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Isometric imbedding of Riemann manifolds
in a Riemann manifold.
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1. Introduction. S. S. Chern and N. H. Kuiper [11] 1) obtained
some theorems concerned with estimates on the lower bound of the
dimension of the Euclidean space in which a compact Rieman manifold
with some properties can be imbedded isometrically. The object of this
paper is to generalize these results to the problem on the isometric
imbedding of Riemann manifolds in another Riemann manifold.

The author will also make use of the methods in [11] in certain
open sets which S. B. Myers [9] investigated in connection with non-
existence of compact minimal subvarieties of dimension $n-1$ in Rie-
mann manifolds of dimension $n$ with some additional properties.

2. $\mu$-domains. Let $V_{n}$ be a Riemann manifold of dimension
$n\geqq 2$ and class $C^{r2)}$. Let $O$ be any point of $V_{n}$ , let $x^{1},$ $x^{2},$

$\cdots,$
$x^{n}$ be

geodesic normal coordinates with respect to a rectangular frame $(R_{0})$

at $O$. Let $U$ be a neighborhood of $O$ on which the coordinates are
introduced. Let us denote the open set $U$ considering together with
the coordinates by $U(O, x)$ , put $U=|U(O, x)|$ and call it a geodesic
coordinate neighborhood. Let us attach to each point $P\in U$ that frame
$(R)=\{P, e_{i}\},$ $i=1,2,$ $\cdots,$ $n$ , which we obtain from $(R_{0})$ by parallel dis-
placement along the geodesic arc $OP\subset U(O, x)^{3)}$ . Then, by means of
the adapted family of frames 4) to the coordinates, let the connexion of
$V_{n}$ and the structure of the space be given by the following equations

1) Numbers in brackets refer to the list of references at the end of the paper.
2) $r\geqq 4$ is sufficient for all purposes in this paper.
3) By “ a geodesic arc $OP\subset U(O, x)$ ‘’, we shall mean that if $P=(x_{0}^{i})$ , the geodesic

is given by the equations $x^{i}=lx_{0}^{i},$ $0\leqq l\leqq 1$ .
4) See Cartan [1], p. 235.
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and

(1)

where $R_{ijkh}$ are the components of the $Riemann\cdot Christoffel$ tensor of
the space. Now, let us put $x^{i}=a^{i}r,$ $a^{i}a^{i}=1$ , then we can give $\omega^{i},$

$\omega_{ij}$

by the formulas

(2)

as is well known. From (1), (2), we get the equations

(3)

where $D$ denotes the covariant differentiation of the space. For $r=0$ ,
we have

(4) $\omega^{*i}(0, a;da)=0$ , $\omega_{ij}^{*}(0, a;da)=0$ .

We get easily from (3), (4) the equations

(5) $a^{i_{\omega^{*;}}}=0$ ,

(6) $\frac{\partial^{2}\omega^{*i}}{\partial r^{2}}=R_{kihj}a^{k}a^{h}\omega^{*j}$ .

Then, in $U$ the line element of the space is given by

$ds^{2}=\omega^{i}\omega^{j}=drdr+\omega^{*j}\omega^{*;}$ .

Now let us consider the following quadratic differential form in $da^{i}$

5) The summation convention of tensor analysis is used throughout.
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(7) $\frac{1}{2}\frac{\partial}{\partial r}\omega^{*j}\omega^{*;}=\varphi(r, a;da, da)=\varphi_{ij}(r, a)da^{i}da^{i}$ ,

$(\varphi_{ij}=\varphi_{ji})$ .
We get by (3)

(8) $\varphi=da^{i}\omega^{*i}+a_{i}\omega^{*j}\omega_{ij}^{*}$ .
Furthermore, we get by (3), (6) the equation

(9) $\frac{\partial\varphi}{\partial r}=(da^{i}+a^{k}\omega_{ki}^{*})(da^{i}+a^{h}\omega_{hi}^{*})+R_{iJkh}a^{i}\omega^{*j}a^{k}\omega^{*h}$ .

For $r=0$, we have from (4), (8), (9)

$\varphi(0, a;da, da)=0$ ,

$\frac{\partial\varphi}{\partial r}(0, a;da, da)=da^{i}da^{i}$ .
It follows that $\varphi$ is positive for sufficiently small positive $r$ and any
$a^{i},$ $da^{i}$ such that $a^{i}a^{i}=1,$ $a^{i}da^{i}=0$ . By $U^{+}(O, x)(U^{-}(O, x))$ let us denote
the open subset of $U$ at any point of which $\varphi$ is positive (negative)
definite for all directions orthogonal to the tangent direction to the
geodesic joining $O$ to the point at it. If $U=U^{+}(O, x)+O$ , we call it
a $\mu$-domain with center at $O$ .

