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§ 1. Definition

A spherically symmetric space-time is a 4-dimensional Riemannian
space whose fundamental form is reducible to

ds’=—A(r, )dr’—B(r, ¢)(dOF +sin’0d¢*) + C(», £)dF (1-1)

where 4, B and C are any positive valued functions of » and £ Historical-
ly (1-1) was obtained by generalizing the metric of the Minkowski space-
time. Fiesland defined this space-time from the standpoint of the group
of motions using the group of ordinary 3-dimensional rotations.” In this
paper, (1) we shall give a new definition of the s. s. (spherically sym-
metric) space-time .S, using some tensor equations to be satified by g;.  €2)
At the same time we shall define a set of vectors and scalars characterizing
this space-time. (3) Then we shall show that this new definition coincides
with Eiesland’s one. (4) Finally we shall obtain some properties of the
s. s. space-time. '

Definition : Splerically symmetric space-time is a 4-dimensional Rieman-
nian space with the following properties :
(I) Its curvature tensor satisfies the equation

1

2 3 4
Kmm = P“[z“lczﬁﬂﬁmj — 08 Tart1%m1 ¥ P8 Ez‘nﬂﬁﬂm] + 08t g my (F 1)

where @, and B, are mutually orthogonal unit vectors (real or complex)
satisfying

Viay= a0, ;4 2x(gi;+asa5— P f;) + By (F)

Vi By=0Ba;+x( ” ) +oa;a; (Fy)
asa’=——1, ﬁs‘@gzl, Ilsﬂ":O (1_2)
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a - —_
and o, (a=1, -+-, 4); o, 0; x, x are scalars (real or complex) determined
from these equations.

(I1) One of five scalars p and K==A7/7 is such that its gradient vector
is a linear combination of «; and S,. ‘

4

1) p—2 (£ —¥) 0. )

(IV) The signature of the fundamecntal form is give by the type
(———+4). (g is always real).

(4 B:) and (p, o, 0, 2, x) are called charactoristic vectors and scalars
of the s.s. space-time S, and (v, ---, x) is generically called characteristic
systeme.  We shall also call a scalar whose gradient vector is a linear com-
bination of «; and f;, s. s. scalar. later in §3 we shall see that in the
standard coordinate system for the c. s. (characteristic system) this definition

is equivalent to the ordinary onc.

§ 2. ldentities concerning c. s.

In this section we shall give some main identitics obtained from the
definition. From (&), (#,) and (£,), we have
o= — BT = VB, =V = — T,
- (2-1)
2x=pP . —a, 2x=P,F+o
1 1 2 3 4 1 2 3
p=2(—K—6v+3r+37), p=—K—27+2c 427
2-2)

° 1 2 3 3 1 2 s
p=2(K+3r—37—2r), p=2(K+3t—2r—37)
where
1 ) 12 3 4
t=d' B3 K = — (p+p+p+20) /4,
3 o 12 3 1 o 1 2 3 4
=¥ K= - (p+p+3p+06p)/4, K=K;=— (p4+3p+3p+12p) /2
2-3)

2
T

1 2 3 4
= -—(/,iuj/(,-j = — (,’7+ 3{’ +0+ 610) /4

1 2 3 4 1 1 2 1 1 3
Ky=— 4 (p+r+6p)giu+ i (p+2p)v;0— 4~ (0+2p)B; B (2-4)

Vian=0Py, ViBn= —oPy (Py=uifp). (2-5)

Next we can show that the condition for integrability of (F,) i. e.
2PV qay=Kq5 ¢! is equivalent to
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(2-6)

1 _ o _ - .
{z‘—a“’+a'=—u"as——ﬁ’a,, i%60,=00,=1"0,=0°¢,=0

2 4 - - - : )
p+20=4(ox+2*+u'x), x(c—x)—Bx,=0, rx,=0x,=0

where o,=F,0, -+ and (3%, 0°) is any set of two unit vectors (7,7°=0,0°
=—1) which form an orthogonal enupple together with («f, #). Hence

