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Hopf’s ergodic theorem on Fuchsian groups.
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1. Hopf’s theorem.
Let a non-euclidean metric in |z| <1 be defined by

ds= _ﬁlzl—dlzllz , do= - 3053 (z=x+1y). (1)

Let 7=¢"® n,=e** be two points on |z|=1, then the pair (5, %.) can
be considered as a point of a torus @: 0 <0 <27, 0 <@ < 2. For
a measurable set £ on ©, we define its measure by

,L(E)=jj dode, so that u(6)=4n?. 2)

E

Let G be a Fuchsian group of linear transformations, which make
|z| <1 invariant and S, be any substitution of G and

Tv . 77;=Sv(771) ’ ’7§=Sv(’h) >

then the totality of 7, consititutes a group =G x G. Hopf? proved

THEOREM 1. Let D, be the fundamental domain of G. If o(Dy)<<o,
then there exists no measurable set E on 0, which is invariant by &
and 0 < w(E)< 472, so that if uw(E)>0, then u(E)=4x2.

In the former paper?, I gave another proof of the theorem. I could
simplify my former proof a little, which we shall show in §3 and as
an application of the theorem, we shall prove an analogue of Weyl’s
theorem on uniform distribution for Fuchsian groups in §5.

1) E. Hopf: Fuchsian groups and ergodic theory. Trans. Amer. Math. Soc. 39
(1936). Ergodentheorie. Berlin (1937).

2) M. Tsuji: On Hopf’s ergodic theorem. Proc. Imp. Acad. (1944). Jap. Journ.
Math. 19 (1945).
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2. Some lemmas.

We use the following lemmas in the proof.

LEMMA 12 Let 6:0<60 <27, 0 ¢ < 27 be a torus and f(0, )
be a bounded measurable function on © and

u(z,w)=71}r2—“f( >(1“z‘2’(1“w'2) dodp, 121 <1, lw|<1.

) eze |2 lw e’ l2
Then fbr almost all (6, p) on 6, for a fixed (6, p),

lim u(z, w)= £(6, ») uniformly,

z-*e'e wel®

when z— e, w—e® from the inside of any Stolz domain, whose vertex
is at e°, e respectively.

LEMMA 2. Let S:2/= »717—7— * (0<a<1l) and e be a measurable

set on |2|=1, which is contained in an arc: 0<n<|argz|< = and
me=>rx_>0. Then S(e) is contained in an arc I: |argz— -l < 2r(1=a)

sin? 9
on |z|=1 and
mS(e) = k|1,
where |I|= ﬁ’l(_l—“) , ey ST
sin® » 87
1—a?
PROOF. mS(e)=| —1—%
€ Se |1—ae®|?
Since on e

l—a < 1—-a"_‘ ng(.l—a)
2 |1—ae®? = sin?g

we have

IC(I a) SMS(Q)S 2(1 d) me.
2 sin? z

3) M. Tsuji, lLc. 2)
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Especially, if e=1; is an arc: 0<n=<<arg z< =, then mS(l) < __ﬁZw(.I;—a) ,
sin?y
hence S(e) is contained in an arc /: Iargz—wlg———_zwgl:a) and from
Sin‘zn

’”S(e)g""c('lz_* 2., we have mS(e) = klI|, where k= <SI0'7

v 87
- LeMMA 3. Let G be a Fuchsian group, such that o(Dy) < o and
Ky: 2| < poy<1 be a disc, contained in Dy. If acK,, then

"”ConSt. g n(”y a) S«_ *goin’s’t:‘ ’
1—7» 1—7»

where n(r, a) is the number of equivalents of a in (2| < r<1.
Proor. First we shall prove that for any aeD,,

n(r,a) < -0 (1)

where const. is independent of ael,.