Let us denote the plane element spanned by the directions $a^{i}$ and
$\omega^{*;}$ with respect to the frame $(R)$ by $\pi=\pi(P, da)$ , then (9) is written,
by means of $a^{i}a^{i}=1$ and (5), as

(9) $\frac{\partial\varphi}{\partial r}=\frac{1\partial^{2}}{2\partial r^{2}}\omega^{*;}\omega^{*;}$

$=(da^{i}+a^{k_{\omega_{ki}^{*}}})(da^{h})-K(P, \pi)\omega^{*;}\omega^{*;}$

where $K(P, \pi)$ denotes the sectional curvature for $\pi(P, da)$ .
If $K(P, \pi)\leqq 0$ for all $\pi$ at any point $P$, we have $\partial\varphi/\partial r\geqq 0$ . Then

we have the following lemma.
LEMMA 1. If $V_{n}$ is complete 6) and has non.positive sectional cur-

vatures for all plane elements at any point, any geodesic coordinate

6) That is, from any point on each geodesic, we can take measure of any length on
it both sides.
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neighborhood $U(O, x)$ is a $\mu\cdot domain$ with center at $O$, where $O$ denotes
a point of $V_{n}$ .

If $V_{n}$ is complete, every pair of points $P,$ $Q\in V_{n}$ can be joined by
a geodesic which is a shortest curve joining $P$ to $Q^{7)}$ Furthermore, if
it has nowhere positive sectional curvature, then on each geodesic
through any fixed point $O$ of $V_{n}$ , there exists no conjugate point of
the point. Hence we have a simple lemma.

LEMMA 2. If $V_{n}$ is complete and has non-positive sectional curvature
for all plane elements at any point, then for any two points $O$ and $P$,
there exists a $\mu\cdot domain$ with center at $O$ containing any geodesic arc
$OP$ which joins $O$ to $P$ and has no double point.

If $V_{n}$ is a space of constant curvature $K$, then

$R_{ijkh}=-K(\delta_{ik}\delta_{jh}-\delta_{ih}\delta_{ik})$

as is well known, where $\delta_{ij}$ denote the Kronecker deltas. Then (6)
becomes

$\frac{\partial^{2}\omega^{*i}}{\partial r^{2}}=-K\omega^{*;}$ .

It follows that $\omega^{*;}=\sin(r_{I}/\overline{K})da^{i}/1^{/\overline{K}}$ by (4). Hence we have

$\omega^{*i}\omega^{*i}=\frac{1}{K}\sin^{2}(r\sqrt{K})da^{i}da^{i}$ ,

$\varphi=\frac{1}{t/\overline{K}}\sin^{2}(r\sqrt{K})\cos(r\sqrt{K})da^{i}da^{i}$ .

When $K>0,$ $\varphi$ is positive definite for $0<r<\pi/2\sqrt{K}$ .
LEMMA 3. Let $V_{n}$ be a Riemann manifold of positive constant

curvature $K$, for any two points $O$ and $P$ such that dist $(O, P)<$

$\pi/2\sqrt{K}$ , there exists a $\mu\cdot domain$ with center at $O$ containing any geodesic
arc $OP$ which joins $O$ to $P$ and whose length $=dist(O, P)$ . Furthermore,
if $V_{n}$ is complete and simply connected, any open spherical neighborhood
$U(O, \pi/2\sqrt{K})$ with center at $O$ and of radius $\pi/2\sqrt{K}$ is a $\mu\cdot domain$

with center at $O$ .

