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This paper is a continuation of our former papers (Kawada [7],
Kawada-Tate [8]) concerning class formations and their application
in algebraic function fields in one variable. After some preliminaries
in §1 we shall consider in §2 the system of groups {W(K/E)} in a
class formation, which was investigated by A. Weil in case of
number fields. We shall arrange the formulas for {W(K/k)} so that
we are able to consider their inverse limit groups in §38. The
sections §4, §5 are devoted to the application of the results in § 2,
§ 3 to the case of algebraic function fields. There we shall find the
explicit structure of these groups {W(K/k)} and their limit groups
using the formulations in [8].

The results of A. Weil were treated cohomology-theoreti-
cally first by T. Nakayama and G. Hochschild [56], [10]. Though the
results in §2, § 3 of this paper are not published hitherto in the
literature, they would be known by mathematicians working in this
field. The author does not claim any priority on these results. It
should be mentioned that there are unpublished investigations of
E. Artin and J. Tate concerning the structure of the inverse limit
groups of {W(K/k)} in case of number fields. Also the explicit
structure of {W(k)} in (§ 5) was suggested by J. Tate.
The author wishes to express his hearty thanks to Professor John
Tate for his discussions during the preparation of this paper.

§ 1. Preliminaries

I. We repeat here some necessary preparations from Part I
(Kawada [7]) which we need later. Let &, be a fixed ground field
and 2 be a fixed infinite separable normal algebraic extension of £k,
Let & be the set of all finite extensions of 2, which are contained
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in 2. In the following we denote the fields which belong to & by
k, t, K, L etc.

We assume further that a certain abelian group A(K) is as-
sociated with each K & & with the following properties: F 1. Let
kK then there exists an isomorphism @, , of A(k) into A(K). F2.
Let kc?c K then the transitivity relation @ ,-@, ,=@) , holds. F 3.
Let K/k be a normal extension with the Galois group G=G(K/k)"
then G acts on A(K) as an operator group such that ¢, ,A(k)=A(K)C
holds.? F4. In

CaseE 1I: kcKcL, K|k and L]k are both normal with the Galois
groups G=G(L|k), H=G(L|/K) and F=G(K]k)
the relation o o @, x(@)=®, x c (Vro) (@7 holds for every o&=G
and a= A(K). Furthermore, for every normal extension K/k with
G- GKJ/k) we assume Cl: H'(G,AK))=0 and C2: HG, AK))
~Z[[G:1]<Z. We call then {&, A(K)} a class formation.

Let {&, A(K)} be a class formation. Then we can choose for
each normal extension K/k a 2-cocycle f,,, of G over A(K) with the
following properties: (i) the cohomology class of f,,, is a generic
class of H*(G, A(K)), (ii) in case I we have infl; pfx,,~f/t m=[L: K)),
(iii) in

Case 11: kcitcK, K/k is normal with G=G(K/k) and H=G(K/t)
we have res, . fx.~fk;-? We call then that {fy,.} is a system of
fundamental (canonical) 2-cocycles in this class formation.

Let {gx;,} be another system of 2-cocycles. Then {gy,} is also

a system of fundamental 2-cocycles if and only if (i) gx,~Faf% 7xi
and [K: k] are relatively prime; (ii) in case I 7, =7, (mod [K: k]);
(iii) in case II 7g,,=7k, (mod [K:1{]).

Now let us consider the group pairing (Z, A)—A by (n, a)—a".

1) We use the notation G(K/k) to denote the Galois group of a normal extension K/Z.

2) In a G-group A we assume ast=(ar )o. By AG we mean the set of all elements
a e A which are invariant by all o € G.

3) For a subgroup H of G we mean by ¢,z the injection mapping H—G and for a
normal subgroup H of G and F=G/H we mean by ¢p ¢ the canonical homomorphism
G—F. As usual we mean by Z, R and C the modules of all integers, all real numbers
and all complex numbers respectively.

4) By res p,c we mean the restriction mapping: H"(G,A)—-H"(H, A) for an abelian
G-group A in case II, and by inflg, r we mean the inflation mapping (lift) : H"(F, AH)—
H’(G, A) in case I.
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Then the cup-multiplication g7—g” U fx,, gives the isomorphism:
H"(G, Z)y><H™(G, A(K)) for all r&Z (Theorem of Tate [11]). In
particular, for = —2 H %G, Z)=~=G/G* is isomorphic to H(G, A(K))
o> A(K)¢/NZA(K)? by the mapping o (mod G°) — fi/(G, o) (mod
N,AK))® (Isomorphism theorem). We define the norm-residue symbol
(@, K|k) =0 (mod G) for @ (@) =Fx(G, s) (mod N A(K)).

Let A, be the maximal abelian extension of %2 in £ and we
denote by I'(k) the compact Galois group G(A,/k). The generalized
norm-vesidue symbol (a, k) (a= A(k)) which takes value in [I'(k) is
defined as the limit of (@, K,/k) for EC K, A,. The definition (@, k)
depends on the choice of a system of fundamental 2-cocycles {f.}.
But if we define (@,k) by menas of another system {gy,.}, then
there exists an isomorphism @ of /'(k) onto itself such that (a, k) =
@ -(a, k) holds for all ac A(k).

The following two axioms are satisfied in case of class field
theory and in several other cases of class formations.

P. For any extension K|k (k, K& &) there exists a cyclic extension
Zlk such that [Z: E] is a multiple of [K: E]. ,

P'. There exists an increasing sequence of fields K, K,,--, K, ,---

in & such that Q:O K, holds.
n=1

LEMMA 1. Suppose that the axiom P is satisfied in K. If the
generalized norm-residue symbols (a, k) (a = A(k)) defined by two systems
{fxi} and {8k} of fundamental 2-cocycles coincide, then fy;,~8x
holds for every normal K|k.

(PROOF) Let gx,~fxKk then we have (a, K/k) X =(a, K/k) by
our assumption. HEspecially this implies 7,,=1 (mod [Z: k]) for cyclic
extension Z/k. Now for an arbitrary extension K/k take a cyclic
extension Z/k such that [Z:FE] is a multiple of [K:k]. Then from
the relations 7.,,=7,, (mod [Z:Ek]) and 7xy,=7, (mod [K:E])
follows that ».,=1 (mod [K: k]). This means fx,,~&x; 4. €.d.

2. We remark here some elementary properties of group ex-
tensions. Let A, E, G be groups, ¢, ¥ be homomorphisms such that

[

¥
(1) 1—A—E >G—>1

6) frir(G, o)=NecfKip(r, o).



456 Y. Kawaba

is an exact sequence. Then we say that E is a group extension of
A by G and we denote E(A,G:,¥). By a homomorphism pg(n,v) of
EA,G,.,¥) into E'(A’,G,,¥') we mean a set of homomorphisms
A:AS A, p: ESFE, v: G— G’ such that

[
1—A—F —G—>1

@ [», [ry]

1—A'—F—G'—>1

is a commutative diagram. In the rest of this section we assume
that the group A is abelian. Then G can be considered as an
operator group of A by a’=c""(#,«c(a)su]') (c &G, a= A) where {u,}
is a system of representatives of {(y~'(o)CE; o = G)}.

3) flo, )= (n,uu; (o, T G)
is a 2cocycle of G over the G-group A. We call such a pair
Yo=({u {fle,7)}) a frame of E(A, G, V). Any two pairs ({#,},

{f(a, T) ) and ({v,}, {g(o,7)}) are related by suitable bd)’s (b,& A)
by v,=b,)u, with g(o,T)=f(a,7) bbb} . For a fixed 2-cocycle
{f(a, )} there are as many different palrs ({#,}, {f(o, 7)}) as sets
{b,; e G(b,=A); which satisfies b,bb;'=1. The cohomology class
of {f(o,7)} is uniquely determined by E(A,G,¢ ) and is inde-
pendent of the choice of the representatives {«#,}. So we call it the
2-cohomology class asseciated with E.