278 | (1a] <1, 1B/ < 1), then [S(a), S(8)]=Ta, b], where

Let [a,b]= 1—2b

S is any linear transformation, which makes |z| <1 invariant. Let @,

be an equivalent of a, contained in [z| <7, so that |a,] <7, or [d,,, 0

Hence if a,=S.(a), S,eG, then [S,(a),0]=[a, S, 0)]<#» so that

n(7,a) is equal to to the number of equivalents z, of z=0, contained

in a disc [z,a]<7». Since the non-euclidean area of the disc [z, a]<»
const.

is equal to that of |z]| <7, which is < 1, the number of 2z,
—7

— pa—

contained in [z,a¢] <7 i1s < - clonst._ , So that »n(r, a) < ”clon§t.v , Where

const. is independent of aeD,. :
If D, has boundary points on |z|=1, let B, be the part of D,

which lies outside the circle |z|=p (C>p;). Since o(D,)< o, we take
1—p so small that o(B)<le. Let B, be equivalents of B, and B=31B,

-~ v=_0
and B(7) be its part, contained in |z| < »<{1. Then by (1),

const. e (2)

ABir)=| nlr, a)de(a) < -0 o(By) < ST

1
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We put Dy=D,—B, and D, be its equivalents and f)’:%‘DL. ‘Let
4(7): |z]| < » be a disc, then D'(#)+ B(»)=4(»), so that

AD/(n)+ o BO)=ola(r) = - -

If ¢ is small, then by (2), o(D'(r)) > C{mSt‘- . From this, we can
—7

prove easily that z(r, a)g-"lowa, ac K,. o

LEMMA 4. Let G be a Fuchsian group, such that o(D))< o and
Ky: 2] < po<1 be a disc, contained in Dy and K, be its equivalents

and K= ioK,,. Let r,=1—2" (0O<A<1)(=1,2,-). If n is suff-

ciently small, then there exists p,(r,<p,X#.41), which satisfies the
Sfollowing condition. The circle |z|=p, intersects K in a set of arcs,
among them theve ave such ones 69 (j=1,2,---,s,) of length p.|65],

such that 69’ |=x(1—p,)(7=1,2, -, s), ileg”’l_zn>0(v=1,2,"' )
‘ 771

‘where « and 1 are constants, independent of v.
Proor. By Lemma 3,

,Cgl},st', g n(r’ a) g - Con—St'W R ac Ko . (1)

1—» 1—»

~ Let K(»,,7,,;) be the part of K, contained in #, < |z| < #.,1, then

AR5 72)) = [ (17, @)= (s, o (@ [ (00— O ()

~ const. _ conmst. - _const.

= : , if A is small. 2)
x\l*‘l 7\'1'

E‘et 76(r) be the linear measure of the part of |z|=7#, contained
in K, then

> _ rdrd6 __ , ("v+1 v8(r)dr 7v+1 G(V)dr ‘
(K., r,,+1))—4”?{%’ml) G "4er it <4Lv W
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so that by (2),

r, (1"'7’)2 = X\J+1

jrwl 0(r)dr ~, _conmst. | 3)

Let the maximum of 6(») in [, ..,] be attained at »=p,, then

‘[’wl_ﬂit)grwg O(Py)j’wlhwd?’ < 6(p,)

- (1_7)2 (1_7,)2 av+tt

so that by (3),

6(p) =27 >0 (»=12,-), (4)

~

where 7 >0 is a constant, independent of ». Let |z|=p, intersect K
in a set of arcs 6 (:=1, 2, ---, N) of length p,|6{”], then

op)= 216 =27 >0. )

Let 0<«<{1. We divide {6} into two classes {6} ={6%"} + {6V},
where [65’| =«(1—p,) and |63|<«(1—p,). Since by (1), N< —;Onst ,
, iy
116¥| < «N(1—py) < const. x, hence if we take « so small that
J/

const. «<7n, then by (5),
2691 =2>0, (67 =«(1—p.). (6)
7

LEMMA 5. Let G be a Fuchsian group, such that o(Dy)<eo.
Then there exisls no measurable set E on |z2|=1, which is invariant
by G and OmE < 2w, so that if mE >0, then mE =2.
const.

Proor. By lemma 3, #n(r,a) > , so that if @, be equiva-

lents of a, then Zn(l—la,.l)=°°. If we identify the equivalent sides
of Dy, then D, can be considered as a Riemann surface F. Since
i}(l—lanl)=°°, there exists no Green’s function on F, so that F is of
7n=0

null boundary. We remark that if o(Dy)<eo, then D, lies entirely in
|z]|=1, with its boundary, or if D, has boundary points on |z|=1, then
the number of sides of D, is finite and D, has only a finite number
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of parabolic vertices on |z|=1%, hence F is a closed Riemann surface
or an open Riemann surface, which is obtained from a closed surface
by taking off a finite number of points.