7) See Hopf and Rinow [4] or Rinow [5].
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In general, from (4), (8), (9), we see that there exist $\mu\cdot domains$

with center at $O$ .
3. Subamanifolds. Let $V_{n+N}$ be a Riemann manifold of dimen-

sion $n+N(n, N\geqq 1)$ and class $C^{r}$ . Let $M$ be a differentiable sub-
manifold of dimension $n$ and class $C^{i}(3\leqq t\leqq r)$ . Let $V_{n}$ be the Riemann
manifold defined on $M$ with the induced metric from $V_{n+N}$ . Let $P$ be
any point of $V_{n+V}$ and let $(\overline{R})=\{P,\overline{e}_{A}\},$ $A=1,2,$ $\cdots,$ $n,$ $n+1,$ $\cdots,$ $n+N$ be
a frame at $P$. Then, let the connexion of $V_{n+N}$ and the structure of
it be given by the equations

(10) $dP=\overline{\omega}^{A}\overline{e}_{A}$ , $de_{A}=\overline{\omega}_{A}^{B}\overline{e}_{B}$ ,

(11) $\left\{\begin{array}{l}d\overline{\omega}_{A}=\overline{\omega}^{B}\wedge\overline{\omega}_{B}^{A},\\d\overline{\omega}_{B}^{A}=\overline{\omega}_{B}^{C}\wedge\overline{\omega}_{C}^{A}+\frac{1}{2}\overline{R}_{BCE}^{A}\overline{\omega}^{C}\wedge\overline{\omega}^{E},\end{array}\right.$

where $\overline{R}_{BCF\rightarrow}^{A}$ are the components of the Riemann.Christoffel tensor of
$V_{n+N}$ .

On $M$, let

(12) $e_{i}=\overline{e}_{A}P_{t}^{A}$ , $i=1,2,$ $n$

be $n$ linearly independent tangent vectors to $M$ at $P$ and let be

(13) $e_{\alpha^{=e_{A}Q_{\alpha}^{A}}}^{\leftarrow}$ , $\alpha=n+1,$ $\cdots,$
$n+N^{8)}$

be $N$ mutually orthogonal and normal unit vectors to $M$ at $P$. Let
us put

(14) $\overline{e}_{A}=e_{i}P_{A}^{i}+e_{\alpha}Q_{A}^{\alpha}$ .

On $M$ let
$dP=\omega^{i}e_{i}$ , $de_{A}=\omega_{A}^{B}e_{B}$ , $g_{AB}=e_{A}e_{B}$ .

Since $g_{i\alpha}=e_{i}\cdot e_{\alpha}=0,$ $g_{\alpha\beta}=\delta_{\alpha\beta}$ , we get

$0=dg_{i\alpha}=\omega_{l}^{A}g_{Aa}+\omega_{\alpha}^{A}g_{iA}=\omega_{i}^{a}+\omega_{\alpha}^{j}g_{ij}$ ,

8) Let us agree on the following ranges of indices throughout:
$i,j,$ $k,\cdots=1,2,\cdots,$ $n$

$\alpha,$
$\beta,$ $\gamma,\cdots=n+1,$ $n+2,\cdots,n+N$.

$A,$ $B,$ $C,\cdots=$ $2,\cdots,n+N$.
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that is
(15) $\omega_{i}^{\alpha}=-g_{ij^{\omega_{\alpha}^{j}}}$ .
Furthermore, since $\omega^{\alpha}=0$ on $M$, we get from the equations analogous
to the first of (11) with respect to the frame $\{P, e_{A}\}$

$0=\omega^{A}\wedge\omega_{A}^{a}=\omega^{i}\wedge\omega_{i}^{a}$ ,

hence by a lemma of E. Cartan, we can write $\omega_{l}^{\alpha}$ as

(16) $\omega_{i}^{\alpha_{=}}A_{\alpha ij^{\omega^{j},}}$ $A_{\alpha ij}=A_{\alpha ji}$ .
The quadratic differential forms

(17) $\Phi.(\omega, \omega)=A.ij^{\omega^{i}\omega^{j}}$

are the so-called second fundamental forms of $M$.
From the equations $d_{\omega^{i_{=}}\omega^{A}\wedge\omega_{A}^{i}=\omega^{j}\wedge\omega_{j}^{i}}$ , the connexion of the

Riemann space $V_{n}$ .must be given by the Pfaffian forms $\omega^{i},$ $\omega_{j}^{i}$ with
respect to the frame $(R)=\{P, e_{i}\}$ . Hence we obtain by (15), (16)

$- 1_{-R_{j^{i}kh}\omega^{k}\wedge\omega^{h}=d\omega_{j}^{i}-\omega_{i}^{k}\wedge\omega_{k}^{i}}$

2
$=d\omega_{j}^{i}-\omega_{j}^{A}\wedge\omega_{A}^{i}+\omega_{j}^{a}\wedge\omega_{a}^{i}$

