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This paper is a continuation of our former papers [1], [2]. In
[1] we have extended Gentzen’s logic calculus $LK$ (Gentzen [3]) to
$GLC$ (generalized logic calculus) and shown that the “fundamental
conjecture ” of $GLC$ would mean the consistency of the analysis.
Here and in the following, we shall mean by the “fundamental
conjecture ” (abbrev. $FC$) of a logical system the theorem of the
type: Every provable sequence in the logical system in question is
provable without cut in the same logical system. Now $G^{1}LC$ is a
subsystem of $GLC$ obtained from $LK$ by introducing $f$-variables with
$n$ argument-places $\alpha[*1 , *_{n}](n\geq 1)$ (for terminology see [2]). It
was also shown in [1] that $FC$ of $G^{1}LC$ would imply the consistency
of the theory of real numbers. In [2] we have proved $FC$ on a
certain subsystem of $G^{1}LC$ (containing of course $LK$ of Gentzen), from
which the consistency of the theory of natural numbers follows.

The purpose of the present paper is to prove $FC$ on two more
subsystems of $G^{1}LC$, which will be called $PL$ and $QL$. $PL$ is obtained
from $LK$ by introducing $f$-variables without argument-place $\alpha,$ $\beta,\ldots\star$

)

$QL$ is a subsystem of $G^{1}LC$ containing only proof-figures having no
inference $\forall$ on variables of type (0).

We give the proof only for the case of $QL$, but it is easy to see
that our proof holds also for $PL$ ; one has only to put the number
$n$ of argument-places of $f$-variables to $0$ everywhere in the proof, and
to notice that the essential point of the proof depends on the fol-
lowing circumstance. Suppose there appears an inference $\forall$ on f-
variable in a proof-figure. We shall denote with $\mathfrak{J}$ this inference.

“) $f$-variables without argument-place $\alpha,$ $\beta,\ldots$ may be considered as $\alpha^{\prime}[1\neg, \beta^{\prime}[1],\ldots$ ,
where $\alpha^{\prime},$ $\beta^{\prime},\ldots$ are $f$-variables with one argument-place and 1 is a fixed special variable.
Thus $PL$ is a subsystem of $G^{1}LC$.
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Let $A(X_{1},\ldots, X_{n})$ be any original formula of $\backslash \infty_{1}$ . Then none of $ X_{1},\ldots$ ,
$X_{n}$ is bound on the way of going down from $A(X_{1},\ldots, X_{n})$ to $\mathfrak{J}$ in
the proof-figure. This circumstance, which will be denoted by $(C)$ ,
takes place both in $PL$ and $QL$.

To prove $FC$ of these systems, we shall use a reduction schema
of a new type, essentially different from Gentzen’s, which might also
be used, as it seems to the author, to prove $FC$ for a larger class
of logical systems.

The reader is referred to [2] as to the definitions of concepts
such as fibre, original formula, explicitness, end-place and suitable
cut.

\S 1. Separative proof-figure.

1.1. Equivalence of formulas in a proof-figure.
We shall speak of a ‘ formula in a proof-figure’, when the

formula is considered together with the place which it occupies in
a proof-figure.

Let $A$ and $B$ be formulas in a proof-figure. ‘A is equivalent to
$B$ is defined recursively as follows:
1.1.1. $A$ is equivalent to $A$ itself.
1.1.2. If $A$ is a successor of $B$ and $A$ is not a chief formula of a
logical inference, then $A$ is equivalent to $B$.
1.1.3. If $A$ is equivalent to $B$, then $B$ is equivalent to $A$ .
1.1.4. If $A$ is equivalent to $B$ and $B$ is equivalent to $C$, then $A$ is
equivalent to $C$.

1.2. Leading formula.

Let $A$ be a formula in a proof-figure and $\mathfrak{T}$ be a fibre through
$A$ . Then $B$ is the leading formula of $A$ in $\mathfrak{T}$ means that $B$ is the
uppermost formula in $\mathfrak{T}$ , which is equivalent to $A$ . Therefore $B$ is
an ancestor of $A$ or $A$ itself.

