Hopf's ergodic theorem on Fuchsian groups.

By Masatsugu Tsuji

(Received Feb. 22 1955)

1. Hopf's theorem.

Let a non-euclidean metric in |z| < 1 be defined by

$$ds = \frac{2|dz|}{1 - |z|^2}, \qquad d\sigma = \frac{4dxdy}{(1 - |z|^2)^2} (z = x + iy). \tag{1}$$

Let $\eta_1=e^{i\theta}$, $\eta_2=e^{i\varphi}$ be two points on |z|=1, then the pair (η_1,η_2) can be considered as a point of a torus $\theta: 0 \le \theta \le 2\pi$, $0 \le \varphi \le 2\pi$. For a measurable set E on θ , we define its measure by

$$\mu(E) = \iint_E d\theta d\varphi$$
, so that $\mu(\Theta) = 4\pi^2$. (2)

Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and S_{ν} be any substitution of G and

$$T_
u$$
: $\eta_1' = S_
u(\eta_1)$, $\eta_2' = S_
u(\eta_2)$,

then the totality of T_{ν} consititutes a group $\mathfrak{G} = G \times G$. Hopf¹⁾ proved

THEOREM 1. Let D_0 be the fundamental domain of G. If $\sigma(D_0) < \infty$, then there exists no measurable set E on Θ , which is invariant by \mathfrak{G} and $0 < \mu(E) < 4\pi^2$, so that if $\mu(E) > 0$, then $\mu(E) = 4\pi^2$.

In the former paper², I gave another proof of the theorem. I could simplify my former proof a little, which we shall show in § 3 and as an application of the theorem, we shall prove an analogue of Weyl's theorem on uniform distribution for Fuchsian groups in § 5.

¹⁾ E. Hopf: Fuchsian groups and ergodic theory. Trans. Amer. Math. Soc. 39 (1936). Ergodentheorie. Berlin (1937).

²⁾ M. Tsuji: On Hopf's ergodic theorem. Proc. Imp. Acad. (1944). Jap. Journ. Math. 19 (1945).

2. Some lemmas.

We use the following lemmas in the proof.

LEMMA 1.3 Let $\Theta: 0 \le \theta \le 2\pi$, $0 \le \varphi \le 2\pi$ be a torus and $f(\theta, \varphi)$ be a bounded measurable function on Θ and

$$u(z,w) = \frac{1}{4\pi^2} \iint_{\Theta} f(\theta,\varphi) \frac{(1-|z|^2)(1-|w|^2)}{|z-e^{i\theta}|^2 |w-e^{i\varphi}|^2} d\theta d\varphi, \quad |z| < 1, \ |w| < 1.$$

Then for almost all (θ, φ) on θ , for a fixed (θ, φ) ,

$$\lim_{z \to e^{i\theta}, w \to e^{i\varphi}} u(z, w) = f(\theta, \varphi) \quad uniformly,$$

when $z \rightarrow e^{i\theta}$, $w \rightarrow e^{i\varphi}$ from the inside of any Stolz domain, whose vertex is at $e^{i\theta}$, $e^{i\varphi}$ respectively.

LEMMA 2. Let $S: z' = \frac{z-a}{1-az}$ (0 < a < 1) and e be a measurable set on |z|=1, which is contained in an arc: $0 < \eta \le |\arg z| \le \pi$ and $me \ge \kappa > 0$. Then S(e) is contained in an arc $I: |\arg z - \pi| \le \frac{2\pi(1-a)}{\sin^2 \eta}$ on |z|=1 and

$$mS(e) \geq k|I|$$
,

where $|I| = \frac{4\pi(1-a)}{\sin^2\eta}$, $k = \kappa \frac{\sin^2\eta}{8\pi}$.

$$mS(e) = \int_{e} \frac{1-a^2}{|1-ae^{i\theta}|^2} d\theta.$$

Since on e

$$\frac{1-a}{2} \le \frac{1-a^2}{|1-ae^{i\theta}|^2} \le \frac{2(1-a)}{\sin^2 \eta}$$
 ,

we have

$$\frac{\kappa(1-a)}{2} \leq mS(e) \leq \frac{2(1-a)}{\sin^2 \eta} me.$$

³⁾ M. Tsuji, l.c. 2)

Especially, if $e=I_0$ is an arc: $0<\eta \leq \arg z \leq \pi$, then $mS(I_0) \leq \frac{2\pi(1-a)}{\sin^2\eta}$, hence S(e) is contained in an arc I: $|\arg z - \pi| \leq \frac{2\pi(1-a)}{\sin^2\eta}$ and from $mS(e) \geq \frac{\kappa(1-a)}{2}$, we have $mS(e) \geq k|I|$, where $k = \frac{\kappa\sin^2\eta}{8\pi}$.

LEMMA 3. Let G be a Fuchsian group, such that $\sigma(D_0) < \infty$ and $K_0: |z| \leq \rho_0 < 1$ be a disc, contained in D_0 . If $a \in K_0$, then

$$\frac{\text{const.}}{1-r} \leq n(r,a) \leq \frac{\text{const.}}{1-r},$$

where n(r, a) is the number of equivalents of a in $|z| \le r < 1$. PROOF. First we shall prove that for any $a \in D_0$,

$$n(r,a) \leq \frac{\text{const.}}{1-r} \,, \tag{1}$$

where const. is independent of $a \in D_0$.