Suppose that two group extensions E(A, G, ¢, ¥) and E' (A, G, ¢,
Y'), a homomorphism A: A—A’ and an isomorphism »: GG’ (into)
are given such that A (@) = (a)'@ (a&= A, =G) holds. Then there
exists a homomorphism p(n,v): E(A4, G, ¢, ¥)—-E'(A, G, /,¥') if and
only if the with E and E’ associated 2-cocycles {f(o,7)} and {f/(o’,
')} satisfy A f(o, T))~f'(v(o), v('r)) (o, 7= G). If we fix the frames
X= , {fle,)}) and 2'=({=,}, {f'(¢’,7')}) of E and E’ respectively
such that A f(a, 7))=f"(v(o), 'y('r)) holds, then a homomorphism g is
uniquely determined by p:#,—u,,. It should be remarked that
usually there are many such choices of ws according to that of >’s.

Finally, for a given group G, an abelian G-group A and a 2-cocycle
{flo,7)} of G over A there exists a group extension E(A,G,:, V)
such that
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E=\J,A*«u, (A*2A), u,«u_=f(o, )*u,., u,+a*=@a")*u,
4)

va)=a*, Yr(a*u,)=o.

§2. System of Weil groups

I. Let {8, A(K)} be a class formation. Let us assume that a
group W(K/E) is attached to each normal extension K/k (k, K& )
with the following properties:

A, There exist homomorphisms

1) Mg pt AK)->W(K]R)
@ mew: WER—GER)
such that
Ak T
(3) 1—>AK)—>W(K/k)—>GK[k)—>1

s exact. Moreover, let us take an arbitrary vepresentative u, in each
Tk (o) then

4) u,s (Na)«u;'=n(a’) c=G, ac AK)
holds.

A, Let
(®) T et WE[R)—-Ag AK)
be the transfer mapping and let us put
(6) Pr r =Pk kMg 20Tt WEK[R)—A(R) .
Then
(7 1—> W(K/k)C—L—» W(K/k)lﬁf—’f}A(k)—»l
is exact.

B,. In case 11 there exists an into-isomorphism
8) v n: W(EKEH—W(K/E)
such that
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A g

1—>AK)—SWE) —> GEE) —>1 (exact)
) 1 Mx s VKilkog, L
1—>AK)—>W(K/k) —> GK/k)—>1 (exact)

is a commutative diagram. We remark that from (9) follows

(10) v WK =75 (GK])) .
C,. In case 1 there exists an onto-homomorphism
(11) Prir: W(L/k)—W(K]/k)
such that
¢ Pr.k
1— WLk —> W(LE) —> Ak)—>1 (exact)
(12) lpL,K,k . ipL,K,k’u,K ll
1—> WKk —> W(K]|k) —5 Ak)—>1 (exact)
and
VI.K.k YEGoTLE
1—WWULIK) —>W(L/k) —> GEK/k)—>1 (exact)
(13) l'u'L,KX lpL,K,k - 1

1—> AK) —SWEKk) —>5 GE/hH—>1  (exact)

are commutative diagrams. We remark here that from (7) and
follows

(14) Kernel p, , ,=Kernel g, = W(L/K)-.
A/. Let the homomorphism
(15) g AEK)-I'(K)

be defined by the generalized norm-vesidue symbol n{(a)= (a, K) (a=A(K)).
Let I'(K|k)=G(Ag/k) for normal extension Kjk. Then there exists a
homomorphism

(15)’ txr: WEK[R)—-I'(K[k)
such_that



Class formations I1I. 459

Mgk TR,k
1—AK)—> W(K/k) —>G(K/k)—>1 (exact)
(16) lnx . lEK,k\!,. ll
1—>I'(K)—>I'(Kj/k) —>G(K|k)—>1 (exact)

is a commutative diagram.

A,. Let I'(K/k) be the topological commutator group of I'(K/k)
then

¢ Ko

1> WK k) —s WK k) —-5 A(k)—>1 (exact)
an léK,k . l&K,k ¥ lnk

1—>I'(K|k) —>I'(K|k) ——>I'(k)—>1 (exact)

is a commutative diagram.
B’. In case 11 we can choose &y, and &y, such that

WK = WK k)
) lewe , | Ens
rKimn —sr&jk

is a commutative diagram.
C'. In case I we can choose &, , and &y, such that

Pr.K,
WL 25 WK k)
9) lee ¢ exs

(L) —>I' Kk

is a commutative diagram.

If all these properties are satisfied we call the system {W(K/k)}
a system of Weil groups associated with the class formation (cf. Weil
[z)

2. Now we can prove the following existence theorem:

THEOREM 1. For any given class formation (K, A(K)} there exists
always a system of Weil groups {W(K/k)} associated with it.

(PROOF) (i) Let {fxi.} be a system of fundamental 2-cocycles
and (a, k) be the generalized norm-residue symbol defined by them.
Since fg (o, T) is a 2-cocycle of G(K/k) over A(K) we can define a
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group extension W(K/k) of A(K) by G(K/k) defined by fg (o, 7):
W(Kk)=\U A(K)*.u,
ceG
(20) ua.ur:fK/k(a-’ T)*' at? uo"a*:(aa)*'ua‘

XK,ka:d*, WK‘k(a*‘ud):O'

where A(K)* is an isomorphic replica of A(K) as abelian G-group.
Thus we can construct W(K/k) satisfying (8). In the following we
fix a frame Xy, =({%,}, {fxi(o,7)}). Clearly Ay, and =y, are inde-
pendent of the choice of a frame.

(ii) The transfer mapping 7 ,: W(K/k)—A(K)* =1, ,A(K) is de-
fined by

(21) TK.k(a*) = (NGa)*? TK,k(ud) :T];]Guruau:al :fK/k(G7 0)* .

By the isomorphism theorem we have A(K)S=T]AG, o). (N;A(K))

ceG

which implies 75 W(K/k)=Ag, AK)C. Next consider the kernel of
T S0 let 7gp (a*eu,)=7(@*)r(u,)=1. It follows from the same
theorem that o=G° Let o=T]7(o,p;07'p;")7r;', then we have u,
J
=a¥.c, (::[]u,j(udj u,, u;]‘, u,! )efu;j‘ and a,&A. Hence it follows
7
that a*.u,=a;+c where ccW(K/k)F and a,=A(K) with 74,af=1.
To prove Kernel r= W(K/k) it is enough to see that (N a@)* =1 implies
a*=W(KJk).. Since H-'(G, A(K))2AK) ¢ II(AK)) I(A)=TT A*"") is
ceG

isomorphic to H*G, Z)=H,(G, Z) by the Theorem of Tate, we have

AK)NC™ = (g7 U frp) « IAK)) -

Here g’ is a 2-cocycle of G over Z, i.e. g°=> a, (o,7) (@, =Z)
with ég*=>, @, {(t)—(o7)+ (o)} =0. By the explicit formula of
cup-product (see e.g. Artin-Tate [3]) we have

(2, (o: N UF=TT {flo, 1)} "0 =TT (sz/20,8,) % .

This term belongs to W(K/k)c since it becomes the unity element by
taking mod W(K/k)c by means of 8g~*=0. Also (a*)’ '=u,a*u,'a'c
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W(K k) implies I(A(K))c W(K/k). Hence we have proved Kernel 7
= W(K/k). Since Kernel py ,=Kernel 7, ,=W(K/k) we get the
exactness of (7) (cf. Kawada [6], p. 92). Evidently the homomorphism
K, is independent of the choice of a frame 3, of W(KJE).

(iii) B,. Firstly, let us normalize fy,=resy ;fx, and let us

choose Zx,=({%,}, { frulo, 7)) and Zg,=({v,}, { (o, )¥) of W(K]R)
and W(K/f) respestively:

WKk =\ ) AK)*-u,, WE[D)=\) AK)"u; .

Then we can define an into-isomorphism vy, ,(1,:) of W(K/t) (A(K), H)
into W(K/k) (A(K), G) by

(23) va)=a*@=AK)), vu,)=u, (PcH).

It is then easy to verify (9). It should be remarked that vy ,,
depends on the choice of the frames g, and 2.

(iv) C,. Let us normalize f; g=res, f.,, and let us choose
Sre=n,}, (o)) and X =2}, {fux)) of W(L/k) and W(L/K)
respectively:

W(L[k)=\J A(L)*+u,, W(L|K)=\_ AL)"-u; .
seG peH

Let us fix for a moment a system of representatives {o} of cosets:
G=\/H7 and put

&(a, 7)=fr (e, T)" (8h) (o, 7) (m=[L: KJ)

h(o)=fr(H, T) e fr (e, H)™
Then it follows that g(o, 7)=g(7, 7) and so g(o, 7)=infl; 2(F, ¥) where
& denotes the class of ¢ mod H. Hence we can normalize
(26) fxin(d,7) =8, 7).