‘ $B$ is a leading formula of $A$ ‘ means that there exists such a
fibre $\mathfrak{T}$ that $B$ is the leading formula of $A$ in $\mathfrak{T}$ . If $B$ is a leading
formula of $A$ , then we see easily that $B$ is a beginning formula or
a weakening formula or a chief formula of a logical inference.
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1.3. Inseparative number.

Let $F(H)$ be a formula in a proof-figure and $H$ be a (f-) variety
of the form $H(*,\ldots, *)$ with $n$ argument-places. ( $f$-variety means
that $H(X_{1},\ldots, X_{n})$ is a formula, where $X_{1},\ldots,$ $X_{n}$ are terms. And if $n$

is zero, $H$ is a formula.) Now, we consider a range of $n$ terms
$(X_{1},\ldots, X_{n})$ . We call this range inseparated, if and only if, there
exist two original formula $A$ and $B$ of the indication $F(H)$ , and $A$

and $B$ are of the form $H(X_{1},\ldots, X_{n})$ and not a weakening formula,
and $A$ is in left side of a sequence and $B$ is in right side of a
sequence. ‘The inseparative number of $F(H)$ is defined as the
number of inseparated ranges of $n$ terms.

$F(H)$ is called ‘ separative ‘ if the inseparative number of $F(H)$

is zero, and in other cases $F(H)$ is called ‘ be inseparative ’.
The inseparative number or the separativity of an inference

$F(H),$ $ I^{\gamma}\rightarrow\Delta$

$\forall\varphi F(\varphi),$ $\Gamma\rightarrow\Delta^{-}$

is defined as the inseparative number or the separativity of $F(H)$ in
the upper sequence of the inference.

1.4. Separativity of a proof-figure.

A proof-figure $\mathfrak{P}$ is called ‘ separative ’, if and only if all the
beginning formulas with logical symbols in $\mathfrak{P}$ are divided into two
classes, which are called the first and the second class, and the
following conditions are fulfilled.
1.4.1. Every inference $\forall$ left on $f$-variable contained in $\mathfrak{P}$ is separa-
tive.
1.4.2. If $A$ is a beginning formula belonging to the first class and
$B$ is related to $A$ (See 2.5. in [2]), then any leading formula of $B$ is
neither a beginning formula belonging to the second class nor a
chief formula in the left side of a sequence.
1.4.3. If $A$ is a beginning formula belonging to the second class
and $B$ is related to $A$ , then any leading formula of $B$ is neither a
beginning formula belonging to the first class nor a chief formula
in the right side of a sequence.
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1.4.4. Let $D\rightarrow D$ be a beginning sequence. Two formulas of this
sequence are simultaneously of the first class or of the second class.

\S 2. The first reduction.

In this section we consider only the proof-figures, whose begin-
ning formulas have no logical symbols. We shall reduce these
proof-figures to separative proof-figures.

2.1. Ordinal number in the first reduction.
First, we assign to each sequence of a proof-figure a natural

number called the ordinal number of the sequence ’ as follows:
2.1.1. The ordinal number of a beginning sequence is one.
2.1.2. If $\mathfrak{J}$ is an inference except $\wedge right,$ $\forall$ left on $f$-variable and
cut, and $\mathfrak{S}_{1}$ is the upper sequence of $\mathfrak{J}$ and $\mathfrak{S}_{2}$ is the lower sequeuce
of $\mathfrak{J}$ , then the ordinal number of $\mathfrak{S}_{2}$ is equal to the ordinal number
of $\mathfrak{S}_{1}$ .
2.1.3. If $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ are two upper sequences of a cut or a $\wedge$ right
and $\mathfrak{S}$ is the lower sequence of the inference, then the ordinal
number of $\mathfrak{S}$ is the sum of two ordinal numbers of $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ .
2.1.4. If $\mathfrak{J}$ is an inference $\forall$ left on $f$-variable and $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ are
the upper and the lower sequence of $\mathfrak{J}$ respectively, then the ordinal
number of $\mathfrak{S}_{2}$ is $ 3^{k}\alpha$, where $k$ is the inseparative number of $\mathfrak{J}$ and
$\alpha$ is the ordinal number of $\mathfrak{S}_{1}$ .

