° and 3° we have for [z]| <1,

, n+1)—mnjz|
<|z]” ,
Pzl < D

tf"(EUg_l,ili",
P)|T 1—|z|

and

7)< > vla, ||z

y=En

< 30|z,

v=n+l

-t

Therefore we have for lzlsq_.,



A note on close-to-convex functions. 261

f(z)] 3n+d 5  Ini-24n+4-20
[P.(2) ]+ 7(2) +17,(2) | 9 - X 3 -+ o7 hri
1¢(z>! P2 = 16 _ 3n+4 '
25  9xd4nt
"Hence
| F(2) 1.5 65
PN Gy | 7O 36 3 T ase
|9 (2)] — | Pi(3)] = 16 _ 1
25 36
2125 _ 1 _ 3 1=_1
= 6'éﬁ'</3 < 5 for |z]|= i’

From this we can conclude

R 34(2) ~0
0'4(2)

1

~for lzl—fl . By the maximum principle for harmonic functions, this

1

inequality holds also in ]zlglm. | Moreover, the inequalities for the

.case n>=4 follow clearly from this inequality. Thus we have,

m S (Z) >0
o,(2)

for ]zl<%~, n>4, that is, the theorem is true for the case n=>4.

3°. For the case =38, since the function

R sy(2) _R 1-+2a,z+3a,2

o3(2) 1+2b,2+8b,2%
is harmonic for [z]|< i, we have only to prove
o , 1
A1) Risi@/ai@) >0  for |z|= .

By considering gf(ez) in place of f(z) with a suitable ¢, |e|=1,
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the proof of (1) is reduced to that of (1) with z= I | i.e.

(o g3 (0 - ) o

As f(2) is close-to-convex, the function

4 2
2 f(Z) — 1+2d2_‘2‘j30327—{—7--7f =1+cz+c, 22+
@) @'(z) 1+2b,243b2%+-.. T

is analytic for [z|<<1, and has positive real part there, hence by
Carathéodory-Toeplitz’s theorem (Bieberbach [6]),

(3) le,l=2, |2¢,—ci|l=4—|c,P.

While, from (2), 2a,=2b,+c¢,, 3a,=3b,+2b,c,+c,, SO
2b,c C.

4 a,=b,+ €, a,=b+ “CC L & |

On the other hand, as @(z) is schlicht and convex for |z| <1, the
function ;

(5) 1iz P'(@) _1+4b,21+9b2" + .-

= =14+dz+d,z*+---
@'(z) 1+2b,24+8b2°+--- ' :

is analytic for |z|<<1 and has positive real part there. Hence again
by Carathéodory-Toeplitz’s theorem, we have
(6) ldll_g_z’ l2d2"dﬂ§4“|d1.|2'

Since 4b,=2b,+d,, 9b,=38b,+2b,d, +d, by (6), we have d,=2b, and so
b,=2b%3 +d,[6.

Moreover, by the second inequality of (6), we can put 2d,—di=
e(4d—|d,>) (Je]=<1), so we have

(M b.—py EA—10:1")
3 2 3 .

Hence by the second formula of (4), we obtain

. 2be, ¢,  e(1—|b,[)
=24 27241 2 ) Yol ),
(8) a, + 3 + 3 -+ 3
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After all, by using (4), (7) and (8), it remains only to prove that

_QL_|_,,CI“+ 3b; 4 - b.c, + €(1 16,17
9) §R~—~_—WZM 4 16 8 16 - 16,A,4~_>0 .

b, 3[)2 e(l—lb 1%
1 S Yl g
T et 16
“This fraction, regarded as a function of e, is analytic for |e|<1,

“because

b, , 8b; L €A—]5,) |- 15| 8|b,° | 115"
2 1" 16 =2 T 16 T i

1 1 1
< 4+ o<1
2 16+8<

‘Hence the proof of (9) is reduced 1:6 that of the following inequality

for |e|=1

‘ b, ¢ 3b; | b,c e(1—1b,]") }
14+ 722 4 71 L
H + 2 + 4 " 16 e 8 + 16 - 16

.(10)

b, . 8  E1-|b P)}
14+ %24 5% 21 0.
X{ Tt T 18 ]>

"Here we put

b 36 | b.c,
1 2 1 o ,
w= +2+4+16+8+16
(11)
b, . 8B
—14 % 4 001
v =+ - 9 -+ 16

-then the left hand side of (10) has the form
R L1205, SO1B) |

16
Ry A—16:19 | 1—15,]* =
Ruv -+ 16° - 16 R(u +v)e
— gy Q=10 118,

162 16



264 Y. Mik:

_Ju+vl* _ |u—v]* , 1—[b,F) _1—[b]
4 s T 16 w6 1wt

N e T R EL A
2 2 16 2 2 16

Noting that

(Iuijl,Jr lu—v| _ 1—1b, )_ ( lu+v| _ |u—v] _1*|§’;IZ_)
2 2 16 2 2 16

= |u~v ] = 0 ’
we have only to prove that

12 lu+v| |u—v| _ 1—|b,]" - 0.
(12) 2 2 16
On the other hand we have from [11),

3b: c b.c c
e 1 271 ]
g V4" 8 T

8b; _ |2c,+b.c| _ ¢

lu+v|= 2+b,+

= 2+b,+
= : 8 16
3b: le,|]12+b,] '2c,—ci | cf
= 24b,+ O —GllEmRl Sl g M
8 8 - 32 +32‘
‘ 386t  [2+b,] 4—|c,|* el
> 2+4b,+° 2 —1FT T bt
= o8 4 32 32
_ o p.4 30 _12+b,] 1
| 8 4 g’
and
" b,c c,
Uu—vil= 1 Vol 2
| | | 4 tg 16