Let $[a, b] = \begin{vmatrix} a-b \\ 1-\bar{a}b \end{vmatrix}$ (|a| < 1, |b| < 1), then [S(a), S(b)] = [a, b], where

S is any linear transformation, which makes |z| < 1 invariant. Let a_n be an equivalent of a, contained in $|z| \le r$, so that $|a_n| \le r$, or $[a_n, 0] \le r$. Hence if $a_n = S_n(a)$, $S_n \in G$, then $[S_n(a), 0] = [a, S_n^{-1}(0)] \le r$, so that n(r, a) is equal to to the number of equivalents z_n of z = 0, contained in a disc $[z, a] \le r$. Since the non-euclidean area of the disc $[z, a] \le r$ is equal to that of $|z| \le r$, which is $\le \frac{\text{const.}}{1-r}$, the number of z_n ,

contained in $[z,a] \leq r$ is $\leq \frac{\text{const.}}{1-r}$, so that $n(r,a) \leq \frac{\text{const.}}{1-r}$, where const. is independent of $a \in D_0$.

If D_0 has boundary points on |z|=1, let B_0 be the part of D_0 , which lies outside the circle $|z|=\rho$ ($>\rho_0$). Since $\sigma(D_0)<\infty$, we take $1-\rho$ so small that $\sigma(B_0)<\varepsilon$. Let B_ν be equivalents of B_0 and $\widetilde{B}=\sum_{\nu=0}^{\infty}B_\nu$ and $\widetilde{B}(r)$ be its part, contained in $|z|\leq r<1$. Then by (1),

$$\sigma(\widetilde{B}(r)) = \int_{B_0} n(r, a) d\sigma(a) \leq \frac{\text{const.}}{1 - r} \sigma(B_0) < \frac{\text{const. } \varepsilon}{1 - r}.$$
 (2)

We put $D_0' = D_0 - B_0$ and D_ν' be its equivalents and $\widetilde{D}' = \sum_{\nu=0}^{\infty} D_\nu'$. Let $\Delta(r): |z| \leq r$ be a disc, then $\widetilde{D}'(r) + \widetilde{B}(r) = \Delta(r)$, so that

$$\sigma(\widetilde{D}'(r)) + \sigma(\widetilde{B}(r)) = \sigma(\Delta(r)) \ge \frac{\text{const.}}{1-r}$$
.

If ϵ is small, then by (2), $\sigma(\widetilde{D}'(r)) \geq \frac{\text{const.}}{1-r}$. From this, we can prove easily that $n(r,a) \geq \frac{\text{const.}}{1-r}$, $a \in K_0$.

LEMMA 4. Let G be a Fuchsian group, such that $\sigma(D_0) < \infty$ and $K_0: |z| \leq \rho_0 < 1$ be a disc, contained in D_0 and K_n be its equivalents and $\widetilde{K} = \sum_{n=0}^{\infty} K_n$. Let $r_{\nu} = 1 - \lambda^{\nu} (0 < \lambda < 1) (\nu = 1, 2, \cdots)$. If λ is sufficiently small, then there exists $\rho_{\nu} (r_{\nu} \leq \rho_{\nu} \leq r_{\nu+1})$, which satisfies the following condition. The circle $|z| = \rho_{\nu}$ intersects \widetilde{K} in a set of arcs, among them there are such ones $\theta_j^{(\nu)}(j=1,2,\cdots,s_{\nu})$ of length $\rho_{\nu}|\theta_j^{(\nu)}|$, such that $|\theta_j^{(\nu)}| \geq \kappa(1-\rho_{\nu})(j=1,2,\cdots,s_{\nu})$, $\sum_{j=1}^{s_{\nu}} |\theta_j^{(\nu)}| \geq \eta > 0$ ($\nu=1,2,\cdots$), where κ and η are constants, independent of ν .

Proof. By Lemma 3,

$$\frac{\text{const.}}{1-r} \leq n(r, a) \leq \frac{\text{const.}}{1-r}, \quad a \in K_0.$$
 (1)

Let $\widetilde{K}(r_{\nu}, r_{\nu+1})$ be the part of \widetilde{K} , contained in $r_{\nu} \leq |z| \leq r_{\nu+1}$, then by (1),

$$\sigma(\widetilde{K}(r_{\nu}, r_{\nu+1})) = \int_{K_0} (n(r_{\nu+1}, a) - n(r_{\nu}, a)) d\sigma(a) \ge \int_{K_0} \left(\frac{\text{const.}}{1 - r_{\nu+1}} - \frac{\text{const.}}{1 - r_{\nu}}\right) d\sigma(a)$$

$$\ge \frac{\text{const.}}{\lambda^{\nu+1}} - \frac{\text{const.}}{\lambda^{\nu}} \ge \frac{\text{const.}}{\lambda^{\nu+1}}, \quad \text{if } \lambda \text{ is small.}$$
 (2)

Let $r\theta(r)$ be the linear measure of the part of |z|=r, contained in \widetilde{K} , then

$$\sigma(\widetilde{K}(r_{\nu}, r_{\nu+1})) = 4 \int_{\widetilde{K}(r_{\nu}, r_{\nu+1})}^{\infty} \frac{r dr d \theta}{(1-r^2)^2} = 4 \int_{r_{\nu}}^{r_{\nu+1}} \frac{r \theta(r) dr}{(1-r^2)^2} < 4 \int_{r_{\nu}}^{r_{\nu+1}} \frac{\theta(r) dr}{(1-r)^2},$$

so that by (2),

$$\int_{r_{\nu}}^{r_{\nu+1}} \frac{\theta(r)dr}{(1-r)^2} \ge \frac{\text{const.}}{\lambda^{\nu+1}}.$$
 (3)