The ordinal number of a proof-figure is defined as the ordinal
number of the end-sequence of the proof-figure.

2.2. Let a proof-figure $\mathfrak{P}$ be not separative. Since beginning for-
mulas in $\mathfrak{P}$ have no logical symbol, the conditions 1.4.2, 1.4.3 and
1.4.4 are trivial. Hence there exists an inseparative inference $\forall$

left on $f$-variable
$F(H),$ $\Gamma\rightarrow\Delta$

$\forall\varphi F(\varphi),$

$I^{\gamma}\rightarrow\Delta^{-}- \mathfrak{J}$

in $\mathfrak{P}$. We denote the proof-figure to the Iower sequence of $\mathfrak{J}$ by $\mathfrak{O}$ ,
the inseparative number of $\mathfrak{J}$ by $k$, and the ordinal number of the
upper sequence of $\mathfrak{J}$ by $\alpha$ . There exists an inseparative range of $n$

terms $(X_{1},\ldots, X_{n})$ .
2.3. Let $\Gamma_{i}\rightarrow\Delta_{\iota},$ $H(X_{1},\ldots, X_{n}),$ $\Lambda_{i}(i=1,2,\ldots)$ be all the sequences which
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have an original formula of $F(H)$ of the form $H(X_{1},\ldots, X_{n})$ in the
right side and it is not a weakening formula. Now we can modify
by the circumstance $(C)$ (See introduction) the proof-figure $\mathfrak{Q}$ to a
proof-figure $\mathfrak{Q}_{1}$ of the following form:

$\backslash 1_{1}’\backslash 1\backslash 1\backslash _{\backslash \psi^{1_{1}}}/^{\prime^{\prime}}11$

$\Gamma_{i}\rightarrow\Sigma,$ $\Delta_{i},$ $H(X_{1},\ldots, X_{n}),$ $\Lambda_{i}$

Some exchanges

$--\underline{\Gamma_{i}\rightarrow 2_{i}’,H(X_{1},\ldots,X}_{n}\underline{),\Delta_{i},\Lambda}_{i_{-}}$

Some contractions

$-\Gamma_{i}\rightarrow_{-}H(X_{1},.., X_{n})_{-}\Delta_{j},$$\Lambda_{i}--$:
Weakening and some $exchange\overline{s}$

$I_{i}^{\gamma}\rightarrow H(X_{1},\ldots, X_{n}),$ $\Delta_{i},$ $H(X_{1},\ldots, X_{n}),$ $\Lambda_{i}$

$\backslash 1J\backslash 1^{\prime}\backslash 1\backslash _{\backslash 1,\psi^{f}}\prime^{\prime}111$

$F(H),$ $\Gamma\rightarrow H(X_{1},\ldots, X_{n}),$ $\Delta$

$-\forall\varphi F(\varphi),$ $\Gamma\rightarrow H(X_{1},\ldots, X_{n}),$ $\Delta$

$s_{1}^{\infty}$

where $\Sigma$ is void if there are no sequences of the form $I_{J}^{7}\rightarrow\Delta_{j}$ ,
$H(X_{1},\ldots, X_{n}),$ $\Lambda_{j}$ over the sequence $\Gamma_{i}\rightarrow\Delta_{t},$ $H(X_{1},\ldots, X_{n}),$ $\Lambda_{i}$, and $\Sigma$ is
$H(X_{1},\ldots, X_{n})$ if there exists such a sequence.