By a known formula (see e.g. Hochschild-Nakayama [56], Lemma 7)
we have

(25)

(27) infl, o @, &k frin() ) =MLkoTL KV 1 (U UM ) -
We choose a frame Xy ,=({v;}, {fx.}) of W(K/k):
W(K|k)y=\_) A(K)*sv,.
GeF
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By B, we can decompose W(L/k):\ﬁij,K’k(W(L/K))ou;,. As in the

considerations in §1,2 we can define a homomorphism of W(L/E) into
W(K/k) as an extension of

(28) P* =t gvilkrt v WILIK)—AK)

by means of

p(uz) =v; (e=G),

because using we can verify the corresponding conditions:
PX(ths oty o 10 0) = [ 1 (T T)* p¥ (U5 (@*smt) otz ') =050 p* (@™ o ut,) e V7!

for o,7=G. Then from the definition of p=p, x, follows the com-

mutativity of (13).
Next we shall verify (2). By a known formula of Akizuki-Witt
g(o, 7) in [25) can be expressed in another form:

8o, T)=f1(H, &) s f1 (H, a7) " s fr (Ha, T) .

Hence we have

(30) lek(G’ E):g(F’ ) :fK/k(F: a)

by the normalization [26). Now compare the two mappings g, ,
and pg, o Prxr On the subgroup v, x (W(L/K)) we have by
PrioPrgr= Mg roPr goVT k, ;= ., Using the transitivity of the trans-
fer mappings. On the set {#,} we have by and PrroPr kb
(#;) = g (V) = [ F, 3) and gy ,(#;) =f,,.(G, o) which are the same by
(30). Thus we have proved [12).

We should remark here that the definition of p; yx, depends
on the choice of the frames ¥,,, ¥, and 3y, but does not depend
on the choice of representatives {s} of cosets G mod H.

(v) To show the existence of &, , we need a generalized theorem

of Savarevié (see, e.g. Hochschild-Nakayama [5], Theorem 3.2 or
Artin-Tate [3]). Namely let fi (5, %) (5, 7=G) be a fundamental 2-
cocycle of G over A(K), then

(31) fxie@ )= (frnl, 7), K)YET'(K)

is a 2-cocycle of G over I'(K) associated with the group extension
I'(K/k)(I'(K), G,¢,¥). Since we need the proof itself we repeat the
known proof. By a known formula of Akizuki-Witt g(o, 7) in
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can be expressed in another form

(32) glo, ) =f1 (H, ¥)« (f.i(@ D)Ll TTHT

where y=gc+7.a7 'CH. Now take ECcKcLcAy and denote here
G=G(K/k). Then from follows (g(&, %), LIK)=0o+Fo7'cH.

Since fg,(F, ) =8(G, T)s €+ €z 71 (c,&A(K)) we have
(33) (fain( T)y LIK)=(p;+ )+ (Pz+T)+ (Psre07)'EH

where we put p,=(c, L/K)=H. Take the limit with respect to all
{L; KcLcAg} we have

(34) (frin(@,7), K)y=c*er*e (o) '&I"(K)
where o*<1"(K/k) means some element with Y(o*)=5<G(K/k). This
proves our proposition.

Let us put in [(84) U,=o*(F<=G), then
(35) r(KR)=\J I'K)+Us, U+ Us=1x0(3, %)+ Uss
By the general method shown in § 1,2 we can define the homomor-
phism &g ,: W(K/R)—I'(K/k) as an extension of 7., by &z .(u#.)—U,
(¢=G). Then the commutativity of holds.

We should remark here that £, , depends on the choice of frames
Sgn=({#s}s {Fxin}) of W(K]k) and 3y, — (U}, (ixs}) of I'(KJk) where
fxi, is defined by [81). If we fix Yy, there are as many possibilities
of £, as different frames ({B,U,}, {fx;}) of I'(K/k) where B,—I'(K)
and
(36) B.B:B;.=1 (¢, 7<G).

(vi) LEMMA 2. If @ homomorphism & ,: W(K|k)—I'(K|k) satisfies
A/ then the property A, is satisfied automatically for this &g ,.
(PROOF) To prove the commutativity of it is enough to see
(37) V(a, K)=(Nga, k) (a=A(K))
(38) YU, = (fxi(G(K][k), 5), k) (e=G(K/k))
where =+y(I'(k), I'(K/k))”. Here is a known property of the

norm-residue symbol. "o prove let kc KcLc Ay, L/k be normal
and put L'=A,NL. Then is equivalent to

7 Y(F, G) ;neans :,bf, ‘6, i.e. the cannonical homomorphism of G on F.



464 Y. Kawabpa

(39) \I’,Usz (fK/k(G(K/k)) &)’ L,/k)

for all such L where ' =Y (G(L'[k), I'(K/k)). From the choice of

U.=ac* in (v) follows Yy'U,=V"(p,+o) in[33). Put F=G(K/k). Then

from f,,=g+8c it follows that fx,(F, ) =g(F, 5)+«N,c,. On the other

hand we have ¥"/(p,) =v¥"(c;, L/K)=(Ngc;, L'[k) and ¥"(a)=(f. (G, ),

L'/k) by definition. Hence using these relations and we have
‘I"”(Pa-'E):(g(Fr 3)NFC;" L’/k): (fK/k(F? 3)7 L,/k) ’ g. e. d.

(vii) B’. Let us fix frames X, and Xg; as in (iii) for the
normalization fx;=res, ofxu» and choose the frames 3, of I'(K/k)
and i‘,m of (K/t) as in (v). If we define &y ,, &€x; and vy, , by
(40) vics (U)) =y Ege ()= U,',l'; Exin,)=U,
then we have ((U))=U, and B’ holds.

C’. Let us fix the frames 3,,, 3, x and Yy, as in (iv) for f, x
—resy . f;,, and for fy, as in [26). Let us choose the frames 3,
=({U,}, {fLx}) and i'K/k:({Vﬁ}, {fxix}) of I'(L/k) and I'(KJk) respec-
tively such that
(41) W(U;) =V, (eEG, ¥=V¥(I"(Kk), I"(L[k))
holds. Then we can verify the commutativity of immediately.
That we can choose E‘K,k and Z’L,k satisfying can be shown as

follows. Let us take X,,, as in (v) from 3, of W(L/k) and define
&, , as there. Next put V_.=+y(U;). Then from

‘P‘(UEU%U;T]-) = (”’L,K(uaui-u;—{l.)’ K) = (fK/k(&, ?)’ K)
follows that
VE'V?:‘P(UE"U?):\P‘(UE'U?.U;_;-'Ui?):(fK/k(E’ ?): K)'Vﬁ"
This shows that ({V}, {fx.}) gives a desired frame of I'(K/k). q.e.d.
Let {W(K/k)} be a system of Weil groups. If we can choose the

homomorphisms », p once and for all such that the conditions
B, Let kctcjcK and K|k be normal. Then

(42) V. L,k°VE.j, 1= VK, j.k

holds.
C,. Let kcKcLcM and M|k, L|k, K|k are all normal. Then
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(43) PrL.r°PuM.i.e= PM.K k-
C, Let kclcKcL and L}k, K|k be normal. Then

(44) PrLErVi,1.e=VE1L.E°PLEK

holds. (In case K=[ C, is contained in C)).
are satisfied then we call {W(K/k)} a strong system of Weil groups.
REMARK. In a strong system of Weil groups we can choose the
homomorphisms &g, once and for all such that B' and C' hold.
For, what we have proved is that if we fix the frames ¥, of

W(KJk) for all K/k then we can choose (i) 3y, and 3, of I'(K/k)
and I'(L/t) respectively so as to satisfy B’ and (ii) 2., and 3, of
I'(L/k) and I'(K/k) so as to satify C’. What we want to prove is
that for each individual {&,¢, K} or {k K,L} we can choose the

frame EK,k for each K/k once for all such that B’ and C’ holds for
these frames. )

For that purpose let us consider the set 54, of all homomor-
phisms ¢, satisfying A’. If we fix a frame 3y, of W(K/R), &4,
depends on the choice among different frames EK,k in I'(K/k) with a
fixed 2-cocycle fg,, as in and this depends on 1l-cocycle {B;} of G
in I'(K). Since I'(K) is compact we can introduce a natural topology
in Hg, such that ., is compact. Let £L={K]} be the set of all
finite normal extesnions K /k, in & and put Ey=E8g - I K,cK,

(&%) then we can define the continuous mapping v, , of 5, into 5,
by (4I). It is easy to see that {5, ,} makes an inverse mapping
system. Since each &; is compact the limit space is not empty.