< l2e+bel | 6

8 16

—12+b) 1
4 8
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and so it suffices to prove

863 |_12+4b,1 _ 1 _|24b6,] 1 _1—]5P

248, 0
|+2+8\ 4 8 4 g8 8

that is,

3b3

(13) 14+2b2+f4—]2+b2|-f3:iﬁ|i>0, 15, <1.

Now we put 2+b2=ré"¢. Then, we have 1<»=<3, and for arbi-
trary fixed » (1<7»=<38), ¥ satisfies the inequality

(14) [ Y| =+(7)

where Y (7) is determined by the equation | —2+7e?¢|=1 (O << ; ) y
that is, the point —2+fef¢o<’> lies on the unit circle, and

(15) cos Y, (¥)=(3+7%)/4r .
Then we have

arab B jpap o BB
] 4 4

! , o
=‘3—re’¢+—~2ﬁ v,e’d

|
B |—2+7ei|? _ 7
where Q—=7—! —2 = =147 (1+-cos ¥)—' -, and by and
(15),

(3+a).

847 7 1
=—1—-7+ — == t7.
U= 4 4 4 *
Here we put
’ . 3 . [2 8 2
(16) o(7, Q)E’3—re’¢+f——4ﬁr2e9’¢) —(4<+Q) J

where cosyr= (Q+1—r+ ’:) / #. Then the function

Tr? 9 3r(4d+7?%)
,Q)=9— — .
(7, Q) 2 -+ 16 5 cos
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+97% cos? Y — (fi’— + Q) :

is monotone increasing with . In fact, we have

2
Q+1—r+ 7"
09 _ _ 3r(d+r) 1 0 4 1 ( 3
BN S A GRS § ] A G VG’ | i B
Q 2 7 + 7 r 4 Q>
. =21/2—187+3°+16Q,
QP _
2o =16>0,
and
29 | =21/2—18r+3r2+16(—;1 +r)
0Q lg_1,, 4
1\ 87
=3(r— ) 0.
) e~

Hence @(7, Q) is a monotone increasing function of @ in Q,(»)=Q=

——f}%—r for fixed » (1<r<3), and so attains its minimum at Q=

——i——'rr. This condition Q= —i
cos ¥(7), by and or, in other words, |b,|=1. Hence, if we

put b,=e" (6: real), we have to prove, instead of (13),
1

- +7 means cos V= (3+7%)/4r=

840
r4+2€’0+ 2+ef|— " >0
i —| [— o =05
that is,
a7 ;4+2e"’ +~3im) ég— (l2+e""| + ;) 2>O .
‘The left hand side of (17) is
et 1\2
4c0124+ %0 (120004 2 )
’ +2+— * [24-€]+ 5

_(__149_cos9+2) (143 31110)2 (~241—+4cos¢9—|—1/5+4cose)
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=12 cos’0 +15 cos 0 + %& —y/5+4cosb,
while 12 cos’+-15 cos 8 —1—];1469: 12 (cos 0 -+- 5 ) 2+ 372%1 and /5 +4cosé

8 8
§3<~‘Z7“, hence the inequality (17) holds. Thus, our theorem is

proved for the case n=3.
4°. Finally we consider the case n=2. In this case, by using

(4), it is sufficient to prove that

RS2 _q 1+2a2
ai(2) 1+2b,2

1-+(2b,+c,)z . 1
18 =R - e 0 for |z] <.

Since

m 1+(2b,+c)z 1 7 =
R oTERTMIE = T R[ - (2b, + 125,21,
1-+2b,z |1+2b,z|? XL+ (20, ¢,)2) > { 2]
it is sufficient to prove that

(19) RIL+(2b,+¢,)2) < (1 +26,2]>0  for |z|< i

Now we put
U=1+(2b,+c))z,
V=1+2b,z,

then the left hand side of has the form

quyv=U+V_1U-V]"
4 4

(20)

Now by we have
|U+V|=|2+4b2+c,z|
=2-41b,]|2]—]e,] |2]

1 5,1 _ 1
4 4

=2 4d.
2
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and

1 1
1;—[/ =\|C.32 2.;, =
l |=lcz|< 4 9

Hence |U+ V|>|U—V| and therefore the inequality holds, that
is, for the case n=2, our theorem is proved.

Thus the proof of our theorem is completed.

I wish to express here my hearty gratitude to Prof. A. Kobori
for his kind guidance during my research.

Ritsumeikan University
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