Clearly we see that the inseparative number of the inference $\mathfrak{J}_{1}$

is $k-1$ , and therefore, the ordinal number of $\mathfrak{Q}_{1}$ is $ 3^{k-1}\alpha$.
2.4. In a similar way, we have the following proof-figure $\mathfrak{Q}_{2}$ ;

$\backslash 1J\backslash 1\backslash _{\backslash _{\backslash _{\text{E}}}}1\psi^{J^{J^{\prime}}}I_{1}11t$

$F(H),$ $I^{\gamma},$ $ H(X_{1},\ldots, X_{n})\rightarrow\Delta$

$\forall\varphi F(\varphi),$ $I^{\gamma},$ $ H(X_{1},\ldots, X_{n})\rightarrow\Delta$

$\mathfrak{J}_{2}$

Here the inseparative number of $\backslash \alpha_{\}_{2}}$ is $k-1$ , and therefore, the
ordinal number of $\mathfrak{Q}_{2}$ is $ 3^{k-\rfloor}\alpha$ .
2.5. Now we reduce the proof-figure $\mathfrak{P}$ to a proof-figure $\mathfrak{P}^{\prime}$ of the
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following form:

$\backslash _{\backslash _{\backslash _{\backslash _{\backslash }}}}1/^{1}\psi^{1}I_{1}11|\mathfrak{Q}$,
$|^{\mathfrak{Q},}2$

$\backslash _{\backslash l,\backslash 1\backslash _{\backslash }J^{\prime}}\psi^{1}$

$\underline{\frac{\forall\varphi F(\varphi),\Gamma\rightarrow H(X_{1},\ldots,X_{n}),\Delta}{Someexchanges}}$ $\frac{\forall\varphi F(\varphi),\Gamma,H(X_{1},\ldots,X_{n})\rightarrow\Delta}{-\underline{Someexchanges}}$

$\frac{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta,H(X_{1},\ldots,X_{n})}{\forall\varphi F(\varphi),\Gamma,\forall\varphi}\frac{H(X_{1},\ldots,X_{n}),\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}{),\Gamma\rightarrow\Delta,\Delta}\mathfrak{J}_{3}F(\varphi$

Some exchanges and contractions
$\forall\varphi F(\varphi),$ $\Gamma\rightarrow\Delta$

$\backslash _{\backslash }1_{1}Il11/$

$\backslash _{\backslash _{\backslash }}1\psi^{1^{J}}$

Clearly the ordinal number of the lower sequence of $\mathfrak{J}_{3}$ is
$ 2\cdot 3^{k-1}\alpha$ and is smaller than the ordinal number $ 3^{k}\alpha$ of $\mathfrak{Q}$, hence the
ordinal number of $\mathfrak{P}^{\prime}$ is smaller than the ordinal number of $\mathfrak{P}$ .

Therefore by finite reductions every proof-figure is reduced to
a separative proof-figure.

Since every provable sequence is an end-sequence of a proof-
figure, whose beginning sequences have no logical symbols, we attain
our aim, if we prove the following theorem.

The end-sequence of a separative proof-figure is provable without
cut.

\S 3. Proof-figure with potential.

In this section we assign a potential to each sequence of a
separative proof-figure and using this notion we define the ordinal
number of such proof-figure.
3.1. Zero-part.

A formula $A$ of a separative proof-figure is called a formula
in the zero-part of this proof-figure, if and only if every leading
formula of each formula related to $A$ is a weakening formula or a
beginning formula. (The case, where no formulas are related to $A$ ,
is contained in this case.)
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Clearly, if a formula belongs to the zero-part, then its ancestors
belong also to the zero-part.

3.2. Degree.

We define the degree of a formula $A$ in a separative proof-figure
recursively as follows:
3.2.1. If $A$ is a beginning or weakening formula or formula in the
zero-part, then the degree of $A$ is one.
3.2.2. If $A$ is the successor of $B$ and is not the chief formula of a
logical inference nor contraction, then the degree of $A$ is equal to
the degree of $B$.
3.2.3. If $A$ is the chief formula of a contraction, then the degree of
$A$ is equal to the maximal number of the degrees of two predecessors
of $A$ .
3.2.4. If $A$ is not in the zero-part and is the successor of Band the
chief formula of a logical inference except $\wedge$ right, then the degree
of $A$ is equal to $d+1$ , where $d$ is the degree of $B$.
3.2.5. If $A$ is not in the zero-part and is the chief formula of a
inference $\wedge$ right, then the degree of $A$ is $d+1$ , where $d$ is the
maximal number of the degrees of the two predecessors of $A$ .

The degree of a cut is the maximal number of the degrees of
the two cut-formulas of the cut.