Take an element in its limit space. Then we have a set Expny 5
K,=%} such that [(4I) holds for each pair &, nyr Expny 5 K,cK,}.
Thus we have chosen £y , . For a general normal extension K/k
we can take k,ckc KcL (L&R) and put

(45) EK.k:\PL,K°reS S’L,ko

where v, x means the mapping 5, ,—5, defined by and res
means the restriction from [°(L/k) on I'(L/E). We can then prove
in the usual way that the definition does not depend on the
choice of L&=2 and thus defined family {£x,} satisfies B/, C/, q.e.d.
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3. Let {& A(K)} be a class formation and 7g(a)=(a, K) be a
generalized norm-residue symbol defined there. Suppose that two
systems of Weil groups (W(K/k)} and {W'(K/k)} associated with this
class formation be given. Let us denote the groups and homomor-
phisms in A, B,C, A/, B, C' with respect to W/(K/k) with prime.

We call {W(K/k)} and {(W'(K/k)} are isomorphic systems if there

exists an isomorphism
(46) Q.2 WKW (K|k) (onto)
for each K/k such that the following conditions A*, B*, C*, A’* hold:

% . S L o
A¥* . i Mg r=Mg k> Trr=Tr 1°Prrs Prr=FPg o Px.r

B* : OV e=Vi1.:°Pr
C* : Pr.rPrLer=PLEirPLk
A'*: Ex = ki Prir ("x="g)

THEOREM 2. Let us assume that the axioms P and P’ are satisfied
inn R Then any two strong systems of Weil groups {(W(K|k)} and
{W'(K|k)} are isomorphic. ,

(PROOF) (i) We may assume that the system {W(KJk)} is the
one defined in the proof of MTheorem 1. Let us choose an arbitrary
frame 3% .= ({#,}, {gx(o, 7)}) in each W/(KJk):

47 W' (K|k)= UGA(K)’-u,',, U, su.=Zgo, T) e, .

From the conditions B,, C, follows that vy, , induces gx;~resy &k

and p; x, induces infl; g, ,~g¢, (m=[L: K]). Moreover, g, is a

generic 2-cocycle in H*G, A(K)). For, if it were not so gg;~1

would hold on some cyclic subgroup H=G(K/t) (by the above rela-

tion). On the other hand we have A(K)H:UHgK,t(H, p)+ N,A(K) by
pe€

A,. Since ggx;~1 we would have gg;(H, p)&NyzA(K) which would
imply A(K)¥=N_,A(K). But this contradicts with the isomorphism
theorem A(K)"/N,AK)x2H.

We shall prove next that gy,~fk, holds for every K/k. Let
us first assume that G=G(KJk) is cyclic and so put G={1, o, %,
o?~'}, Then we can normalize
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Jri(o'y o) =1 (i+]<n);=Ag (@) (+]=n) (@=A(k))
grio’y ) =1 i+ <n) ;=g (b) (i-+j=n) (BSA(K).
By A, we have
Vobg i) = (fri(G; o), k)= (a, k)
Vobx(tt,) = (&xi(G, o), k)= (b, k)
where Y=y (I'(k), '(K/k). From the commutativity of follows
Vobgw@,) =g (#,)=0 (mod G(A,/K)).
Hence we have
(@, k)=(b, k) (mod G(A,/K)).

This is equivalent to a=0b (mod N;A(K)), and this implies fx,,~Zx/-
Then as in we have fx,~&g: for every normal extension
K|k.

(i) We shall prove next the existence of homomorphisms Qg ,
satisfying A*, B*,C*. By (i) we may take a frame X%,,=({#}, {fx
(o, 7)}) in each W'(K/k). Moreover, it is easy to see that for given
{K,t, k} (in case II) we can choose frames X, and X%, such that
the homomorphisms vy, , is defined as in the proof (iii) of
1; and similarly for p’ in each {L, K, %k} in case I. But what we
want to prove is that we can choose a frame Y%, of W(K/k) once
for all such that »’ and p’ are expressed by these frames as in the
proof of Mheorem 1. For this purpose let k,cK,c---cK,c---(K,/k,:
normal) and £=\J/K, and let us choose the frames 3% ., Sk ko
successively such that the frames Xy ;. and z'}{n_l,ko are in the

required relation with respect to p’ for (K, K,_,, k}. Then we take
the frame X%, for k,ckcKcK, using the relations » and p for
{K,, k, k,} and {K,, K, k} respectively. That this choice of the frame
% is independent of K, and that p’ and »' are expressed just as in
the proof of by means of these frames can be proved
without difflculties. So we omit the details here. After choosing
these frames 3%, in W/(K/k) it is easy to define the isomorphism
Dxr: W(K/R)—W'(K|k), namely let

W(K]k) :;Eé AK)*oun,, u,ott,= fr (o, T)* e 0t,,
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W(K|k)=\_) A(K) su,, ,stt.=fg (o, T) «ut,,
seG

we define then
¢K,k(a*) -a (aEA(K)), QK,k(“a) =u,.

It is evident that A*, B*, C* hold for these @ ,.

(iili) That these @, , satisfy A’* follows from the following
Lemma:

LEMMA 8. If a system of groups {W(K|k)} satisfies the conditions
A, B,C, A’, B/, C’ then the homomorphisms &y, are determined uniquely
by other homomorphisms n, \, p, v, p, .

(PROOF) Let &5, and ¢, be two homomorphisms satisfying the
conditions A’, B/, C’, while the other homomorphisms A, ¢, v, p, 7
are the same for ¢ and &. If we use the same notations as in the
proof of we have

Ex.i(th,) = Eg 1 (#8,) » Bg(a) Bylo)=I'(K)
By(a)+By(t)?+ Bg(o7) ' =1.

By the considerations and mnotations in (vii) of the proof of
1 it follows from the condition C’ for kc Kc L that

(48) VB, (d)=Bg(3)

where Y=y (I'(K), I'(L/K)). In particular, if we take kc KCc Lc Ay
then I'(L/K)=I"(K) and ¥ is the identity. Hence implies that
By (3) (¢&=G(K]k)) belong to G(Ag/L). Since L is an arbitrary inter-
mediate field in Ax/K we have Bg(s)=1 (¢=G(K/k)), namely &g ,=

Exp Q.€.d.
THEOREM 3. Let B(K) be the kernel of ng: AK)—I'(K) and let

us assume that
(49) H'(G, B(K))=0.

Then the isomorphism @y, in is determined up to the inner
automorphism by an element of \g ,B(K).

(PROOF) Let us assume that A=/, ==, ete. in A*, B*, C*, A’*,
Let us fix a frame 3 ,=({&,}, {fx ) of W(K/k):

W(K/k) :"%A(K)* i, Uou.=fg,lo, ) U, .
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Then @y, is determined by Qg .(a*)=a* and Qg ,(#,)=u,. By condi-
tions A, A’ we have
U ot = frplo, TV U,y Ex 1 (8,) =Eg 1(88)) .
Hence we have
u,=b*u, (b,=AK)), b,+bi+b,l=1, and n,b,)=1.

Therefore, we have b,=B(K). Since H'(G,B(K))=0 we can find an
element ¢&=B(K) such thet b,=c'"?(c&=G) hold. Then we have u,=
c¢'~'u, and hence

(50) Qg la*u)=a*(c' ) eu,=c*(@* +u,)c**.
Conversely the mapping satisfies all the conditions A*, B*, C*,
A, g.e.d. v

REMARK. We omit the discussion on the uniqueness property of
a (not necessarily strong) system of Weil groups.

§ 3. Strong system of generalized Weil groups

1. Let {R] A(K)} be a class formation and let {W(K/Ek)} be a
strong system of Weil groups associated with it. We shall prove
the following existence theorem of generalized Weil groups:

THEOREM 4. Let us assume the axiom P’:

4} 2=\K, (kpcK,cK,c---cK,C---C2)

7n

in & Then there exists a system of groups {(W(k); k=8 with the
following properties :

(A) Let Gk) be the compact Galois group of L2/k (i.e. G(k)=
G(82/k)). There exists an into-homomorphism

(2) m,: W(k)—G(R)
whose image m,W(k) is dense in G(k), and an onto-homomorphism
(3) w2 W(k)y—AKk) .