Suppose that there exists a set £ on |z|=1, which is invariant
by G and 0<mE <27 and put

__1 1—|z]?
u(Z)— 27 jE |z—e®|2 ae,

then, since 0<mFE <2, u(z)= const. and since #(z) is invariant by
G, u(z) is a non-constant bounded harmonic function on F, which is
of null boundary, which is absurd. Hence there exists no such a
set £ on |z|=1.

3. Proof of Theorem 1.

Suppose that there exists a measurable set £ on the torus 6:
0<6<27m, 0< <27, which is invariany by 8=Gx G and u(E)>0
and we shall prove that w(E)=4=2

Let f(0, @) be the characteristic function of £ and put

_ 1 (1—]z2AA—|wpP)
ulzw)= 1 ([ flo, ) (TTIENIIOR dodg, 121 <1, 1wl <1, )

Then u(z, w) is invariant by &, such that (S(z), S(w))=u(z, w), SeG.
If we denote the Stolz domain : Iarg(l—ze‘”)lg—;L by 4(e®), then by

Lemma 1, for almost all (8, #) on @, for a fixed (6, @),
lim «(z, w)=f(6, ) uniformly, (2)
79 1P _

z+e" > wre

when z— e, w—e® from the inside of 4(e®), 4(e’®) respectively.
Let E(6) be the section of E by the line 6= const. =6 and E(@)
be that by the line ¢= const. =¢, then

WE)=|"mE@)do >0, 3)

4) Siegel: Some remarks on discontinuous groups. Ann. Math. 46 (1945).
M. Tsuji: Theory of Fuchsian groups. Jap. Journ. Math. 21 (1951).
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where m denotes the linear measure.

If mE()=0 on a set e of positive measure, then since such a set
e 1is invariant by G, by me=2s, so that w(E)=0, which is
absurd. Hence mE(8)™>0 for almost all 6 in [0, 2+].

Hence by Egoroff’s theorem, for any 8 >0, if 5 is sufficiently small,
there exists a closed sub-set E; of E, which satisfies the following
condition.

(i) E; lies outside the strip: |80—¢]| <7 (mod 2).

(ii) Let e, be the projection of E; on the 6-axis, then me; >27—38
and if f€e;, then mE(6) =% _>0.

(iii) lim #(z, w)=1 uniformly for (6, »)eE,,

z5et0, 261
when z— ¢, w—¢e® from the inside of 4(e®), 4(e’*) respectively, so that
if Beey, zed(e®), |z—e??| < §=8(e), then

1—e<u(z,e*)<1, @ecEyd), (4)
where

u(z, %)= lim u(z, w).

w-»ew

Let Ky: |z2]< py<1 be a disc, contained in D, and K, be its
equivalents, then by there exists p;<p,< - <p,—1, such

that |z|=p, intersects E;‘OK,, in a set of arcs 6 (j=1, 2, ---, sv), such that

]0;-")Igconst. (1—Pv) (]:1’ 2; Tty Sv):
T

le9§”’lgconst.>0 (v=1,2, -, ).
=

Hence if we denote the projection of 6%’ from z=0 on |z]=1 by af”,
then

la$’| = const. (1—p,) (7=1,2, ---,s)), 1

Sy ) (6)
Slap | Zconst. >0 (v=1,2,, ). J
>

In virtue of (6), if §_>0 in (ii) is sufficiently small, then by taking a
suitable sub-set from {7}, which we denote by {s} again, we may

iV
assume that a$” contains a point ¢“/, such that w}ce;.
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Let Kj-‘;) be the equivalent of K, which contains 6% and let
K;_v): zZ— ZJ ‘SPO, where Ko S(v)(l?’(v)) 0= S(“)(z“‘)), S}”eG.