3.3. Potential.

A separative proof-figure is called a proof-figure with potential,
if to each sequence of this proof-figure corresponds a natural number
called its potential satisfying the following conditions:
3.3.1. If a sequence $\mathfrak{S}_{1}$ is above a sequence $\mathfrak{S}_{2}$ , then the potential
of $\mathfrak{S}_{1}$ is not less than the potential of $\mathfrak{S}_{2}$ .
3.3.2. If a sequence $\mathfrak{S}_{1}$ is an upper sequence of an inference except
cut and a sequence $\mathfrak{S}_{2}$ is the lower sequence of the inference, then
the potential of $\mathfrak{S}_{1}$ is equal to the potential of $\mathfrak{S}_{2}$ .
3.3.3. If $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ are two upper sequences of a cut, then the po-
tential of $\mathfrak{S}_{1}$ is equal to the potential of $\mathfrak{S}_{2}$ .
3.3.4. If a sequence $\mathfrak{S}$ is an upper sequence of a cut, then the
potential of $\mathfrak{S}$ is not less than the degree of the cut.
3.3.5. The potential of the end-sequence is zero.
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We see easily that every separative proof-figure may be con-
sidered as a proof-figure with potential by choosing a suitable poten-
tial. Therefore to prove $FC$ of $QL$ we have only to prove that the
end-sequence of a proof-figure with potential is provable without
cut.

3.4. Ordinal number in the second reduction.

We assign to each sequence of a proof-figure with potential a
natural number called the ordinal number of this sequence recursively
as follows:
3.4.1. The ordinal number of a beginning sequence is one.
3.4.2. If $\mathfrak{S}_{1}$ is the upper sequence of an inference $\mathfrak{J}$ on structure
and $\mathfrak{S}_{2}$ is the lower sequence of $\mathfrak{J}$ , then the ordinal number of $\mathfrak{S}_{2}$

is equal to the ordinal number of $\mathfrak{S}_{1}$ .
3.4.3. If $\mathfrak{S}_{1}$ is the upper sequence of an inference on logical symbol
except $\wedge$ right and $\mathfrak{S}_{2}$ is the lower sequence, then the ordinal
number of $\mathfrak{S}_{2}$ is $\alpha+1$ , where $\alpha$ is the ordinal number of $\mathfrak{S}_{1}$ .
3.4.4. If $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ are two upper sequences and $\mathfrak{S}$ is the lower
sequence of an inference $\wedge$ right, then the ordinal number of $\mathfrak{S}$ is
$\alpha+\beta$, where $\alpha$ or $\beta$ is the ordinal number of $\mathfrak{S}_{1}$ or $\mathfrak{S}_{2}$ respectively.
3.4.5. If $\mathfrak{S}_{1}$ and $\mathfrak{S}_{2}$ are two upper sequences and $\mathfrak{S}$ is the lower
sequence of a cut, then the ordinal number of $\mathfrak{S}$ is

3
$)^{\alpha+\beta_{\tau}}$

$3|_{\sigma-}$

where $\alpha$ or $\beta$ is the ordinal number of $\mathfrak{S}_{1}$ or $\mathfrak{S}_{2}$ respectively and $\tau$

or $\sigma$ is the potential of $\mathfrak{S}$ or $\mathfrak{S}_{1}$ (and $\mathfrak{S}_{2}$ ) respectively.
We define the ordinal number of a proof-figure with potential

as the ordinal number of its end-sequence.

\S 4. The second reduction.

In this section, we reduce a proof-figure with potential to a
proof-figure with potential with a smaller ordinal number, by the
method of \S 4, \S 5 and \S 6 in [2].
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We treat separately the following several cases.
4.1. The case, where the end-place contains an explicit logical
inference.

This case can be treated in the same way as in \S 4, [2]
4.2. The case, where the end-place contains an implicit beginning
sequence and no logical inferences.

Let $D\rightarrow D$ be one of the implicit beginning sequences in the end-
place. We shall consider separately the following two cases.
4.2.1. The case, where one and only one of the two $D’ s$ is explicit.