Let the maximum of $\theta(r)$ in $[r_{\nu}, r_{\nu+1}]$ be attained at $r=\rho_{\nu}$, then

$$\int_{r_{\nu}}^{r_{\nu+1}} \frac{\theta(r)dr}{(1-r)^2} \leq \theta(\rho_{\nu}) \int_{r_{\nu}}^{r_{\nu+1}} \frac{dr}{(1-r)^2} < \frac{\theta(\rho_{\nu})}{\lambda^{\nu+1}},$$

so that by (3),

$$\theta(\rho_{\nu}) \ge 2\eta > 0 \ (\nu = 1, 2, \cdots), \tag{4}$$

where $\eta > 0$ is a constant, independent of ν . Let $|z| = \rho_{\nu}$ intersect \widetilde{K} in a set of arcs $\theta_i^{(\nu)}$ $(i=1, 2, \dots, N)$ of length $\rho_{\nu} |\theta_i^{(\nu)}|$, then

$$\theta(\rho_{\nu}) = \sum_{i=1}^{N} |\theta_i^{(\nu)}| \ge 2\eta > 0. \tag{5}$$

Let $0 < \kappa < 1$. We divide $\{\theta_i^{(\nu)}\}$ into two classes $\{\theta_i^{(\nu)}\} = \{\theta_j^{(\nu)}\} + \{\theta_j^{(\nu)}\}$, where $|\theta_j^{(\nu)}| \ge \kappa (1-\rho_{\nu})$ and $|\theta_{j'}^{(\nu)}| < \kappa (1-\rho_{\nu})$. Since by (1), $N \le \frac{\text{const.}}{1-\rho_{\nu}}$, $\sum_{j'} |\theta_{j'}^{(\nu)}| \le \kappa N(1-\rho_{\nu}) \le \text{const. } \kappa$, hence if we take κ so small that const. $\kappa < \eta$, then by (5),

$$\sum_{j} |\theta_{j}^{(\nu)}| \geq \eta > 0, \qquad |\theta_{j}^{(\nu)}| \geq \kappa (1 - \rho_{\nu}). \tag{6}$$

LEMMA 5. Let G be a Fuchsian group, such that $\sigma(D_0) < \infty$. Then there exists no measurable set E on |z|=1, which is invariant by G and $0 < mE < 2\pi$, so that if mE > 0, then $mE = 2\pi$.

PROOF. By lemma 3, $n(r,a) \geq \frac{\text{const.}}{1-r}$, so that if a_n be equivalents of a, then $\sum_{n=0}^{\infty} (1-|a_n|) = \infty$. If we identify the equivalent sides of D_0 , then D_0 can be considered as a Riemann surface F. Since $\sum_{n=0}^{\infty} (1-|a_n|) = \infty$, there exists no Green's function on F, so that F is of null boundary. We remark that if $\sigma(D_0) < \infty$, then D_0 lies entirely in |z|=1, with its boundary, or if D_0 has boundary points on |z|=1, then the number of sides of D_0 is finite and D_0 has only a finite number

of parabolic vertices on $|z|=1^4$, hence F is a closed Riemann surface or an open Riemann surface, which is obtained from a closed surface by taking off a finite number of points.

Suppose that there exists a set E on |z|=1, which is invariant by G and $0 < mE < 2\pi$ and put

$$u(z) = \frac{1}{2\pi} \int_{E} \frac{1 - |z|^2}{|z - e^{i\theta}|^2} d\theta$$
,

then, since $0 < mE < 2\pi$, $u(z) \not\equiv \text{const.}$ and since u(z) is invariant by G, u(z) is a non-constant bounded harmonic function on F, which is of null boundary, which is absurd. Hence there exists no such a set E on |z|=1.

3. Proof of Theorem 1.

Suppose that there exists a measurable set E on the torus θ : $0 \le \theta \le 2\pi$, $0 \le \varphi \le 2\pi$, which is invariant by $\mathfrak{G} = G \times G$ and $\mu(E) > 0$ and we shall prove that $\mu(E) = 4\pi^2$.

Let $f(\theta, \varphi)$ be the characteristic function of E and put

$$u(z,w) = \frac{1}{4\pi^2} \iint_{\Theta} f(\theta,\varphi) \, \frac{(1-|z|^2)(1-|w|^2)}{|z-e^{i\theta}|^2 |w-e^{i\varphi}|^2} \, d\theta d\varphi \,, \quad |z| < 1, \, |w| < 1. \quad (1)$$

Then u(z, w) is invariant by \mathfrak{G} , such that u(S(z), S(w)) = u(z, w), $S \in G$. If we denote the Stolz domain: $|\arg(1-ze^{-i\theta})| \leq \frac{\pi}{4}$ by $\Delta(e^{i\theta})$, then by Lemma 1, for almost all (θ, φ) on Θ , for a fixed (θ, φ) ,

$$\lim_{z \to e^{i\theta}, w \to e^{i\varphi}} u(z, w) = f(\theta, \varphi) \quad \text{uniformly,}$$
 (2)

when $z \rightarrow e^{i\theta}$, $w \rightarrow e^{i\varphi}$ from the inside of $\Delta(e^{i\theta})$, $\Delta(e^{i\varphi})$ respectively.