We denote its kernel by W (k) such that

[

#
4) 1> Wik)o—s Wik)——> A(k)—>1
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is an exact sequence.
(A)). The diagram

Ty
W(k) —> G(k)

®) Loy ¥
A(k) —> I'(k)

is commutative.

(B,) For kct (kI R) there exists an into-isomorphism
(6) v;.p: W(E)—W(k)
such that

™,

wWiE) — GO
(7) l”l,k ™,

W(k) — G(k)
is a commutative diagram. We have also
(8) v, W) =7,'G({) .

(B, For kctcj the transitivity relation

9) Ve poViz =V p
holds.

(C)) For a normal extension K|k (k, K=&) there exists an onto-
homomorphism

(10) Pr.r: W(R)—W(K]E)
such that

T
Wk) —>Gk)

(1) Lemag, ¥
W(K|ky—> T (K/k)
Vr.k Vrom,
1—>W(K) —Wk) —>GKR)—>1 (exact)
12) 2978 A Pr. & o 1

1—>A(K) —>W(K[k) —5G(K/k)—1 (exact)
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are commutative diagrams. Here =y (G(K/k), G(k)). We remark
here that from follows

Kernel pg ,=Kernel pp=W(K)~.

(C,) In the same case

)73
1 Wk —sWik) S A(—1 (exact)
(14) \},pK’k . lpK'k Fx i ll
1— > W(K|k)y—> W(K|k) —>A(k)—>1 (exact)

is a commutative diagram. We rvemark herve that from [(11), and

§ 2, follows (5).
(C,) Let kcKcL and K|k, L/k be both normal. Then the transi-

tivity relation
(15) Pr.EkPLe=PE.k
holds.
(C,) Let kclcK and K|k be normal. Then
(16) Pr. Vs~ VK LE°PK.1 .

We call this system {W(k); k&=&} a strong system of generalized
Weil groups associated with {8, A(K), W(K]/k)}.

(PrOOF) (i) Let 2&=8R. By (1) kK, for a certain ». In the fol-
lowing we assume that the fields {K,} in (1) are all normal over k,.
Then we consider a sequence of groups {(W(K, /k); n=7,r+1,---} and
a set of onto-homomorphisms

II,=p(K,,K,_,k): WK,k —-W(K, [k) (m=r+1,7+2,-..).
These determine the inverse limit group W(k):

7 Wi(k)=1lim (W(K,Jk), IT,)} .

n—oe

Since all 17, are onto-homomorphisms we can define naturally the
onto-homomorphism

(18) P(K,, k) : W(k)—>W(K,[k) (kCK,)?
such that p(K,_,, K, k)-p(K,_,, F)=p(K,, k) holds. On the other hand

8) We also use the notations p(K, k) instead of pg,r etc.
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the Galois group G(k)=G(£2/k) can be considered also as the inverse
limit group of the system {G(K,/k), V(G(K, k), G(K,, [k))}. Since the
following diagram is commutative:

P P
WK, |ky—W(K, [k) <«—--- —Wi(k)
l WK”/(zP J{ K, H/k\lf
G(Kn/k) (-"_‘G(Kn’lfl/k) e (_”_G(k)

we can define the homomorphism =,: W(k)—G(k) by
19) () =1im (m(K,,, k) -p(K,,, k) (1)) uc=Wik).

Since each (K, /k) is an onto-homomorphism the image =, W(k) is
dense in G(k).

(ii) Consider the following commutative diagram:

1 1
| L,
W(Kn/k)c< W(Kn | 1/k)c<__ ...... é—‘—W(k)CC
l “op l° p
(20) W(K, k) «—W(K,,  [k) «—------ «—W(k)
S | ¥ 1
AR) <«— Ak D TErTE «——A(k)
1 1

where each column is exact. Then we can define the homomorphism
u,: W(k)—A(k) by

pe(e) =1im (MK, k) -p(K,,, k) (u)) S A(k) uc Wik) .

Since p(K,, k) is an onto-homomorphism g, is also an onto-homomor-
phism. Here the kernel of p, is the limit group of {W(K,/k)} and
contains the commutator group of W(k).

(iii) Let kc? and

W) =lim (W(K, 1), p(K,,1,, K,,, 1)}, W(k)=1lim (W(K, [k), p(K,, 11, K,, k)} .

Then from the following commutative diagram
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P P

WK, 1) «—W (K,  [Jt)<—----- «—W)
Y oop op

WK, R)y«—W(K,  [k)¢—:----- «——W(k)

it follows that we can define the homomorphism »,,,: W()—W(k) by
(22) i) =lim (K, ¢, k) op(K,, 1) ()  uc=W().

That »;,, is an into-isomorphism follows from the fact that each
v(K,,t, k) is an into-isomorphism. The commutativity of (7) follows
from the following commutative diagram and the definition of ™)
and v, ,:

WK, D _ < £ WK, /) —F— - ——
.l ) \ lv \\
P
WK, k) < 2 WK, k) < -~~~ —— Wik)
\ l Lo \ X Lo
G(K"/k) < L G(Kn+1/k) = - - - «— G(k)

(B,) can be proved similarly.
(iv) Let kcKcK,(n=v,-+1,---). Then using the commutative
diagram:

P P
W(Kn/k)‘* W(Kn+1/k)€__ """ D p— W(k)
L | L |
W(K|k) «— W(KJk) <«——----- «——W(K]k)

we define the homomorphism pg.,: W(k)—W(K/k) by
(23) Prs®)=p(K,, K, k) op(K,, k) () u W(k).

Since p(K,, K, k) and p(K,, k) are onto-homomorphisms p , is an onto-
homomorphism. Now we can verify (C,), (C,), (C,) (C, as above
using corresponding diagrams. It is evident that the definition of
W(k), p, m, v, does not depend on the choice of the sequence {K,}, q.e.d.

2. Let B(K) be the kernel of 7,: AK)—I'(K). Let {K,} be
the sequence in (1) and let us put
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7, = 9K, K, 'NG(Kn+1/Kn) : B(Kn+1)—’B(Kn) (n=1,2,-.).

Then we can define the inverse limit group B by

(25) B=1im {B(K)), IT,} .
Let us denote the canonical homomorphism by 4, : B»B(K,) so that
(25) V.= ]I;«+1 °‘I’n+1 d

THEOREM 5. Let us assume, furthermore, that (i) for each k=8
(26) 1 A(k))=I"(k)
holds, and (ii) for each normal K|k with G=G(K|k)
Px.B(k)=N:B(K)

holds. Then we have stronger results than in [Theorem 4:
(A)) There exists

(28) an into-isomorphism n,: B—W(k)
such that

LY g
(29) 1—>B—> W(k)—>G(k)—>1
is exact.

(A, Let C(k) be the kernel of vr,: B—B(k). Instead of (5) we have
the following commutative diagram where each column and each row
are exacl sequences :

1 1 1
A J/ Ty N4
1—>C(k)—> W(k)c—>G(k)—>1
[ A [ ™ [4
(30) 1—> B —>W(k) —>G(k) —>1
l \#k ¢ l #k nk A4 \l’
1—>B(k)—>A(R) —>I'(k) —>1

L]

1 1 1

where ¥, is defined naturally by the definition of B in [(25).
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(C)) Instead of we have the following commutative diagram,
where each column and each row are exact sequences :

1 1 1

[ )\‘ VK,k [
N2 k N T v
(31) 1—>B —Wk) —>Gkk) —>1
Tk Pr.k 14

(PROOF) By our assumption 7, (n=1,2,---) are onto-homo-
morphisms and hence +,: B~B(K,) are also onto-homomorphisms.
Since the following is a commutative diagram:

1’ i’
«— B(K,) «— B(K, ) «— - «—B
Mop » P |
«— WK, |R)«— WK, |R)¢— - «—Wi(k)
we can define n,: B—~W(k) by
(32) A (B)=1im (M (K, k) -y, (b))  bEB.