1—-2zz
(7)

If we put K M=S"(K,), then K (" is obtained from K® by a rotation
about z=0, so that the circle | z|=p, intersects K ™ in a arc, whose pro-
jection from z=0 on |z|=1 be denoted by &}, then |&’|=|a$’], so that

(8)

s

&1 >const. 1—p,) (7=1,2,-,5,), }
ZII&‘§”’I__>__const.>0 (»=1,2, - ).
=

If the radius p, of K, is sufficiently small and »>y, then z{’ lies in
i
4(e"7"), so that by (4),
]-_ev < u(z,(iw, ei(l’) < 1 ’ PE El((‘)JV)) (9)

where e,—0 with » — o,
Since #(z, w) is invariant by &,

1—e,<<u(0,6*) <1, €¥=5M(e*) < SPUE(w$)),

so that if we put M,= ﬁs;w(El(wgw)), then
| 2

1—e < u(0, %) <1, peM,. (10)
Let
Kp=SPK): |5 5(1) \ <p, argP=vy, (11)

then by the condition (i) and mE(«’)=7n">0 by the condltlon (ii),
we see by Lemma 2 that S{”(Ey(«$”)) is contained in an arc I} '™ on

vy
|z2l=1, whose center is ¢’’’ and

* . (v
mSP(EwP)) = const. | [7], where |[]= 41 &0 (12)
7

Since the radius of K“) is <const.(1—p,), &5’ < const.(1—p,)
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and since |I{”| = const.(1—p,), we have lf}”lgconst. [d&$”], so that
by (8) .

_z,v‘llf,f”lgconst.>0 (»=1,2, -, ). (13)
pa

Since by (8), ‘,”’I = const. (1—p,) and &5, &9 (]4:]) have no
common points and |7 “')l < const.(1—p,), we see that {I} ‘”’} overlap at
most N-times, where N is independent of », so that since S;”(E(«$”))

I"’, we have by (12), [(13),

1 s =
mM, = const. N ZIII,“"I =const. >0 (»=1,2,---, ). (14)
=

Hence if we put M= llm M,, then mM >0 and by [10).

#0,e69=1, if @b (15)
Now :
wo,w)= L ("Rg) 171wl g,
(16)
Flp)= jf(e VAo = _’”—lgiﬂ

so that for almost all @ on M, 1=u(0,¢*)=F(p)= 3112&10_, or
w .

mE(p)=2m. Let M,be the set of @, such that mE(p)=2=, then since

M < M,, except a null set, mM,=>mM >0 and since such a set M,

is invariant by G, by [Lemma 5, mM,=2, so that
2z
W(E)=| mB(p)dp=4n.

4. Flow T/ ® (— co<t< o).

We define the non-euclidean metric ds= _Zldzl , do= ddxdy

—|zf? 1—|zpy

(z=x+1y) as in §1. We suppose that a(Do)< . Let z be any point

of D, and we associate a direction @ at z, which makes an angle @

with the positive real axis, then the line elements (z, @) (ze Dy, 0 < p=<27)
constitute a space 2. We define the volume element dp in 2 by

_ 4dxdyde

A P

z=x+1wy,
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then p(2)=2nwoc(D,). du is invariant for any linear transformation,
which makes |z| <1 invariant.

Let «a (0<la<w) be fixed, then for any (z,9) in |z|<]1,
there exists a unique circular arc g,=g.(z, #), which touches the
direction @ at z and satisfies the following condition. Let #,=¢™,
n,=e'* be two end points of g, on |z|=1, where », is such that if we
proceed on g, in the direction @, then g, meets |z|=1 at 7, where it
makes an angle « with the positive /_t\angent of |z]=1 at »,.