Let $E(\theta)$ be the section of E by the line $\theta = \text{const.} = \theta$ and $E(\varphi)$ be that by the line $\varphi = \text{const.} = \varphi$, then

$$\mu(E) = \int_0^{2\pi} mE(\theta) d\theta > 0 , \qquad (3)$$

⁴⁾ Siegel: Some remarks on discontinuous groups. Ann. Math. 46 (1945). M. Tsuji: Theory of Fuchsian groups. Jap. Journ. Math. 21 (1951).

where m denotes the linear measure.

If $mE(\theta)=0$ on a set e of positive measure, then since such a set e is invariant by G, by Lemma 5, $me=2\pi$, so that $\mu(E)=0$, which is absurd. Hence $mE(\theta)>0$ for almost all θ in $[0,2\pi]$.

Hence by Egoroff's theorem, for any $\delta > 0$, if η is sufficiently small, there exists a closed sub-set E_1 of E, which satisfies the following condition.

- (i) E_1 lies outside the strip: $|\theta \varphi| < \eta \pmod{2\pi}$.
- (ii) Let e_1 be the projection of E_1 on the θ -axis, then $me_1 > 2\pi \delta$ and if $\theta \in e_1$, then $mE_1(\theta) \ge \eta > 0$.
 - (iii) $\lim_{z \to e^{i\theta}, w \to e^{i\varphi}} u(z, w) = 1$ uniformly for $(\theta, \varphi) \in E_1$,

when $z \to e^{i\theta}$, $w \to e^{i\varphi}$ from the inside of $\Delta(e^{i\theta})$, $\Delta(e^{i\varphi})$ respectively, so that if $\theta \in e_1$, $z \in \Delta(e^{i\theta})$, $|z - e^{i\theta}| < \delta = \delta(\varepsilon)$, then

$$1-\varepsilon < u(z, e^{i\varphi}) < 1$$
, $\varphi \in E_1(\theta)$, (4)

where

$$u(z, e^{i\varphi}) = \lim_{w \to e^{i\varphi}} u(z, w).$$

Let $K_0: |z| \leq \rho_0 < 1$ be a disc, contained in D_0 and K_n be its equivalents, then by Lemma 4, there exists $\rho_1 < \rho_2 < \cdots < \rho_{\nu} \to 1$, such that $|z| = \rho_{\nu}$ intersects $\sum_{n=0}^{\infty} K_n$ in a set of arcs $\theta_j^{(\nu)}$ $(j=1, 2, \dots, s_{\nu})$, such that

$$|\theta_{j}^{(\nu)}| \geq \text{const.} (1-\rho_{\nu}) \quad (j=1, 2, \dots, s_{\nu}), \\ \sum_{j=1}^{s_{\nu}} |\theta_{j}^{(\nu)}| \geq \text{const.} > 0 \quad (\nu=1, 2, \dots,).$$
 (5)

Hence if we denote the projection of $\theta_j^{(v)}$ from z=0 on |z|=1 by $\alpha_j^{(v)}$, then

$$|\alpha_{j}^{(v)}| \ge \text{const.} (1-\rho_{v}) \quad (j=1,2,\cdots,s_{v}), \\ \sum_{j=1}^{s_{v}} |\alpha_{j}^{(v)}| \ge \text{const.} > 0 \quad (\nu=1,2,\cdots,).$$
 (6)

In virtue of (6), if $\delta > 0$ in (ii) is sufficiently small, then by taking a suitable sub-set from $\{j\}$, which we denote by $\{j\}$ again, we may assume that $\alpha_j^{(\nu)}$ contains a point $e^{i\omega_j^{(\nu)}}$, such that $\omega_j^{(\nu)} \in e_1$.

Let $K_j^{(i)}$ be the equivalent of K_0 , which contains $\theta_j^{(i)}$ and let

$$K_{j}^{(\nu)}: \left| \frac{z - z_{j}^{(\nu)}}{1 - \bar{z}_{j}^{(\nu)} z} \right| \leq \rho_{0}, \text{ where } K_{0} = S_{j}^{(\nu)}(K_{j}^{(\nu)}), \quad 0 = S_{j}^{(\nu)}(z_{j}^{(\nu)}), \quad S_{j}^{(\nu)} \in G.$$

$$(7)$$

If we put $K_j^{(\nu)} = S_j^{(\nu)}(K_0)$, then $K_j^{(\nu)}$ is obtained from $K_j^{(\nu)}$ by a rotation about z=0, so that the circle $|z|=\rho_{\nu}$ intersects $K_j^{(\nu)}$ in a arc, whose projection from z=0 on |z|=1 be denoted by $A_j^{(\nu)}$, then $|A_j^{(\nu)}|=|A_j^{(\nu)}|$, so that

$$|\overset{x_{j}^{(\nu)}}{\alpha_{j}^{(\nu)}}| \geq \text{const.} (1-\rho_{\nu}) \quad (j=1,2,\cdots,s_{\nu}),$$

$$\sum_{i=1}^{s_{\nu}} |\overset{x_{i}^{(\nu)}}{\alpha_{j}^{(\nu)}}| \geq \text{const.} > 0 \qquad (\nu=1,2,\cdots).$$

$$(8)$$

If the radius ρ_0 of K_0 is sufficiently small and $\nu \geq \nu_0$, then $z_j^{(\nu)}$ lies in $\Delta(e^{i\omega_j^{(\nu)}})$, so that by (4),

$$1 - \varepsilon_{\nu} < u(z_{i}^{(\nu)}, e^{i\varphi}) < 1, \qquad \varphi \in E_{1}(\omega_{i}^{(\nu)}), \tag{9}$$

where $\varepsilon_{\nu} \rightarrow 0$ with $\nu \rightarrow \infty$.