Since MK, k): B(K,)—>W(K,/k) are all into-isomorphisms, A, is also
an into-isomorphism. Next consider the following commutative
diagram:

I’ 7’
«— B(K,) «— B(K, ) «— - «—B
Mo Moo
«—W(K, [Ry«—W(K, . |R)y¢— -+ «—W(k)
(33) e oy L
é———]"’(Kn/k) <~——[’(Kn+1/k) C—— eeennn «—G(k)
v v ¥

¥
«—G(K, k) «—G(K, . [k) <— ------ «—G(k)
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Here we have G(k)=Ilim (I"(K,/k), ¥)=1im (G(K, k), ¥). For o=G(k)
let us denote o,=V(G(K,/k), G(k) (0)=G(K,[k) and p,=V(I"(K,/k),
G(k))(o) so that o=1lim o, =1im p,. Now take arbitrarily a,&W(K, k)
such that ¢(K,, k) («,)=p, holds. Then by means of 17, B(K, )=
B(K,) and Kernel §(K,/k)=AB(K,) we can find an element «, &
W(K,,./k) such that

(34) a, = P(K, o KA Pui =E(K, 0, R)a,

holds. (Precisely, take B, & W(K, ., /k) such that &K, ,, k)8, 1=P,4
holds. Then its image B,=p(K, ., K,, k)8, satsifies &K, /k)a,+B;'=1
by the commutativity of [(33). Hence «,+B;'&N(K,, k)B(K,). So take
v, CB(K,,;) such that a,+B;'=N\(K,, k)-II (v,,,) holds. Let us put
A, =NK, ., B) (V1) *Bus- Then this element «,,, satisfies [34)).
Continuing this process we can find a sequence {«,=W(K,/k)} such
that a=1im a, = W(k) satisfies =, (a)=0o. Hence we have = ,W(k)=
G(k). Finally the whole exactness of the sequence [29) follows also
from the commutativity of the diagram [33).

The commutativity of the diagrams [30), can be proved in
similar manner, q.e.d.

REMARK 1. As to the uniqueness theorem for generalized Weil
groups satisfying all the formaulas (A)), (A,), (B)), (B.), (C)), (C,), (C,),
(C), (A), (A, (C)) we can prove the analogous theorem as
2 under the assumption P, P’ and (i), (ii) in

REMARK 2. It is an open question whether every system of
Weil groups {W(K/k)} is a strong system or not.

REMARK 3. We don’t discuss here the problem to construct a
system of generalized Weil groups from a (not necessarily strong)
system of Weil groups {W(K/k)}.

§4. System of Weil groups in algebraic function fields

1. Let %k, be an algebraic function field in one variable over
the complex number field C and £ be the maximal unramified ex-
tension over k£, As we have proved (Kawada-Tate [8]) we can define
a class formation {&, A(K)} as follows. Let K&&, D(K) be the group
of all divisors of K, E(K) be the group of all divisor classes of K.
Let us introduce a locally compact topology in E(K) such that the
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subgroup E,(K) of all divisor classes of degree 0 is compact and
E(K)/E,(K) is discrete. Consider the character group E(K)" (in the
sense of Pontrjagin). Put AK)=EK)". For kcK (k, KE8&) we
define @y, : E(k)"—>E(K)" by conorm. Then we can prove that (&,
A(K)} is a class formation.

Let R(K) be the Riemann surface of K, F(K) be the fundamental
group of R(K), H(K) be the one-dimensional homology group of R(K)
with integral coefficients. We can identify H(K)=F(K)/F(K). We
denote by I’ a closed curve on R(K) (with initial point §3,), by I its
homotopy class (so an element of F(K)), by I' its homology class.
We use the additive notation for chains and the multiplicative nota-
tion in F(K). Let A=T[B; be a divisor of degree 0 on R(K) and
dlog A be the differential of the 8rd kind on R(K) such that (i) at
each point PB; dlog 2 has a simple pole with residue »,, (ii) all periods
of dlog A are pure imaginary. If B is a 1l-chain on R(KX) we define

1) [B, %]:SBdlog %A, (B, Ay=exp[B,UJ.

Let us fix a prime divisor P. x<=E(K)" induces a character on D(K)

for which we use the same notation: x(%()zx(ﬂ). Here by 9 we
mean the divisor class containing a divisor 2. Then x can be ex-
pressed in the form

(2) XQAUP)= (7, A ASE(K)

by a l-cycle I" and a complex number A with absolute value 1.
Here I’ is uniquely determined up to boundaries. We denote then
x=x(I3N).

Let K/k be a finite unramified extension. We denote be 7=y,
the projection of R(K) onto R(k) and by V=V, the transfer map-
ping: H(k)—H(K). Then we have

(3) PreaXp(Vy N) = XK(V&; ) y=H(k) .

Let K/k be normal with the Galois group G=G(K/k). We can
verify

(4) X (T M) = x(a B A (I, B0 7))

In the following we use the notation
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-1

(5) Q[‘ﬂ B]; S[B, SBU -1]7 Q(0-7 B);exp Q[o', B]

for =G and for 1l-chain B, where {§ denote the imaginary part of

a complex number. Let F(k)=\ nF(K).B, and B,wF+8;'=m(al).
sgeG

Choose a curve B, on R(K) such that B, connects P, with %3, and
xB, belongs to B,. Let then ['(s,7)=B,+(¢B,)—B,, and

(6) Ao, 7)=@Q(0, B,) .
Then
(7) fK/k(0'9 T)= X(f("': 'T); 7\'(‘7’ 'T))

satisfies all the properties of a fundamental 2-cocycle. We use later
the following relations

Q['To'r = Q[‘r’ ']+ Q[T’ al’]
Q[P; 17(0'7 'T)] = Q[P7 By] - Q[G’, Br] + Q[P"" Br] - Q[P’ Bar]

which can be verified easily.
2. We shall consider next a system of Weil groups in algebraic
function fields. For normal K/k (k, K=8) we can express W(K/k) by

W(K]/k) :a\é/cA(K Y¥eu,  (AK)=EK)")

(8)

9) u, XL\ =X(a T, N e Qyil, T))* o,
w,st,=X(Fa, 7), Mo, 7))* 2ty

From (9) follows that

(10) T = {x(0, M)*}

belongs to the centre of W(K/k). We identify x(0,A) with A and

we denote T={N;A&C, |A|=1}. Let

(11) J(K|k)=F(k)|[mF(K)*

Then we have

JK[k) =\ HK)-B,

(12) ~ o 25C
B,+B.= o, 7)B,,

Hence if we put
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(18) Tr1k(e) = Bor WX M) =g
we have an exact sequence

/

(14) L s T s WK ) JOK ) —1 .

For acF(k) let us denote by «a* the class of @ mod wF(K)c (i.e.
a*=J(K/k)), and let us choose a fixed representative path [a*] on

R(K) starting from 9B, such that =[a*] belongs to a. In particular,
we choose

(15) [(wI+B,)]=I+B,, [(w[ (o, 7)*]=B,-cB.+B,!.
Then for new representatives

Uyx=x(51)u, for a*=ul+B,CJ(K/k)

we have
W(Kk)= \J T*.U,*
aXeJ(KIE)
(16) Uy AN* =A% U, * T

Uy« Uge=ag(a*, B%)+ U,xpx
where we put for a*==I+8, and B*=md.8,

(17) agi(a*, B%) =Ngp(a, T)Qii(o; 4) = Qgyla, [B*]) .