Lij=—VsU—71s7;— 0:0;+ B B 2.7

In the same way from (#;), we have
3 4 - _ _ _ _ - .
p+2p=4(cx—x"—Fx,), x(a+x) +x,=0, r'x,=x=0. (2-8)

Theiefore o, o, x, x are s. s. scalars. If flS any s.s. scalar then (/f; and

3f, where f,=F,f are also s. s., therefore z', (p+‘)p) (p+20) T and r
are also s. s. A
Then we can easily show that under the assumption (I) Bianchi’s

identity Vp,K,y;=0 is equivalent to

Pi——(”‘ IOS)U‘L—*-(IB‘ s)ﬁi 2“7’{—258

— {’s)“f+{{”‘+P0—P("+”) }B:+2ays+ 260, 2.9)
i .
‘0¢=—{,07¢—'{7l7+,0(0—1)}u‘+ 0y Pa)ﬁi+247i+2651

2

4 3_ a a
Py== — Oxd; +pxﬁ‘-—(ln—baﬂ (Pi=’7¢ P) .

2

1 3 4
Specially when p=p=p=0, we have 2=4=0 and p=const., which is the
well known theorem of Schur concerning the space of constant curvature.
By (II), p and K become s. s. and we have a=4=0 in (2-9), from which
we obtain
2 1_ 2 3 _ 3 1 s_ ¢
Bps=px+po—p(o+x), o’p;=px—po+p(G—x)
a2 " (2-10)
q,sp’=‘nz, ﬂspsz‘nx_ . o ‘ E
Finally we shall add two theorems easily obtained from the definition.
Theorem [2-1] A necessary and suﬁczem‘ condition that o*(B) give a
geodesic congruence is given by o=0 (6=0) and me condition that ai(B) be
gradzent also coincides with this. Further, a necessm'y and sufficient condition

that o(B;) be parallel ficld is given by o=a=2=0 (¢=a=2=0).
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Theorem [2-2]® A necessary and. sufficient condition that a s. s. space-time
1 ! '

be conformally flat is given by =0.

§ 3. Standard form for the c. s.

In this section we shall show that new definition of the s. s. space-
time is equivalent to the ordinaay one by showing that ds* of the s. s.
space-time in the sense of the new definition can be brought into the form
(1-1) by a suitable choice of the coordinate system.

From (F,) and (#,), we have P ;,Py;=0, from which we know that
there exist two scalars S and S satisfving Py= (PS)F;;S.  Using these

scalars we can prove that there exists a coord. system in which

gla=g1a=11a=o, g4b=g4b=‘3"=0, ((Z=2, 3, 4; =1, 2, 3)
En&=l=gug", u=u (2, )= ﬂ?ﬂ) ﬁ4=194(x1, x"):Vg—« (3-1)
o=H’lpy (%, ), H=H(&, 1), (#, 9=2, 3)

and g, o, x and x are determined from (#;) and (F,) as functions of
(2, 2Y). If we put —dl’=1,,(x°, £*)dx?dx? and use (F;), we can show
that Hu®=1/¥ where H,;* is the curvature tensor of the 2-dimensional
space defined by 47*® and ¥ is a function of (a7, 2#'). Hence this space is
of non-zero constant curvature by virtue of (III). So by a suitable trans-

formation of (#% 2*), we have
ds’=—A(r, )dr’—B(r, t) (dO°+sin®0dY*) + C(», ¢)dF (3-2)

where we have put (&', -, 2)=(, 0, ¢, ), g,=—4, A*¥=—B and
gu=C. By (IV), we shall assume that 4, B, C>0. From (&,) and
(F;), we have '
{a‘= ‘\/28:, ﬂi= ‘\/‘EB:’ 6=—A/2A VZ;» ”=_C,/2C‘\/‘A—
C (3:3)
x=—B/2BV A, x=B/2BYC

where dashes and dots denote partial differentiation with respect to » and
¢ respectively. (F,) and (&) are satisfied by (3:3). For (3-2) it holds
that
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1=K = K= (2B — i —AB/C} /4AB .