This case is treated in the same way as in 5.1, [2].
4.2.2. The case, where two $D’ s$ are implicit.

Let the proof-figure be of the following form:

$D\rightarrow D$

$\backslash 1!\backslash _{\backslash 1,\backslash _{\backslash I}J^{\prime}}\psi^{\prime}1_{I^{\prime}}1$ $\backslash |J\backslash 1^{\prime}\backslash 1\backslash J^{\prime}\backslash I\psi^{\prime}111$

$\Gamma\rightarrow\Delta,$ $D$ $D,$ $\Pi\rightarrow\Lambda_{1},$ $D,$ $\Lambda_{2}$

$\mathfrak{J}_{1}$

potential $\sigma$

$I^{\gamma},$
$\Pi^{-}\rightarrow^{-}\Delta,$ $\Lambda_{1},$ $D,$ $\Lambda_{2}$ potential $\tau$

4.2.2.1. $\backslash 1\backslash 1^{\prime}\backslash 1\backslash \gamma^{\prime}\backslash 1\psi^{I}111$
$\backslash 1_{1}/\backslash 1^{\prime}\backslash _{\backslash /^{\prime}}1_{1}11$

$-\tilde{\Gamma}\rightarrow-\hat{\Delta}^{\prime},$ $D$ $D,$ $\Phi\rightarrow\Psi$

$\mathfrak{J}_{2}$

$\overline{\sim_{I}^{\sim}},\overline{\Phi}\rightarrow\tilde{\Delta},$$\Psi--$

$\backslash _{\backslash _{\backslash _{\backslash }l}}\backslash 1/^{\prime}\psi^{1/}1,1$

’

$\Gamma_{0}\rightarrow\Delta_{0}$

We reduce 4.2.2.1 to the following 4.2.2.2.
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4.2.2.2.
$\backslash _{\backslash }|/$

$\backslash _{\backslash _{\backslash 1\psi^{1}}J}$

$\Gamma\rightarrow\Delta,$ $D$ potential $\tau$

Some weakenings and exchanges

$\Gamma,$ $\Pi\rightarrow\Delta,$ $\Lambda_{1},$ $D,$ $\Lambda_{2}$ potential $\tau$

$\backslash \backslash _{\backslash _{\backslash _{\backslash }}1,^{\prime}}1/\psi^{1}1_{1}1$
$\backslash 1\backslash 1^{\prime^{)}}\backslash 1\backslash _{\backslash \psi^{\iota_{1}}}J^{\prime}1_{1}1$

$\tilde{\Gamma}\rightarrow\tilde{\Delta},$ $DD_{-},$$\Phi---\rightarrow\Psi_{-}\mathfrak{J}$
$\hat{\Gamma},$ $\Phi\rightarrow\tilde{\Delta},$ $\Psi$

$\backslash \backslash 1_{1}1111/$

$\backslash _{\backslash _{\backslash }}1\psi^{1}$

$\Gamma_{0}\rightarrow\Delta_{0}$

where every sequence, corresponding to a sequence in 4.2.2.1 loaded
on $\mathfrak{J}_{1}$ , has the potential $\tau$ , and every other sequence has the same
potential as one of the corresponding sequences in 4.2.2.1, and more-
over every beginning formula with logical symbols belongs to the
first or the second class according as the corresponding one in 4.2.2.1.
belongs to the first or the second class.