Next we shall choose another system of representatives mod T,
namely we put

(18) Vx=exp(— QgulG, [a*]]/n)+ U, .
Then we have

WEIR) =\ T*+Vx

a¥eJ (KB

(19) A¥ eV x=V xer* &)

V.V =byou(@®, 8+ Voxge

Using (8) b(a*, B*)&T can be determined as follows:
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b(a*, B*)=a(a*, B*)sexp(—{QG, [a*]]+ Q[G, [8*]] - QIG, [a*B*]1}/n)
=exp(Qe, 4]+ Q[o, B.]—{Q[G, I'] + Q[G, B,1}/n

—{QIG, 4] +QIG, B.]}/n +{QIG, I + 04+ I'(a, 7)] + Q[G, B,.1}/n)
=exp(—{Q[G, I'|+ Q[G, a 4]+ QIG, I'(a, )] - QIG, I + o4+ I'(a, 7)]}/n)

=exp([— A, NB/PB"1/n)

where A=I +B,+dd4+cB.,—B,.— (" + ad+ (o, 7)) = [a*] + a[B*]
—[a*B*]. On R(K) A belongs to F(K):.. Hence 1-chain A is homolo-
gous 0 on R(K). Let us assume, for simplicity, a triangulation of
R(k) and R(K) such that (i) P, is a vertex and P is an inner point
of a 2-simplex, (ii) I" and B, are all simplicial 1-chains, (iii) g, and
=G are all simplicial mappings. Since A is homologous 0 we can
take a simplicial 2-chain ¢® such that oc’=[a*]+o[B*]—[a*B*]. Let
us denote by KI(c% ©) the Kronecker index of ¢* with respect to O
(i.e. the algebraic sum of the number of coverings of 2O by each
simplex in ¢* and by LK/, 0)=KI(c’ D) (@c*=1I") the linking
coefficient. By the residue formula we have

[ac?, P/ =2mi(KI(c? P)—KI(c*L)). Hence we have

b(a*, B*) =exp ( — %”', (n—1) KI(e’, ) — 3 KI(e*, 7))

:éxp( 27 S KT, 1)) -
n reG

So finally
0] bgular, B*)= exp(?”fELK([a*H(w*)[B*] [a*8*], +%)

where ¥ =v(G, J(K/k)). By we see that
byp(a*, B*)r =1 (n=[K:E]).

We call the expression of W(K/k) by and the standard ex-
pression of W(K]/k).

2. Here we shall find the explicit form of the homomorphisms
A, 4, v, p, 7 in [Theorem 1 by means of the standard expression.

A. By the formaulas in proof (i) of we have
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A X (T N) =A*<exp(Q[G, I']/n)*« V¥

‘ T A e V2) =Ya* &G (n=[K: k], ¥=v(G, JIK[k)) .

Next we have

Tx4U.) =G, 0)* =x(I(G, o), MG, o)*

TS M) = Nex(5, M) =x (N3 2+ Q(G, I'))* .
Then using (4) and

VB,=I'(G,o), V(x[)=N;I' (V=Vg,

we have

pity=X(Byy MG, ), pxx(L' M) =20 (L, A+ Q(G, I)
for p=pg,=Pr i g ioTkr Let Y=vy(H(k), J(K/k)) then for a*=
(wf+B,)=J(K[k) we have

pA* U %) =x,(fra, A Q(G, [a*])) .

Finally from [18) follows that

Pg, N Vo2 ) =2, (fra, )
Thus the homomorphisms Ag.;, wg, and pg., are expressed by and
(22).

B. Let G=\/dH, and for pcH let us take the same path on
R(K) for the extension K/k and for Kj/{. Now put

WER)=\J AU cu, =\ T*V,x

a®eJ(KIk)

W) =\) AE) uf=\J T*Vir.

g¥es(K/t)

Then v=wvg,, is determined in the proof of Theorem 1. 1In the
standard expression we have

Vg2 (M) =A¥ T
Vit 1(Vg*) = b, 1i(B*) V= (B*EJ(K[T)).
Then for m=[K:t] and n=[I: k] we get
b(8*)=exp(— Qx;[H, [B*]1]/m + Qg,ulG, [B*]]/mn) .



482 " Y. Kawapa

Using the formula

(24) [ Ly ('”'K/zs/B)a_ =0, NHS’BE_ g
we have

b(8*) = exp([[8*], (NP)NyB~")]x/mn)

namely,
1 — *
bi.:..(B*)=exp > Quulo, mralB*T])
mmn seG/H

Thus the homomorphism vy, , is determened by and explicitly.
C. Let m=[L:K] and n=[K:k]. Let G=\/Hs. Using the results
in A we can compute the term in §2

frnlo. T)Y"(Bh) (o, T) =N ko7 kv g w(Uu07)
- X(Nh'l‘xl/k(g’ F)r 7\'L/laz(Er ;)m. QL/k(I{’ P},/k(E’ ﬁ:))

where we put I'},(s,7)=B;+dB,-Bzl. On the other hand, let B,
(c&=G) be a fixed path from B, to ¢¥3, on R(L) and we take =B, =B,
on R(K) (m=m, k). Then I'k,(5, %) on R(K) is given by =(B;(cB,)B3l).
Let us denote by V the transfer mapping of H(K) into H(L) then
we can see that

VI, ¥) = Nyl (@, 7)
holds. As in B, we have
M@ ) = QulmBay (m° 1= Qu[Boy Ny 1
=Ap (e H, TN (H, 7)1
Furthermore, we have by (8)
N/ T) e N (@, T) e Qi H, I' (@, 7))~
= {MaH, )N (H, T) 7'} (a, T) " (M (7, T)" NHa,7) ' \H, a7)NMH, 7))
=(88") (o, ¥) 7 (AM=Arn)
where we put
(26) Zxi(8) =N (H, 7).
Then comparing these equalities we get

(27) inflg pe@y, x Fxi(S) TV (O&k/) (&> T) =S (o, 7)™+ (8h)(a, T)
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for the above normalization of I'g,(5,F). Now let
WLk =\ {\J ALy u,)u;
7 pe
WEIR)=\J A0, 0,=Lieul®)

so that
V05 :fI,{/k( 3; ?) * Vs fI’{/}a(&’ ;F) :fK/k( 3’ ?) ¢ (Sg}{/k)(&’ :F) .

Then we can apply the results in (iv) in the proof of
for these expressions. Namely, p=p; g, is given by

P=Ng oML,k VilE s on v g, W(L[K)

p(uz)=v;
Then we shall use the standard expressions of W(L/k) and W(K/k):
(28 W(Ljk)y= \U T*V,x, WKk)=\J T* V.
aXeJ(LIk) o e J(K/R)

We can see first that A*&T* is mapped by p to (A")". For B*=pB%
Vgx=exp(—Q4[G, B;]/mn)*+u, is mapped by p to exp(—@Q.,[G,
B;1/n)" vv,=exp({QgulF, mB;1— Q, 1[G, B;1}/n) "+ Ay (H, )"« V.. Here the
component in T°" is 1 which can be proved similarly as in B. Hence
we have p(Vyx)=Vjz;x for B*=pBF (where V=v(J(K/k), J(L|k)). By
similar computations we also get that p(V, x)=V,» holds for a*=
wl*+B*. Therefore the homomorphism p; y , is given for the standard
expression by
27 { PLE A )=(")" &T)
PrLe(Ve)=Viz> (a* S J(K[k))

with the above normalization of I y,(, 7).
REMARK. If we normalize [a*] on R(L) and [{a*] on R(K) to
be [Ya*]=m; Ja*] then the 2-cocycle of the group extensions are

by la*, B*) =exp (_2”%; 3 LK([a*]-+ (W) [8*]—[a*6*], 7%5)

bratra*, ¥8%) —exp| 2;”7?;; LK (r[a*] + (Y pa*)m[8*]
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—m[a*B¥], TmP) | .

By these must satisfy the relation
(28) by (a*, B*)"=bg,(Ya*, ¥B*) .

But we can also verify dirsctly from the above expressions of
b, (a*, B*) and by, (yra*, ¥B*) using the formula LK(w,gl, 7Bk
= ZHLK(I” PEB)L'

pe

A’. Now we have to check the formulas in A’. As we have
seen already (Kawada-Tate [8], or Kawada [7]) the generalized norm-
residue symbol (x, k) for x=x(y, \)&A(k) can be identified with o(%).
Here o(y) means the automorphism of A,/k which is attached canoni-
cally to v. Also we can identify each y—=F\(k) with the automorphism
of £/k which is induced canonically by < in the classical theory.
Then we can verify that the homomorphism &y, is given by

(29) Ex AV x)=a* (EJ(K]R))
for which all the formulas in A’ are satisfied.

§5. System of generalized Weil groups in
algebraic function fields

I. We shall consider in this section the system of generalized
Weil groups in algebraic function field. If we could apply the
general method in §8 we should have rather too big groups
{W(k)} (kR&=R). Hence we shall choose a suitable subgroup of each
W(k) which satisfy the properties in Theorems 4, 5 in § 3 with
suitable modifications.