Since u(z, w) is invariant by \mathfrak{G} ,

$$1-arepsilon_{m{
u}}\!<\!u(0,e^{iarphi'})\!<\!1$$
 , $e^{iarphi'}\!=\!S_{m{j}}^{(
u)}\!(e^{iarphi})\!<\!S_{m{j}}^{(
u)}\!(E_{m{l}}\!(\omega_{m{j}}^{(
u)}))$,

so that if we put $M_{\nu} = \sum_{j=1}^{s_{\nu}} S_{j}^{(\nu)}(E_{l}(\omega_{j}^{(\nu)}))$, then

$$1 - \varepsilon_{\nu} < u(0, e^{i\varphi}) < 1, \qquad \varphi \in M_{\nu}. \tag{10}$$

Let

$$K_{j}^{*(\nu)} = S_{j}^{(\nu)}(K_{0}): \left| \frac{z - \zeta_{j}^{(\nu)}}{1 - \overline{\zeta}_{j}^{(\nu)} z} \right| \leq \rho_{0}, \quad \arg \zeta_{j}^{(\nu)} = \psi_{j}^{(\nu)}, \quad (11)$$

then by the condition (i) and $mE_1(\omega_j^{(\nu)}) \ge \eta > 0$ by the condition (ii), we see by Lemma 2 that $S_j^{(\nu)}(E_1(\omega_j^{(\nu)}))$ is contained in an arc $\tilde{I}_j^{(\nu)}$ on |z|=1, whose center is $e^{i\psi_j^{(\nu)}}$ and

$$mS_{j}^{(\nu)}(E_{1}(\omega_{j}^{(\nu)})) \ge \text{const.} |\dot{I}_{j}^{(\nu)}|, \text{ where } |\dot{I}_{j}^{(\nu)}| = \frac{4\pi(1-|\zeta_{j}^{(\nu)}|)}{\sin^{2}\eta}.$$
 (12)

Since the radius of $K_j^{*(\nu)}$ is $\leq \text{const.}(1-\rho_{\nu})$, $|\alpha_j^{*(\nu)}| \leq \text{const.}(1-\rho_{\nu})$

and since $|I_j^{(\nu)}| \ge \text{const.} (1-\rho_{\nu})$, we have $|I_j^{(\nu)}| \ge \text{const.} |A_j^{(\nu)}|$, so that by (8)

$$\sum_{j=1}^{s_{\nu}} |\mathring{I}_{j}^{(\nu)}| \ge \text{const.} > 0 \quad (\nu = 1, 2, \dots,).$$
 (13)

Since by (8), $|\mathring{\alpha}_{j}^{(\nu)}| \geq \text{const.} (1-\rho_{\nu})$ and $\mathring{\alpha}_{j}^{(\nu)}, \mathring{\alpha}_{j'}^{(\nu)} (j \neq j')$ have no common points and $|\mathring{I}_{j}^{(\nu)}| \leq \text{const.} (1-\rho_{\nu})$, we see that $\{\mathring{I}_{j}^{(\nu)}\}$ overlap at most N-times, where N is independent of ν , so that since $S_{j}^{(\nu)}(E_{1}(\omega_{j}^{(\nu)})) \subset \mathring{I}_{j}^{(\nu)}$, we have by (12), (13),

$$mM_{\nu} \ge \text{const.} \frac{1}{N} \sum_{j=1}^{s_{\nu}} |\mathring{I}_{j}^{(\nu)}| \ge \text{const.} > 0 \quad (\nu = 1, 2, \dots,).$$
 (14)

Hence if we put $M = \lim_{n \to \infty} M_{\nu}$, then mM > 0 and by (10),

$$u(0, e^{i\varphi}) = 1$$
, if $\varphi \in M$. (15)

Now

$$u(0, w) = \frac{1}{2\pi} \int_{0}^{2\pi} F(\varphi) \frac{1 - |w|^{2}}{|w - e^{i\theta}|^{2}} d\varphi,$$

$$F(\varphi) = \frac{1}{2\pi} \int_{0}^{2\pi} f(\theta, \varphi) d\theta = \frac{mE(\varphi)}{2\pi},$$
(16)

so that for almost all φ on M, $1=u(0,e^{i\varphi})=F(\varphi)=\frac{mE(\varphi)}{2\pi}$, or $mE(\varphi)=2\pi$. Let M_0 be the set of φ , such that $mE(\varphi)=2\pi$, then since $M \subset M_0$, except a null set, $mM_0 \geq mM > 0$ and since such a set M_0 is invariant by G, by Lemma 5, $mM_0=2\pi$, so that

$$\mu(E) = \int_0^{2\pi} mE(\varphi) d\varphi = 4\pi^2$$
.