Obviously, the ordinal number of the proof-figure 4.2.2.2 is less
than the ordinal number of 4.2.2.1. (See 5.1 in [2].) We verify now
the separativity and the conditions on the potentials of 4.2.2.2.
4.2.2.3. In case, where $D$ has no logical symbols, the separativity
of 4.2.2.2 follows from that of 4.2.2.1. And clearly, the cut formulas
of $\mathfrak{J}$ belong to the zero-part, so the degree of $\mathfrak{J}$ is one ; therefore
it is, of course, not greater than the degree of $\mathfrak{J}_{2}$ . Hence, the con-
ditions on the potentials are fulfilled.
4.2.2.4. The case, where $D$ has a logical symbol and two $D’ s$ in the
beginning sequence $D\rightarrow D$ in 4.2.2.1 belong to the first class. The
right cut-formula $D$ of the cut $\mathfrak{J}_{2}$ is related to the right $D$ in the
beginning sequence $D\rightarrow D$ , so each leading formula of the right
cut-formula of $\mathfrak{J}_{2}$ is a weakening formula or a beginning formula
belonging to the first class. That is, each leading formula of the
right cut-formula of $\mathfrak{J}$ is a weakening formula or a beginning
formula belonging to the first class. Hence, the separativity of
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4.2.2.2 holds. And since both cut-formulas of $\mathfrak{J}$ belong to the zero-
part, the degree of $\mathfrak{J}$ is one, therefore the conditions on the potentials
are fulfilled.
4.2.2.5. The case, where $D$ has a logical symbol and two $D’ s$ in
$D\rightarrow D$ belong to the second class. By a similar reason as in 4.2.2.4,
each leading formula of $D$ in the sequence $I^{7}\rightarrow\Delta,$ $D$ in 4.2.2.2 is a
weakening formula or a beginning formula belonging to the second
class. Therefore we see easily that the proof-figure 4.2.2.2 is se-
parative. And the degree of the right or left cut-formula $\mathfrak{J}$ is not
greater than the degree of the right or left cut-formula of $\mathfrak{J}_{2}$

respectively. Hence the degree of $\backslash \infty_{1}$ which is not greater than the
degree of $\mathfrak{J}_{2}$ , is not greater than the potential of the upper sequ-
ences of $\mathfrak{J}$ .
4.3. The case, where the end-place does not contain an implicit
beginning sequence nor a logical inference.

In this case, we may assume, in the same way as in \S 6 [2],
that there exists a suitable cut $\mathfrak{J}$ . We have to consider separately
several cases according to the form of the outermost logical sombol
of the cut-formula $D$ of $\backslash \sim_{1}$ . But, since other cases are to be treated
similarly, we treat only the case, where the outermost logical symbol
of $D$ is $\forall$ on $f$-variable.

We assume that the proof-figure is of the following form:
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$\backslash _{\backslash _{\backslash }}\backslash |,^{J^{\prime}}\psi^{1}1_{1}$
$\backslash _{\backslash _{\backslash _{\backslash _{\backslash }}}1_{/^{\prime}}^{\prime}}\psi^{1}|\iota_{!}1$

$\frac{\Gamma_{1}\rightarrow\Delta_{1},F(\alpha)}{I_{1}^{\gamma}\rightarrow\Delta_{1},\forall\varphi F(\varphi)}\mathfrak{J}_{1}$ $\frac{F(H),\Pi\rightarrow\Lambda_{1}1}{\forall\varphi F(\varphi),\Pi_{1}\rightarrow\Lambda_{1}}\mathfrak{J}_{2}$

43
$1_{\backslash _{\backslash _{\backslash }}1J\backslash I}\ovalbox{\tt\small REJECT}^{\backslash 1_{I}}\Gamma_{2}\rightarrow\Delta_{2},\forall^{t}\varphi^{\prime}F(\varphi)\forall\varphi F(\varphi),$

$\Pi_{2^{1}}^{\backslash I}\rightarrow^{\prime}\Lambda_{2}\backslash \backslash \nu^{\prime}\vee^{1}11_{1}J^{\prime}\backslash /^{\prime}I_{2}^{\gamma},$

$\Pi_{2}\rightarrow\Delta_{2},$

$\Lambda_{2}\backslash \mathfrak{J}_{3}$ potential $\sigma$

$\backslash 1_{I\sqrt[\backslash ]{}^{\prime^{\prime}}}/\backslash 1^{\prime}\backslash _{\backslash }1i_{1}11$

$\Gamma_{a}\rightarrow\Delta_{a}$ potential $\tau<\sigma$

$\backslash 1\backslash _{\backslash }1_{1}\backslash J^{/}\backslash _{\psi^{1_{1}}}1_{t}1$

$\Gamma_{0}\rightarrow\Delta_{0}$

where $\Gamma_{3}\rightarrow\Delta_{3}$ is the uppermost sequence under $\mathfrak{J}_{3}$ whose potential
is less than $\sigma$ .