THEOREM 6. In the class formation (R, A(K)} defined in §4,1 in
algebraic function fields there exists a system of generalized Weil groups
{(W(k)} (R&8R) which satisfy the following properties :

(A)* There exist
an onto-homomorphism =,: W(k)—F(k)
an into-isomorphism \,: R— W(k)
an onto-homomorphism w,: W(k)—E(k)"
such that
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A Ty
(1) 0—>R— W(k)—> F(k)—>0
¢ ty,
(2) 1— W(k)—> W(k)—> E(k)"—>0

arve exact sequences. Here N, R is contained in the centre of W(k). Let
e: a—exp(2wia) (a=R). The following diagram is also commutative,
where each column and each row are exact sequences:

0 1 1

N l Ty J{ *

0—> Z —>W(k) —>F(k)y——> 1
' vb 7‘*/3 ¢ ™y vl’

(3) 0—> R —>W(k) —>F(k)—> 1

N ¢ * l« /‘bk nk e ‘\Il‘

0—>T —>ER) —>H(k)—> 0

Lo

1 1 0

(B)* Let kct (k,I=8R) and m=[t: k]. Then there exists
an nto-isomorphism v, ,Wt)— W (k)
such that

A ™
0—>R —> W@ > Fii)—> 1 (exact)

N ly,k l
k Ty
0—>R —>W(k) >»F(B)—> 1 (exact)

(4)

is a commutative diagram, where m denotes the homomorphism a—ma

(a=R).
(C)* For normal K|k there exists

®) an onto-homomorphism pg ,: W(k)— W(K/k)
such that
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VK.k Yo,
1—WEK) — W) —> GK/E)—> 1 (exact)
©) Fr M Pr.k o 1
1—EK) —SW(K/k)—> G(Kjk)—> 1 (exact)
¢ H,
11— W(k)y —>Wk) —>ERN— 1 (exact)
@) Pr.r Pr.k P ll
1—> W(K|k)—> W(K|k)—> E(ky>—> 1 (exact)

are commutative diagrams. Moreover, the following diagram is also
commutative, where each column and each row are exact:

0 1 1

N4 7\'k v 7rk N
0—> Z —>W(K)Y —F(K)—> 1

n 14 2
) 7"k N3 K.k T,

W

(8) 0—>R —>W(k) —>Fk) —>1
e/n Pk o v
1—T — S WKk — J(Kk)— 1

1 1 1
where n=[K: k].

(PrOOF) (i) We shall define W(k) directly as a group extension
of R by F(k). Let {a, -, ag B, -, B, be a system of generators of
F(k) and [La;*B;-a;'+B;' be the fundamental relation among them,
where g denotes the genus of R(k). Let §, be the free group
generated by the free generators {A,-.-, A, B,---,B,}. Put C=
LL,A,B,A;'B;' and let N(C) be the normal subgroup of %, generated
by C. Then by the mapping A,—«j, B—B; we have F,/RC)2F(k).
Let us fix a representative W(a)=%¥, for each a=F(k) in the cor-
responding class. In particular, we choose W(a,)=A4, W(B,)=DB;
z=1,2,-.-, 2). For each pair («,B) we have

9) W) W(B) W(aB)"' =TT.T;+C:« T/'&RC)  (e;= 1)

Then we define
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(10) a,(o, B)=>>€; =Z (cR

Clearly a,(«a, B) is a 2-cocycle of F(k) over Z (or over R). Hence we
can define the group W(k) by

Wk)y= \J R*.V, (R*={A*; AN&RY)
(11) ae F k) )

Va' VB:ak(a, B)* . Va
where R* belongs to the centre of W(k). Let us define then

Ap(A) =A% (AE=R)
12 .

T (A V)=« (a=F(k))
(13) p(A* < V) = x(a, exp(2min)) S E(k)N
where o means the class of a=F(k) mod F(k).. Then
(14) Kernel p,= \/ Z*.V,

1 e F(R)°

It is evident that W(k)c is included in Kernel #,. To see the converse
it is enough to prove Z*c W(k)<. This follows from 1*:HV(1,-‘V;9,-'
V;;-Vl;ile W(k):, which is a consequence of [T, W(a;)+« W(B))« W(a;) '+
- W(B) '=C in F,. The commutativity of the diagram (3) follows
from the above results.

(ii) B. Let us identify F(f) with the subgroup =F({#)c F(k). Take
the same element W(B) for B=F({) both in %, and in %, and [B] be
the path corresponding to W(B). Let F(k)=\Jo+F({) and for BEF({)
let us put

(15) by (B) =181, T L™ B,/ (27ri) .

Then for . A

(16) Wk)= \J R*.V, W)= \U R"V}
aeF. k) Be F\%)

let us define
(M) = (mN)* AER)
(V) = by u(B)+ Vi .
From the relations 5(8+8)=b(8)+b(8) and a,B,v)=ma,B,7) (B, A2,

1
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vy&=F@#)) follows that » is a homomorphism and the diagram (4) is
commutative. We can also verify (5) easily.
(iii) For normal K/k let
Wk)y= \U R*V,, W(MEKk)= \J T*V*x
ae F(k) aeJ(K/R)
To each a*&J(K/k) let us fix a representative ac=F(k) (i.e. a*=«

mod F(K)°) and let [a*] be a closed path on R(k) which corresponds
to W(a)<%F,. Then we define the homomorphism p by

Pr.x(A¥)=exp(2mir/n) (AER)
pK.k(Va) = Vi* *

(18)

Then from the definition of by, in §4 follows that
(19) bg(a*, B%)=exp(2mialc, B)/n)

We can verify the commutativity of diagrams (6), (7), (8) easily, q.e.d.

2. Here we shall view the group W(k) from another point of
view. For that purpose let us define the groups W*(k) and W*(K/k)
by

( WrE)= \J Z*V,

ae F(k)
¢ VaoVi=aya,B) Vo AV, =V, A* (AEZ)
a,a, B) as in (11)

( WHEJR)= \J (Z/nZ)*«V*x

aXeJ(K/b)

¢ VExe Vix=cg(a*, B%)* « V x,x |
Crp(a®, B%) = ;GLK([a*] +(¢'a*) [B*]—[e*B*], vP) (mod nZ)

Let us denote

(22) M*(Klky= \J (Z[nZ)*«Vx  (c W*(K/k)).
aXeH(K)
Since cg,(a*, B*)=0 (mod n) for a*, B*<H(K) M*(K/k) is a split ex-
tension of (Z/nZ) by H(K).
Now let us fix a point p on the Riemann surface R(k) and let
R*(k)=R(k)—{p}). Let C be a small circle around p in the negative
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sense. Then the fundamental group & of R*(KX) is a free group
with 2g free generators {A,---, A,.B,---, B} such that C=T];A;B,
A;'B;'. Consider m(C)CCEﬁ(C)c:@ then from the definition of the

2- cocycle a,(«, B) and from [20) follows that
(23) W*(k)2&/N(C)e .

For, a,(«, B) is none other than the 2-cocycle of the group extension
of WC)/NCyx2Z by F(k).

Let K/k be a finite unramified extension with G=G(K/k) and let
R¥(K|k)y=R(K)— {3 ; 7=G} where #P=p. Since R*(K/k) is an un-
ramified regular covering of R*(k) there exists a normal subgroup
Ny, of & such that

(24) O/ Ny 2G(K]k) .
Let us identify F(KX) with #F(K)cF(k) and for a—F(K) let us take
the same element W(«a) both in Fx and in {§,. In the isomorphism

we have
(25) R/ MC)yx2 \ ) Z V.

reF(K)

and we may identify this group with W*(X). Now for a*<J(K/k)
let us fix a representative ac=F(k) in its class and take [a*]= W(«x)
on R*(K/k). Then let us define the homomorphism pj ,: W*(k)—
W*(KJ/k) by

P%+(A*)= (A mod nZ) AEZ) |

(26) |
Pr V)=V ix (acF(k)) .
Pk is an onto-homomorphism and
Kernel px,= \U (nZ)*«V, = W*K)-.
reF(K)°¢

Thus we have proved:
THEOREM 7. (i) Let & be a free group with 2 g free generators.

There exists a normal subgroup N, (=N(C)) such that
G/R, 2 F(k), ORee W*(k), N,/ NeZ
(ii) For normal K|k there exists a normal subgroup Ny, of & such
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that
O/Ny 2 G(K[kR), &Ny, W*(K[E), Ry Rz M*(K]E)

(iii) If we consider & as the fundamental group of R*(k) then N, and
Ny, are the to unramified extensions 2 and K corresponding subgroups
respectively. The homomorphism p% , is defined by the canonical
homomorphism between these groups.
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