4. Flow $T_t^{(\alpha)}(-\infty < t < \infty)$.

We define the non-euclidean metric $ds = \frac{2|dz|}{1-|z|^2}$, $d\sigma = \frac{4dxdy}{(1-|z|^2)^2}$ (z=x+iy) as in § 1. We suppose that $\sigma(D_0) < \infty$. Let z be any point of D_0 and we associate a direction φ at z, which makes an angle φ with the positive real axis, then the line elements (z,φ) ($z\in D_0$, $0\leq \varphi\leq 2\pi$) constitute a space \mathcal{Q} . We define the volume element $d\mu$ in \mathcal{Q} by

$$d\mu = \frac{4dxdyd\varphi}{(1-|z|^2)^2}$$
, $z=x+iy$,

then $\mu(Q)=2\pi\sigma(D_0)$. $d\mu$ is invariant for any linear transformation, which makes |z| < 1 invariant.

Let α ($0 < \alpha < \pi$) be fixed, then for any (z, φ) in |z| < 1, there exists a unique circular arc $g_{\alpha} = g_{\alpha}(z, \varphi)$, which touches the direction φ at z and satisfies the following condition. Let $\eta_1 = e^{i\theta_1}$, $\eta_2 = e^{i\theta_2}$ be two end points of g_{α} on |z| = 1, where η_2 is such that if we proceed on g_{α} in the direction φ , then g_{α} meets |z| = 1 at η_2 , where it makes an angle α with the positive tangent of |z| = 1 at η_2 .

Let z_0 be the middle point of $\eta_1 \eta_2$ and z be any point of g_x and s be the non-euclidean length of the arc z_0 , where s is positive, if z lies on z_0 , z and negative, if otherwise. Then we have a one-to-one correspondence between (z, φ) and (η_1, η_2, s) , which we denote by $(z, \varphi) = (\eta_1, \eta_2, s) = (\theta_1, \theta_2, s)$. Then we shall prove

LEMMA 6.
$$d\mu = \frac{4dxdyd\varphi}{(1-|z|^2)^2} = 2\sin\alpha \frac{|d\eta_1||d\eta_2|ds}{|\eta_1-\eta_2|^2}$$
.

PROOF. By $z = \frac{\zeta - i}{\zeta + i}$, we map |z| < 1 on the upper half of the $\zeta = u + iv$ -plane, then

$$ds = \frac{2|dz|}{1 - |z|^2} = \frac{|d\zeta|}{v}, \quad d\sigma = \frac{4dxdy}{(1 - |z|^2)^2} = \frac{dudv}{v^2}.$$
 (1)

Let $g_{\alpha} = g_{\alpha}(z, \varphi)$ become a circle C of radius R and of center M and η_1, η_2 become $u_1, u_2 (u_1 < u_2)$ respectively and let ψ be defined as in the figure, then

in the figure, then
$$R = \frac{u_2 - u_1}{2 \sin \beta} \quad (\beta = \pi - \alpha),$$

$$u = \frac{u_1 + u_2}{2} - R \sin \psi$$

$$= \frac{u_1 + u_2}{2} - \frac{u_2 - u_1}{2 \sin \beta} \sin \psi,$$

$$v = R \cos \psi - R \cos \beta$$

$$= \frac{u_2 - u_1}{2 \sin \beta} (\cos \psi - \cos \beta),$$
(2)

so that $\frac{\partial(u,v)}{\partial(u_1,u_2)} = \frac{1}{2\sin\beta} (\cos\psi - \cos\beta), \text{ hence}$ $dudv = \frac{|\cos\psi - \cos\beta|}{2\sin\beta} du_1 du_2 = \frac{v du_1 du_2}{u_2 - u_1}. \tag{3}$

By (1), $ds = \frac{Rd\psi}{v}$ and since $d\varphi = d\psi$, we have

$$\frac{4dxdyd\varphi}{(1-|z|^2)^2} = \frac{dudvd\psi}{v^2} = \frac{dudvds}{vR} = \frac{du_1du_2ds}{R(u_2-u_1)} = 2\sin\beta \frac{du_1du_2ds}{(u_2-u_1)^2}$$

$$= 2\sin\alpha \frac{du_1du_2ds}{(u_2-u_1)^2}.$$
(4)

Since the anharmonic ratio $[z_1, z_2, z_3, z_4] = \frac{z_3 - z_1}{z_3 - z_2} : \frac{z_4 - z_1}{z_4 - z_2}$ and hence $\frac{dz_1dz_2}{(z_1 - z_2)^2} = -[z_1, z_2, z_1 + dz_1, z_2 + dz_2]$ is invariant by a linear transformation, we have $\frac{|d\eta_1| |d\eta_2|}{|\eta_1 - \eta_2|^2} = \frac{du_1du_2}{(u_1 - u_2)^2}$, so that by (4)

$$\frac{4dxdyd\varphi}{(1-|z|^2)^2} = 2\sin\alpha \frac{|d\eta_1| |d\eta_2|}{|\eta_1-\eta_2|^2} ds, \quad \text{q.e.d.}$$

Now for a fixed α in $(0, \pi)$, we consider a flow $T_t^{(\alpha)}(-\infty < t < \infty)$ in Ω

$$T_t^{(a)}: P=(\eta_1, \eta_2, s) \to P_t=(\eta_1, \eta_2, s+t)$$
,

where if the z-coordinate of P_t lies outside D_0 , then we replace it by its equivalent in D_0 . Then by Lemma 6, $T_t^{(\alpha)}$ is a mass-preserving transformation of \mathcal{Q} into itself. The flow $T_t^{(\alpha)}$ is said metric transitive, if a set M is invariant by $T_t^{(\alpha)}$, then $\mu(M)=0$, or $\mu(M)=\mu(\mathcal{Q})$.