Let z, be the middle point of 7,7, and z be any point of g, and
s be the non-euclidean length of the arc zf\z, where s is positive, if
z lies on 2/0;2 and negative, if otherwise. Then we have a one-to-one
correspondence between (z, @) and (7,7, s), which we denote by

(z, p)=(n, 1, $)=(6y, 6,, 5). Then we shall prove

LEMMA 6.  du= 395BA? _ o o ldnil | dn:lds
(1—|zF)? | 71— 722

Proor. By z= g;’ , we map |z|<<1 on the upper half of the
)

¢=wu+1iv-plane, then

1—|zp v (1—]zP2 o2

Let g,=g,(z, ) become a circle C of radius R and of center M
and 7, 7, become #;, 2; (2¢,< 2;) re-
spectively and let ¥ be defined as
in the figure, then

Uy— Uy )

R= #‘“—‘Zsin/@‘ (BZW—(X),

"= J/‘l;“l —Rsiny

— mitu, _ p— U sin ¥, ’ (2)
2 2sin g ‘
v = R cos \P'—R cos B
U— U,

= §m~ (COS Y— cos B): J




286 - ‘ M. Tsun

0(u, v) 1
that = — , h
so tha ot 1)~ 2oin B (cos y—cos B), hence
dudv'; ICOS‘I’ COSBI dud U= vdulduz . (3)
2 sin B Uy—u,
By (1), ds= Rj‘lf and since dep=dVy, we have
4dxdydy _ dudvdy _  dudvds _ dmduds —2sin 8 du,duds
(1—|z [Py v vR R(uy—u) (t0— w4,
=2 sin a -Haduds (4)
(26— u1)?

Since the anharmonic ratio [z, zs, 2z, z]= 2 2! : 272 and hence
' 23—2; 24— 2
(dzleZ)Z_ = —[2y, 23,2+ d2, 2,+dz,] is invariant by a linear transforma-
21— 22
tion, we have Ndmlidn| _ _dwdu so that by (4)

’
[71—n21? (261 — t4,)?

4dxdydp =92 sin a . % |dm| |dn,| ds
daxayc , q.ed.
(1—1z 22 [m—mn,[?

Now for a fixed « in (0,7), we consider a flow T{* (— co<t< o)
in 2
Tt(w): P_ ("71’ 72, S) - Pt (771’ 7025 S+t)

where if the z-coordiante of P, lies outside D, then we replace it by
its equivalent in D, Then by [Lemma 6, T/ is a mass-preserving
transformation of £2 into itself. The flow 7T(* is said metric transitive,
if a set M is invariant by T7*, then u(M)=0, or w(M)=u(L2).
THEOREM 2. If o(Dy)< oo, then the flow T ® is metric transitive.
PROOF. Let (z, @)=, 72, 5), (2eDp, 0 p<27) and g,=g.(z, ®)
=g, M, S), (m=€"", n,=¢**) be defined as before. Then the part of g,
contained in D, corresponds to s,(6;,8,) < s<s,6;, 6,), so that if we
denote the projection of 2 on the torus #: 0<0,<2~, 06,27 by
A, then £ consists of points (6, 6, 5): (61, :)e A, 5:1(6y, 6,) <s=<s5s.(6,,6,).
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If a set M is invariant by the flow and wx(M) >0, then we shall prove

that w(M)=pu(2). »
Since M is invarinant by the flow, if we denote the projection of

M on 6 by B, then M consists of points (6, 6,, s): (6, 6;)e B, s,(8,, 6,)

<s<s46,,6,). Let B, be equivalents of B by =G x G and g—i‘B,,,

then B is invariant by ®. Since ,u(M Y>>0, the measure of B is posi-
tive, so that by [Theorem 1, 6— B is a null set, so that A—AB is a
null set. Since AB=B, A—B is a null set, hence w(M)= u(2).

5. Analogue of Weyl’s theorem on uniform distribution.

Since T7* is metric transitive and u(£2)< <o, by Birkhoff’s ergodlc
theorem, for any bounded measurable function f(P) on 2,

lim —jfm)t o )jﬂP)dy(P) *)

for almost all points P in £.

By means of (*), we shall prove

THEOREM 3. Let G be a Fuchsian group, such that o(Dy)< oo,
Then therve exists a set E on |z|=1 of measure 2, which satisfies the
Sfollowing condition. Let M be a set in D, which is measurable in

Jordaw’'s sense and M, be its equivalents by G and M= éM,,.