After a suitable change of free $f$-variables, we can assume that
every inference-figure $\forall$ right on $f$-variable over $\mathfrak{J}_{1}$ has no $\alpha$ as its
eigen-variable.

We reduce this proof-figure to the following 4.3.2.
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$b$

$\dot{\circ}a$

$1-b^{1}$

g$t\mathring{9}^{1}$
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where the potentials of sequences loaded on 9 are $\sigma-1$ and the poten-
tials of the other sequences are equal to those of the corresponding
sequences in 4.3.1 respectively, and a beginning formula with logical
symbols belongs to the first or to the second class according as the
corresponding one in 4.3.1 belongs to the first or to the second class.
But if $H(\alpha_{1},\ldots, \alpha_{n})$ has logical symbols, the corresponding formula of
a beginning formula $H(X_{1},\ldots, X_{n})$ over the sequence $\mathfrak{S}_{1}$ may possibly
be a formula $\alpha[X\}’\ldots, X_{n}]$ over $\mathfrak{J}_{1}$ , which has no logical symbols. In
such a case we determine as follows the class to which $H(X_{1},\ldots, X_{n})$

belongs.
By the separativity of 4.3.1, the inference $\mathfrak{J}_{2}$ is separative, so

the range of $n$ terms $(X|’\ldots, X_{l\iota})$ is separative. Hence, either there
exists an original formula $H(X_{\rfloor},\ldots, X_{n})$ in the right side of a sequence
which is not a weakening formula while there exists no such formula
in the left side of a sequence, or all original formulas $H(X_{1},\ldots, X_{n})$ in
the right side of a sequence are weakening formulas. In the first
case the initial beginning formula $H(X_{1},\ldots, X_{n})$ over $\mathfrak{S}_{1}$ will be
classed to the first class, and in the second case to the second class.

We see easily that the ordinal number of 4.3.2 is less than the
ordinal number of 4.3.1. The degree of the cut $\mathfrak{J}$ or the potential
of the upper sequences of $\mathfrak{J}$ is by one less than the degree of the
cut $\mathfrak{J}_{3}$ or the potential of the upper sequences of $\mathfrak{J}_{3}$ respectively,
therefore the conditions on the potentials are fulfilled. And the
above definition of the first or the second class of the beginning
formulas with logical symbol in 4.3.2, and one of the following
lemmas imply the separativity of 4.3.1.
4.3.3. Lemma 1. In the logical system $PL$, let $A$ be an original
formula of $F(H)$ in $\mathfrak{S}_{1}$ in 4.3.2 and be related to a formula $B$, then
$B$ is an original formula of $F(H)$ in $\mathfrak{S}_{2}$ and is homologous to $A$ .
4.3.4. Lemma 2. In the logical system $QL$, let $A$ be an original
formula of $F(H)$ in $\mathfrak{S}_{1}$ and be related to $B$, then $B$ is an original
formula of $F(H)$ in $\mathfrak{S}_{2}$ and is homologous to $A$ .

The lemma 1 is obvious, because $n$ is zero and an original formula
of $F(H)$ is $H$. And since $QL$ contains no inference $\forall$ on variable of
type (0), the lemma 2 is also obvious.

Therefore the $FC$ on $PL$ (or on $QL$) is proved.
REMARK. Clearly the following fact is hereby proved:
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The provable sequence in $PL$ (or in $QL$ ) is an end-sequence of a
suitable separative proof-figure without cut in $PL$ (or in $QL$).
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ERRATA

Construction of the set theory from the theory

of ordinal numbers
(This Journal Vol. 6, No. 2, pp. 196-219)

by Gaisi TAKEUTI

p. 1. Errata Correction

206 30 $\mapsto g_{2}(x))$ $|-x>g_{2}(x))$

$208$ 10 $\alpha[y]$ $fn(y)$

209 9 RR
216 7 $\varphi_{2}[v, u]$ $\varphi_{2}[u, v]$

9 $\varphi_{2}[u, v]$ $\varphi_{2}[v, u]$

$217$ 20 from 37 from 39
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