$=P_{A}^{i}P_{j}^{B}(d\overline{\omega}_{B}^{A}-\overline{\omega}_{B}^{C}\wedge\overline{\omega}_{C}^{A})+\omega_{i}^{a}\wedge\omega_{a}^{i}$

$=\frac{1}{2}P_{A}^{i}P_{j^{B}}\overline{R}_{BCE}^{A}\overline{\omega}^{C}\wedge\overline{\omega}^{E}-g^{im}A_{\alpha ik^{\omega^{k}}}\wedge A_{\alpha mh^{\omega^{h}}}$ ,

hence

(18) $R_{j}^{i_{kh}}=\overline{R}_{B}^{A}{}_{CE}P_{j}^{B}P_{A^{i}}P_{h}^{C}P_{h}^{E}-g^{im}(A_{ajk}A_{\alpha mh}-A_{\alpha jh}A_{amk})$

or
(18) $R_{ijkh}=\overline{R}_{A}{}_{BCE}P_{i}^{A}P_{j}^{B}P_{k^{C}}P_{h}^{F}-(A_{\alpha ik}A_{ajh}-A_{aih}A_{\alpha jk})$ .

On the other hand, we have from (10), (12), (13), (14)

$de_{i}=\omega_{i}^{j}e_{j}+\omega_{i}^{\alpha}e_{\alpha}=\omega_{i}^{j}P_{j}^{A}\overline{e}_{A}+\omega_{i}^{\alpha}Q_{a}^{A}\overline{e}_{A}$

$=dP_{i}^{A}\overline{e}_{A}+P_{i^{B}}d\overline{e}_{B}=dP_{i}^{A}e_{A}+P_{iB}^{B_{\overline{\omega}}A}\overline{e}_{A}$ .
9) See Chern and Kuiper [11].
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hence

(19) $dP_{i}^{A}+\overline{\omega}_{B}^{A}P_{i}^{B}-\omega_{i}^{j}P_{j}^{A}=A_{\alpha ij}Q_{\alpha}^{A}\omega^{j}$ .
4. Indices of relative nullity. At any point $P\in M$ let $\nu(P)$

be the integer such that $n-\nu(P)$ is the minimum number of linearly
independent linear differential forms in terms of which $\Phi_{\alpha}(\omega, \omega)$ can
be expressed. According to S. S. Chern and N. H. Kuiper $\nu(P)$ is called
the index of relative nullity at P. $n-\nu(P)$ is evidently the number of
linearly independent equations in the system $\omega_{i}^{a}=A_{aij}\omega^{j}=0$ . Let us put

$\nu(M)=\min_{P\epsilon M}\nu(P)$ .
Now, in the following, we shall assume that $V_{n+N}$ is complete.

Let $O$ be any point of $V_{n+N}$ and let $P_{0}$ be a locally maximum distance
point (minimum distance point $\neq O$ ) of $M$ from $O$ in $V_{n+N}$ , so that
there exists a relative open neighborhood of $P_{0}$ in $M$ on which the
distance from $O$ to $P_{0}$ in $V_{n+N}$ is maximum (minimum).

Let us suppose that there exists a geodesic coordinate neighborhood
$U(O, x)$ in $V_{n+N}$ containing $P_{0}$ such that the length of the geodesic arc
joining $O$ to $P$ in $U(O, x)^{10)}$ is equal to dist $(O, P)$ at any point
$Pe|U(O, x)|$ .

With respect to the adapted family of frames to the coordinates
$x$ in $U$, as stated in the first section, we shall introduce the quantities
$\overline{\omega}^{*A},$ $\overline{\omega}_{AB}^{*},$ $\overline{\varphi}$ such that

(20) $x^{A}=a^{A}r$ , $a^{A}a^{A}=1$ ,

(21)

which satisfy

(22) $\overline{\omega}^{*A}(0, a;da)=0$ , $\overline{\omega}_{AB}^{*}(0, a;da)=0$ ,

(23)

10) See $Foot\cdot note3$).
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(24) $a^{A_{\overline{\omega}}*A}=0$

and

(25) $\Psi-(r, a, da, da)=$ $21\frac{\partial}{\partial r}\overline{\omega}^{*A}\overline{\omega}^{*A}=da^{A}-\omega^{*A}+a^{A}\overline{\omega}^{*B}\overline{\omega}_{AB}^{\#}$ ,

etc.
Now, on $M$ we must have $dr=0,$ $d^{2}r\leqq 0(d^{2}r\geqq 0)$ at the point $P_{0}$ .