Let ¢®cE and 1l be a line through €, directed inwardv 0of lz]<1,
making an angle o (0< a<m) with the positive tangent of |z|=1 at
€. Let I* be its part of non-euclidean length L, measured from a
fixed point on it and L(M, e, 1) be the non-euclidean linear measure
of the part of I, contained in M. Then

. LMD (M)
lim 2 D ,
F L o(Dy)

e’eE,

for any 1 and M.
PROOF. Let 4 be a rectangle: n < x<7,, rn< y<74, contamed in
D,, where #, #., 73, ,, are rational numbers and we call such 4 a rational

rectangle. Let 4, be its equivalents and Z=§%Av. We associate to
; . S =
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every zed, directions @ (0@ <27), then the line elements P=(z, @)
(2ed, 0= < 27) constitue a sub-set 3 of £, whose volume is 2wo(4).
Let f(P) be its chracteristic function, then by (*), if P does not belong
to a null set N(#, 7, 75, 7) in 2,

.1 (F = w2 _ oa)
lim - jof ()t wW(2) oDy (1)

Let N®=3>N(», », 73, 75), added for all rationals 7y, 7, 73, 7, then
N® is a null set, which depends on «. Hence if P does not belong
to N, then (1) holds for any rational rectangle 4 in D,.

Let g.=g.(z, )=g.(n1, 72 S) (m=¢€"", n,=¢€"*) be a circular arc, defin-
ed before and gL be its part of non-euclidean length L, measured from

. L
the middle point 2z, of »y7, then jﬂ APt =L(4, g.)+O(1), where

L(4, g,) is the non-euclidean linear measure of the part of gL, contained
in 4, so that if P does not belong to N, then for any rational
rectangle 4 in D,,

im (4.2 _ old) |
fim =7 o(Dy) 2

Let 4 be any rectangle in D, whose sides are parallel to the
coordinates axes, then for any ¢_>0, we choose two rational rectangles
4y, 45, such that 4,4 4y, a(d,— 4,)<e. Let / be a line through 2,=¢*,
which touches g, at 7,.. If zel, teg, and |z|=|¢|, then if
1—]2]<8=38(e),

(1—e)ldz| < |d¢| =< (1+¢)ldz], 3)

where e —0 with 8—0. Since (2) holds for 4,, 4,, we have by (3),

o) iy LD od)  oeg
(1—7) U(D;) g‘lleﬁl; T < (1+n) oDy’ 6=06,,

where »—0 with e—0. Hence for any rectangle 4 in D,, if P does

not belong to N,

. L(4,e%1) _ a(4)
lim L " oDy “)
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Let A be the projection of £ on @ and A, be its equivalents by
® and A= iAv, then as before, ®—A is a null set. Let N be
v=0

the projection of N® on @ and N be its equivalents by & and

©o

N®= TN, then N is a null set, so that N= 31 N®, added for

v=(
all rationals « in (0,7) is a null set on #. Hence for a suitable 6j,
there exists a set E of measure 27 on the segment : 6,=63, 06,2,
such that E lies outside of N and every point of which belongs to A.
We denote the set of points z=¢?, deE by the same letter E. If
e¢’cE, then (4) holds for any line / through ¢, making any rational
angle « with the positive tangent of |z|=1 at ¢* and for any rectangle
4 in D,.

If « is an irrational number, let «' be a rational number, such
that |a—a’|<e and 7 be a line through ¢°, making an angle a’ with
the positive tangent of |z|=1 at ¢®. Let 4 be any rectangle in D,
then we choose two rectangles 4;, 45, such that 41 C 4T 4y, o(d:— 4))<e.
Then since (4) holds for 4,/ and 4, !/, we have

_p) o) o L4, 1) _a(4)
(1—2) +(DJ) g%{g 7 = (1+7) oDy’

where n—0 with e—0, hence if ¢cE, then

fm Le%D) _ ola)

lim 7 oDy’ (®)

which holds for any line / through ¢ and for any rectangle 4 in D,
so that for a set in D, which is a sum of a finite number of non-
overlapping rectangles. Let M be a set in D, which is measurable in
Jordan’s sense, then for any e¢_>0, we choose M;, M, which are sums
of a finite number of non-overlapping rectangles, such that M, CM

. M,, o(M,—M,;)<e. Since the theorem holds for M;, M, and ¢ >0
is arbitrary, the theorem holds for M.
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