THEOREM 2. If $\sigma(D_0) < \infty$, then the flow $T_t^{(\omega)}$ is metric transitive. PROOF. Let $(z, \varphi) = (\eta_1, \eta_2, s)$, $(z \in D_0, 0 \le \varphi \le 2\pi)$ and $g_{\alpha} = g_{\alpha}(z, \varphi) = g_{\alpha}(\eta_1, \eta_2, s)$, $(\eta_1 = e^{i\theta_1}, \eta_2 = e^{i\theta_2})$ be defined as before. Then the part of g_{α} contained in D_0 corresponds to $s_1(\theta_1, \theta_2) \le s \le s_2(\theta_1, \theta_2)$, so that if we denote the projection of $\mathcal Q$ on the torus $\theta: 0 \le \theta_1 \le 2\pi$, $0 \le \theta_2 \le 2\pi$ by A, then $\mathcal Q$ consists of points $(\theta_1, \theta_2, s): (\theta_1, \theta_2) \in A$, $s_1(\theta_1, \theta_2) \le s \le s_2(\theta_1, \theta_2)$.

If a set M is invariant by the flow and $\mu(M) > 0$, then we shall prove that $\mu(M) = \mu(\Omega)$.

Since M is invariant by the flow, if we denote the projection of M on Θ by B, then M consists of points $(\theta_1, \theta_2, s) : (\theta_1, \theta_2) \in B$, $s_1(\theta_1, \theta_2) \le s \le s_2(\theta_1, \theta_2)$. Let B_{ν} be equivalents of B by $\mathfrak{G} = G \times G$ and $\widetilde{B} = \sum_{\nu=0}^{\infty} B_{\nu}$, then \widetilde{B} is invariant by \mathfrak{G} . Since $\mu(M) > 0$, the measure of \widetilde{B} is positive, so that by Theorem 1, $\Theta - \widetilde{B}$ is a null set, so that $A - A\widetilde{B}$ is a null set. Since $A\widetilde{B} = B$, A - B is a null set, hence $\mu(M) = \mu(\mathcal{Q})$.

5. Analogue of Weyl's theorem on uniform distribution.

Since $T_t^{(\alpha)}$ is metric transitive and $\mu(\mathcal{Q}) < \infty$, by Birkhoff's ergodic theorem, for any bounded measurable function f(P) on \mathcal{Q} ,

$$\lim_{L\to\infty} \frac{1}{L} \int_0^L f(P_t) dt = \frac{1}{\mu(\Omega)} \int_{\Omega} f(P) d\mu(P) , \qquad (*)$$

for almost all points P in Ω .

By means of (*), we shall prove

THEOREM 3. Let G be a Fuchsian group, such that $\sigma(D_0) < \infty$. Then there exists a set E on |z|=1 of measure 2π , which satisfies the following condition. Let M be a set in D_0 , which is measurable in Jordan's sense and M_v be its equivalents by G and $\widetilde{M} = \sum_{j=0}^{\infty} M_v$.

Let $e^{i\theta} \in E$ and l be a line through $e^{i\theta}$, directed inward of |z| < 1, making an angle $\alpha (0 < \alpha < \pi)$ with the positive tangent of |z| = 1 at $e^{i\theta}$. Let l^L be its part of non-euclidean length L, measured from a fixed point on it and $L(M, e^{i\theta}, l)$ be the non-euclidean linear measure of the part of l^L , contained in \tilde{M} . Then

$$\lim_{L o\infty}rac{L(M,e^{i heta},l)}{L}=rac{\sigma(M)}{\sigma(D_0)}$$
 , $e^{i heta}$ $\in E$,

for any l and M.

PROOF. Let Δ be a rectangle: $r_1 \leq x \leq r_2$, $r_3 \leq y \leq r_4$, contained in D_0 , where r_1, r_2, r_3, r_4 , are rational numbers and we call such Δ a rational rectangle. Let Δ_{ν} be its equivalents and $\widetilde{\Delta} = \sum_{\nu=0}^{\infty} \Delta_{\nu}$. We associate to

288 М. Тѕил

every $z \in A$, directions $\varphi(0 \le \varphi \le 2\pi)$, then the line elements $P = (z, \varphi)$ $(z \in A, 0 \le \varphi \le 2\pi)$ constitue a sub-set Σ of Ω , whose volume is $2\pi\sigma(A)$. Let f(P) be its chracteristic function, then by (*), if P does not belong to a null set $N(r_1, r_2, r_3, r_4)$ in Ω ,

$$\lim_{L\to\infty} \frac{1}{L} \int_0^L f(P_t) dt = \frac{\mu(\Sigma)}{\mu(\Omega)} = \frac{\sigma(\Delta)}{\sigma(D_0)}. \tag{1}$$

Let $N^{(\alpha)} = \sum N(r_1, r_2, r_3, r_4)$, added for all rationals r_1, r_2, r_3, r_4 , then $N^{(\alpha)}$ is a null set, which depends on α . Hence if P does not belong to $N^{(\alpha)}$, then (1) holds for any rational rectangle Δ in D_0 .