Hence, at the point we have by means of (21), (24) the relations

(26) $\overline{\omega}^{A_{=}}\overline{\omega}^{*A}=P_{i}^{A}\omega_{i}$ ,

(27) $a^{A}P_{i}^{A}=0$ or $a^{A}P_{A}^{i}=0$ .
Furthermore, at $P_{0}$ we get from (21) the equations

$dP_{i}^{A_{\omega^{i}}}+P_{i}^{A}d_{\omega^{i}}=a^{A}d^{2}r+d\overline{\omega}^{*A}$ ,

hence by (24), (27)
$a^{A}dP_{i}^{A_{\omega^{i}}}=d^{2}r-da^{A_{\overline{\omega}}*A}$ .

Accordingly, making use of (19), (22), (27), we have

$d^{2}r=a^{A}dP_{i}^{A}\omega^{i}+da^{A}\overline{\omega}^{*A}$

$=a^{A}(-\overline{\omega}_{B}^{A}P_{i}^{B}+\omega_{i}^{j}P_{j}^{A}+A_{\alpha ij}Q_{\alpha}^{A_{\omega}j})\omega^{i}+da^{A}\overline{\omega}^{*A}$

$=da^{A}\overline{\omega}^{*A}+a^{A}\overline{\omega}^{*B}\overline{\omega}_{AB}^{*}+A_{\alpha ij}Q_{\alpha}^{A}a^{A}\omega^{i}\omega^{j}$ ,
that is

$0\geqq d^{2}r=\overline{\varphi}(r, a, da, da)+\Phi_{\alpha}(\omega, \omega)Q_{\alpha}^{A}a^{A}$ .
$(\leqq)$

If $P_{0}\in U^{+}(O, x)(U^{-}(O, x))$ , we must have
(29) $\Phi_{\alpha}(\omega, \omega)Q_{\alpha}^{A}a^{A}<0$ .

$(>)$

This shows that there exists no tangent direction to $M$ at $P_{0}$ such that
$\Phi_{\alpha}(\omega, \omega)=0$ hold simultaneously. Hence, it follows $\nu(P_{0})=0$ .

On the other hand, if $M$ is a minimal variety in $V_{n+N}$ , it must
hold that $g^{ij}A_{\alpha ij}=0$ at each point of $M^{11)}$ . (29) implies $g^{ij}A_{\alpha ij}Q_{\alpha}^{A}a^{A}\neq 0$

11) See Eisenhart [2], p. 178.
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at $P_{0}$ , accordingly we cannot have $g^{ij}A_{\alpha ij}=0$ . This shows that a
minimal variety has no such point as $P_{0}$ . Thus we obtain the follow-
ing theorem.12)

THEOREM 1. Let $V_{n+N}$ be a complete Riemann manifold of dimen-
sion $n+N(n, N\geqq 1)$ and let $M$ be a differentiable submanifold of $V_{n}$

and dimension $n$ . If there exists a point $O$ , a geodesic coordinate
neighborhood $U(O, x)$ in $V_{n+N}$ and a locally maximum distance point
$P_{0}$ (minimum distance point $P_{0}\neq 0$ ) of $M$ from $O$ in $V_{n+N}$ such that
$P_{0}\in U^{+}(O, x)(U^{-}(O, x))$ and the length of the geodesic arc ioining $O$ to
$P$ in $U(O, x)$ is equal to dist $(O, P)$ at any point $P\in|U(O, x)|$ , then
$\nu(M)=0$ . $M$ cannot be a minimal variety in $V_{n+N}$ .

By virtue of Lemma 2, Theorem 1, we get easily the theorem:
THEOREM 2. Let $V_{n+N}$ be a complete Riemann manifold of dimen-

sion $n+N(n, N\geqq 1)$ with non.positive sectional curvatures for all plane
elements at any point and let $M$ be a compact differentiable submanifold
of dimension $n$ and disiointed from the minimum point locus 13) with
respect to some point of $V_{n+N}$ , then $\nu(M)=0$ . There exists no compact
minimal variety of dimension $n$ and disiointed from the minimum point
locus with respect to some point of $V_{n+N}$ .

By virtue of Lemma 3. Theorem 1, we have easily the theorem:
THEOREM 3. Let $V_{n+N}$ be a Riemann mamfold of positive constant

curvature $K$ and dimension $n+N(n, N\geqq 1)$ . Let $M$ be a compact dlf-
ferentiable submanifold of dimension $n$ . If $M$ is contained in an open
spherical neighborhood of radius $\pi/2\sqrt{K}^{14)}$ , especially the diameter of
$M$ in $V_{n+N}<\pi/2\sqrt{K}$, then $\nu(M)=0$ and $M$ cannot be a minimal
variety of $V_{n+N}$ .

Lastly, returning to the beginning of the section, we shall remark
$\nu(P)$ . Let us denote the $n\times N\cdot matrix$ whose $(i, \lambda)$ -element, $i=1,2,$ $\cdots,$ $n$ ;
$\lambda=1,$ 2, $N$, is $ A_{n+ik}\lambda$. by $M_{k}$ . Then, from the definition of $\nu(P)$ ,

12) See Chern [10], p. 23 and Mayers [91, Theorem 4.
13) See Mayers [7], [8].

14) The “ spherical neighborhood ‘’ in the sense used in metric spaces may not be $\cdot$

come a geodesic coordinate neighborhood as stated in Section 2, since the space $V_{n+N}$ is
is not always simply connected. But any point in the neighborhood and the center can
be joined by a geodesic arc whose length is equal to the distance between the two points.
Accordingly the arc is simple and there exists a $\mu\cdot domain$ containing it by Lemma 3.
This is sufficient in order to make use of the argument in this section.
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$n-\nu(P)$ is the maximum number of linearly independent matrices of
the matrices $M_{1},$ $M_{2},$

$\cdots,$
$M_{n}$ .

5. Indices of nullity. Let $V_{n}$ be a Riemann manifold of dimen-
sion $n$ . At any point $P\in V_{n}$ and for any constant $K$, let $\mu(P, K)$ be
the integer such that $n-\mu(P, K)$ is the minimum number of linearly
independent linear differential forms in terms of which $\Omega_{ij}+Kg_{ik}g_{jh}\times$

$\omega^{k}\wedge\omega^{h}=\frac{1}{2}\{R_{jjkh}+K(g_{jk}g_{jh}-g_{jh}g_{jk})\}_{\omega^{k}\wedge\omega^{h}}$ can be expressed. The

number $\mu(P, K)$ will be called the index of nullily relative to constant
$K$ at $P$. When $K=0$ , it turns to the index defined by S. S. Chern and
N. H.Kuiper15). Let us put

$\mu(V_{n}, K)=\min_{P\epsilon V_{n}}\mu(P, K)$ .

Let now be $V_{n+N}$ a Riemann manifold of constant curvature $K$ and
dimension $n+N(n\geqq 2, N\geqq 1)$ . Let $M$ be a differentiable submanifold
of dimension $n$ and let $V_{n}$ be the Riemann manifold defined on $M$ with
the induced metric from $V_{n+N}$ . Then, from (18) and the assumption
on $V_{n\vdash N}$ , we obtain easily the equations

(30) $R_{ijkh}+K(g_{ik}g_{jh}-g_{ih}g_{jk})=-(A_{\alpha ik}A_{\alpha jh}-A_{\alpha ih}A_{\alpha jk})$ .
Accordingly we have $n-\mu(P, K)\leqq n-\nu(P)$ or $\nu(P)\leqq\mu(P, K)$ .

On the other hand, $A_{\alpha};kA_{\alpha jh}-A_{\alpha ih}A_{\alpha jk}$ is the $(i,j)\cdot element$ of the
$n\times n\cdot matrixN_{kh}=M_{k}M_{h}^{\prime}-M_{h}M_{k}^{\prime}$ , where $M_{h^{\prime}}$ denotes the transposed
matrix of $M_{h}$ . Hence, $\mu(P, K)$ is the dimension of the linear space
of the solutions of the equations

$N_{ij}y^{j}=0$

in $n$ variables $y^{1},$ $\cdots,y^{n}$ . Hence $n-\mu(P, K)$ is the minimum number
of variables such that the quadratic exterior form $N_{j}y^{i}\wedge y^{j}$ on the
ring of $n\times n$ -matrices can be expressed by them. By virtue of the
remark at the end of the last section and Theorem 3 in \^Otsuki [13],
we have

$(n-\nu(P))-(n-\mu(P, K))\leqq N$ ,

that is $\mu(P, K)-\nu(P)\leqq N$. Thus we obtain the following inequalities

15) See Chern and Kuiper [11].
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(31) $\nu(P)\leqq\mu(P, K)\leqq N+\nu(P)$ ,

accordingly

(32) $\nu(M)\leqq\mu(V_{n}, K)\leqq N+\nu(M)$ .
Thus we obtain a theorem as follows:

THEOREM 4. Let $V_{n+N}$ be a Riemann manifold of constant cur-
vature $K$ and dimension $n+N(n\geqq 2, N\geqq 1)$ and let $V_{n}$ be a subspace
of $V_{n+N}$ and dimension $n$ . Then, between the indices of nullity relative
to $K$ and relative nullity the following inequalities hold

$\nu(P)\leqq\mu(P, K)\leqq N+\nu(P)$

at any point $P\in V_{n}$ .
Theorem 4 and Theorem 1 clearly give the theorem:
THEOREM 5. If a compact Riemann manifold of dimension $n$ has

at every point an index of nullity relative to constant $K\geqq\mu_{0}$ , it cannot
be isometrically imbedded in a $\mu$ -domain of a Riemann manifold of
constant curvature $K$ of dimension $n+\mu_{0}-1$ .

In order to verify the theorem we need minor modifications of the
argument on locally maximum distance points.

According to $K\leqq 0$ or $>0$ , by means of Theorems 2, 3, 4, we obtain
especially more detailed theorems as follows:

THEOREM 6. If a compact Riemann mamfold of dimension $n$ has
at every point an index of nullity relative to non-positive constant $ K\geqq\mu$ ,
it cannot be isometaically imbedded in a complete Riemann manifold
of constant curvature $K$ of dimension $n+\mu_{0}-1$ so that it is disjointed
from the minimal point locus with respect to any point of the Riemann
manifold.

THEOREM 7. If a compact Riemann mamfold of dimension $n$ has
at every point an index of nullity relative to positive constant $K\geqq\mu_{0}$

and its diameter $<\pi/2\sqrt{K,}$ it cannot be isometrically imbedded in a com-
plete Riemann manifold of constant curvature $K$ of dimension $n+\mu_{0}-1$ .

6. Some theorems on isometric imbedding. Let $V_{n+N}$ be
a Riemann manifold of dimension $n+N(n\geqq 2, N\geqq 1)$ and class $C^{r}$.
Let $M$ be a differentiable submanifold of dimension $n$ and class $C^{t}$

in $V_{n+N}$ . Let $V_{n}$ be the Riemand manifold defined on $M$ with the
induced metric from $V_{n+N}$ . At each point $P\in V_{n+N}$ , let $(\overline{R})=\{P, \overline{e}_{A}\}$

be a rectangular frame and let $\overline{R}_{ABCE}$ be the components of the
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Riemann.Christoffel tensor of $V_{n+N}$ with respect to $(\overline{R})$ . For $P\in M$,
let $\{P, e_{j}, e_{\alpha}\}$ be a frame such that $e_{;}=\overline{e}_{A}P_{i}^{A}$ are tangent to $M$ at $P$

and $e_{\alpha}=\overline{e}_{A}Q_{\alpha}^{A},$ $\alpha=n+1,$ $\cdots,$ $n+N$, are mutually orthogonal normal unit
vectors to $M$ at $P$ and let $R_{ijkh}$ be the components of the Riemann-
Christoffel tensor on $V_{n}$ with respect to the frame $(R)=\{P, e_{i}\}$ .

For any tangent plane element $\pi$ spanned by mutually orthogonal
tangent unit vectors $e_{i}\xi^{i},$ $e;\eta^{i}$ to $M$ at $P$, we have from (18)

$-R_{ijkh}\xi^{i}\eta^{j}\xi^{k}\eta^{h}=-R_{A}{}_{BCE}P_{i}^{A}\xi^{i}P_{j}^{B}\eta^{j}P_{k}^{C}\xi^{k}P_{h}^{E}\eta^{h}$

$+(A_{\alpha};kA_{\alpha jh}-A_{\alpha ih}A_{\alpha jk})\xi^{i}\eta^{j}\xi^{k}\eta^{h}$ ,
hence
(33) $K(\pi)=\overline{K}(\pi)+\Phi_{\alpha}(\xi, \xi)\Phi_{\alpha}(\eta, \eta)-\Phi_{\alpha}(\xi, \eta)\Phi_{\alpha}(\xi, \eta)$ ,

where $\overline{K}(\pi),$ $K(\pi)$ denote the sectional curvaturesi6) for $\pi$ of the spaces
$V_{n},$ $V_{n+N}$ respectively. $K(\pi)-\overline{K}(\pi)$ is called the relative sectional cur-
vature.