Let $g_{\alpha} = g_{\alpha}(z, \varphi) = g_{\alpha}(\eta_1, \eta_2, s)$ $(\eta_1 = e^{i\theta_1}, \eta_2 = e^{i\theta_2})$ be a circular arc, defined before and g_{α}^L be its part of non-euclidean length L, measured from the middle point z_0 of $\eta_1 \eta_2$, then $\int_0^L f(P_t) dt = L(\Delta, g_{\alpha}) + O(1)$, where $L(\Delta, g_{\alpha})$ is the non-euclidean linear measure of the part of g_{α}^L , contained in $\widetilde{\Delta}$, so that if P does not belong to $N^{(\alpha)}$, then for any rational rectangle Δ in D_0 ,

$$\lim_{L \to \infty} \frac{L(\Delta, g_{\alpha})}{L} = \frac{\sigma(\Delta)}{\sigma(D_0)}.$$
 (2)

Let Δ be any rectangle in D_0 , whose sides are parallel to the coordinates axes, then for any $\varepsilon > 0$, we choose two rational rectangles Δ_1 , Δ_2 , such that $\Delta_1 \subset \Delta \subset \Delta_1$, $\sigma(\Delta_2 - \Delta_1) < \varepsilon$. Let l be a line through $\eta_2 = e^{i\theta_2}$, which touches g_{α} at η_2 . If $z \in l$, $\zeta \in g_{\alpha}$ and $|z| = |\zeta|$, then if $1 - |z| < \delta = \delta(\varepsilon)$,

$$(1-\varepsilon)|dz| \le |d\zeta| \le (1+\varepsilon)|dz|, \tag{3}$$

where $\epsilon \to 0$ with $\delta \to 0$. Since (2) holds for Δ_1 , Δ_2 , we have by (3),

$$(1-\eta)\frac{\sigma(\Delta_1)}{\sigma(D_0)} \leq \lim_{L\to\infty}\frac{L(\Delta,e^{i\theta},l)}{L} \leq (1+\eta)\frac{\sigma(\Delta_2)}{\sigma(D_0)}, \quad \theta=\theta_2,$$

where $\eta \to 0$ with $\epsilon \to 0$. Hence for any rectangle Δ in D_0 , if P does not belong to $N^{(\alpha)}$,

$$\lim_{L \to \infty} \frac{L(\Delta, e^{i\theta}, l)}{L} = \frac{\sigma(\Delta)}{\sigma(D_0)}. \tag{4}$$

Let A be the projection of \mathcal{Q} on \mathcal{O} and A_{ν} be its equivalents by \mathfrak{G} and $\widetilde{A} = \sum_{\nu=0}^{\infty} A_{\nu}$, then as before, $\theta - \widetilde{A}$ is a null set. Let $N_{\theta}^{(\alpha)}$ be the projection of $N^{(\alpha)}$ on θ and $N_{\theta,\nu}^{(\alpha)}$ be its equivalents by \mathfrak{G} and $\widetilde{N}^{(\alpha)} = \sum_{\nu=0}^{\infty} N_{\theta,\nu}^{(\alpha)}$, then $\widetilde{N}^{(\alpha)}$ is a null set, so that $\widetilde{N} = \sum_{\alpha} \widetilde{N}^{(\alpha)}$, added for all rationals α in $(0,\pi)$ is a null set on θ . Hence for a suitable θ_1^0 , there exists a set E of measure 2π on the segment: $\theta_1 = \theta_1^0$, $0 \leq \theta_2 \leq 2\pi$, such that E lies outside of \widetilde{N} and every point of which belongs to \widetilde{A} . We denote the set of points $z = e^{i\theta}$, $\theta \in E$ by the same letter E. If $e^{i\vartheta} \in E$, then (4) holds for any line ℓ through $e^{i\theta}$, making any rational angle α with the positive tangent of |z| = 1 at $e^{i\theta}$ and for any rectangle ℓ in ℓ 0.

If α is an irrational number, let α' be a rational number, such that $|\alpha-\alpha'| < \varepsilon$ and l' be a line through $e^{i\theta}$, making an angle α' with the positive tangent of |z|=1 at $e^{i\theta}$. Let Δ be any rectangle in D_0 , then we choose two rectangles Δ_1 , Δ_2 , such that $\Delta_1 \subset \Delta \subset \Delta_2$, $\sigma(\Delta_2 - \Delta_1) < \varepsilon$. Then since (4) holds for Δ_1 , l' and Δ_2 , l', we have

$$(1-\eta)\frac{\sigma(\Delta_1)}{\sigma(D_0)} \leq \frac{\overline{\lim}}{L \to \infty} \frac{L(\Delta, e^{i\theta}, l)}{L} \leq (1+\eta)\frac{\sigma(\Delta_2)}{\sigma(D_0)},$$

where $\eta \rightarrow 0$ with $\epsilon \rightarrow 0$, hence if $e^{i\theta} \in E$, then

$$\lim_{L \to \infty} \frac{L(\Delta, e^{i\theta}, l)}{L} = \frac{\sigma(\Delta)}{\sigma(D_0)}, \tag{5}$$

which holds for any line l through $e^{i\theta}$ and for any rectangle Δ in D_0 , so that for a set in D_0 , which is a sum of a finite number of non-overlapping rectangles. Let M be a set in D_0 , which is measurable in Jordan's sense, then for any $\varepsilon > 0$, we choose M_1, M_2 , which are sums of a finite number of non-overlapping rectangles, such that $M_1 \subset M$ $\subset M_2$, $\sigma(M_2 - M_1) < \varepsilon$. Since the theorem holds for M_1 , M_2 , and $\varepsilon > 0$ is arbitrary, the theorem holds for M.

Mathematical Institute, Tokyo University.