Now let us assume that at every point of $M$ there is a q.dimensional
linear subspace in the tangent space of $M$ along whose plane elements
the relative sectional curvatures are non positive.

At any point $P\in M$, let $\mathfrak{T}(P)$ be the q(P).dimensional linear sub-
space of the tangent space of $M$ at $P$. If $e_{i}\xi^{i},$ $e_{i}\eta^{i}\in \mathfrak{T}(P)$ , from (33) we
have

$\Phi_{\alpha}(\xi, \xi)\Phi_{\alpha}(\eta, \eta)-\Phi_{\alpha}(\xi, \eta)\Phi_{\alpha}(\xi, \eta)\leq 0$ .

If $N<q(P)$ , by virtue of Theorem 2 in Otsuki [12], there exists a
tangent unit vector $e_{i}\xi^{i}$ such that

$\Phi_{\alpha}(\xi, \xi)=0$ , $\alpha=n+1,$
$\cdots,$ $n+N$ .

Combining this with the results obtained in Section 4, we have the
following theorems.

THEOREM 8. Let $V_{n+N}$ be a complete Riemann mamfold of dimen-
sion $n+N(n\geqq 2, N\geqq 1)$ and let $M$ be a submanifold of dimension $n$ .
Let us suppose that $N<\min_{PeM}q(P)$ , then for any point $OeV_{n+N}$ and

any geodesic coordinate neighborhood $U(O, x)$ in $V_{n+N}$ , there exists no
16) See Cartan [1], p. 195.
17) In the sense stated in Section 2, see $Foot\cdot note3$).
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locally maximum (minimum) distance point $P_{0}(\neq O)$ of $M$ from $O$

in $V_{n+N}$ such that $P_{0}\in U^{+}(O, x)(U^{-}(O, x))$ and the length of the geodesic
arc joining $O$ to $P$ in $U(O, x)^{I7)}$ is equal to dist $(O, P)$ at any point
$Pe|U(O, x)|$ .

THEOREM 9. Let $V_{n}$ be a compact Riemann manifold with the
property that at every point there is a $q\cdot dimensional$ linear subspace
in the tangent space along whose plane elements the sectional curvatures
are non-positive. Then $M$ cannot be isometrically imbedded in a $\mu-$

domain of a Riemann manifold of dimension $n+q-1$ whose sectional
curvatures are non-negative. Especially, if the diameter of $V_{n}<\pi/2\sqrt{K}$ ,
then it cannot be isometrically imbedded in a Riemann space of con-
stant curvature $K$ and of dimension $n+q-1$ .

Lastly, returning to the beginning of the section, let us assume that
at every point of $M$, the relative sectional curvatures in all plane
elements are positive. Then we have from (33)

$\Phi_{\alpha}(\xi, \xi)\Phi_{\alpha}(\eta, \eta)-\Phi_{\alpha}(\xi, \eta)\Phi_{\alpha}(\xi, \eta)<0$

for any two linearly independent vectors $e_{i}\xi^{i},$ $e_{i}\eta^{i}$ . It follows from
this $N\geqq n-1^{18)}$ . For suppose $N\leqq n-2$ . By the same reason as above,
there exists a tangent vector $e_{i}\xi^{i}(\neq 0)$ such that $\Phi_{a}(\xi, \xi)=0,$ $\alpha=n+1$ ,

$n+N$. Let $e_{i}\eta^{i}$ be a tangent vector linearly independent of $e_{i}\zeta^{i}$

such that
$\Phi_{\alpha}(\xi, \eta)=0$ , $\alpha=n+1,$

$\cdots,$ $n+N$ .

Then the relative sectional curvature will be zero in the plane element
spanned by $e_{i}\xi^{i},$ $e_{i}\eta^{i}$ , which contradicts to the assumption that it is
strictly negative. Hence we have the theorem:

THEOREM 10. An n.dimensional Riemann manifold of negative
(non-positive) sectional curvature cannot be isometrically imbedded in
$a(2n-2)\cdot dimensional$ Riemann manifold of $non\cdot negative$ (positive),
sectional curvature.

Department of Mathematics,
Okayama University.

18) The method of the following verification was suggested to the author by Prof.
S. S. Chern in the case $V_{n+N}$ is an Euclidean space.
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