=K'= K= — {25~ B*/B—BC/C—B'C"/ 4} [4BC

y=Ki=Ky"= {2B'— BB'/B— AB'/a—BC'/CY /4BC (3-4)
=KiM=— {2(A—C") + A'C' JA— AC/C— A2/ A+ C*/C} JAAC

p=Ks¥=— {B—B"/4A+ B*/4C} /B other Ki"=D0.

From (&,), we have

2 3 4
= 4Eg—u—f), p=4(u—r), p=4(F—7), p=29.  (3D)
() and (III) are satisfied identically by (3-3) and (3-5) except one

condition
7=0 ie. =28 4+ BC'/C+ B A/A+ BB /B=0. (3-6)

At first sight, since (3-6) must hold, new definition seems more stringent
than the usual one. But since it is always possible, by a suitable trans-
formation (real or complex) of (», ), to make g,,=0 and K¥=K;»=0.
for &s* given by (1-1), both definitions are equivalent to each other. This-
will also be seen by the fact that there always exists a c.s. in every s. s.
space-time in the usual sense. (See §5). We call (3:3) and (3:5) the
standard form of the c. s. and the coord. system the standard coord. system
Jor the ¢. s. In connection with this we call the coord. system in which
ds® takes the form (3-2) a s. s. coord. systen and the s. s. coord. system
in which y=0 holds a standard coord. system for g;;. Hence in a standard
coord. system for gy; a real c. s. is given by (3:3) and (3-5). A s. s.
space-time S, may have some c. s’s and some standard coord. systems
for g

If we put ﬁ}:xui—;ﬂi, F, is a gradieht vector and in the s. c. s.
(standard coord. system) for c. s., putting F,=F;F, we have B=pe=*"
where p is a constant. Normalizing # by p=1, we have

p=2(R—R— ) | . (3-7) |
and we can show that (3.6) is equivalent to the identity
BV F= B P, F=xx=iox— B = — ax— %, | (3-8)
Sin’lilar»ly |
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— 2 4 .
SiPV F= —ox—u'2,=x"— (p+2p)/4
—_ — - 3 4
BB .V, F=ax—Bx=x+ (p+2p)/4 - (3-9)
- 2 3 4
V Fei=x—x4 (p+p+4p) /4.

§4. Freedom of c. s. in a given s: s. space-time

As is easily seen, we have

Theorem [4-1] LZet [K]: («s (s ;;, =2) be a c.s. of as. s. space-time S,
Then (us*, B*) given by (i) uv*=euy, ﬂ,*Az——Eﬂ and (1) w*=iB:, BF=iu,
where €=¢€'=1, are again c. v.’s of S, mm’ t/ze characteristic scalars cor-
resﬁondzllg to them are gwm é_}/ (z) [K‘ p*-—p, o*=¢o, o*=c¢o, x*=c¢x,
=&, and () (K] pF=p, pr=p, (*=p, (F=p, o*=—is, #*=—is,
*—jx, x¥=1x, respectively.

In the following we shall call the transformation [K]—[X;| and

[K|—>LK,), €— and i—transgformations respectively and study the freedom

of the c. s. in an S, excluding these transformations. From (2-4), we
have

2 3
(Ki#—108)u*=0, (K—705)F=0 4-1)
which shows that both «f and B are principal directions of the Ricci tensor
. :

K;; and v and T are corresponding principal invariants i. e. the solutions
of |K/—vé}=0. In the s. c. s. for the c. s., we have

1 2 2 3 2

v=—(2u+&)=r, r=v=—(atfty)=— (p+p+6p), v=— (28+§) =
(4-2)
1 4

where v, ---, v are principal invariants of XK.

Case I. When v's are of the form (a, a, 4, ¢), (a, 4, c=f).

In this case c s. is determined uniquely to within €— and z—trans-
2
formatlons So p is determmed umquely and- the condmon v:l:v v:}:u

and v#u are equivalent to p+2p:{:0 p+2p={:0 and p:l:p, respectively.
Case II. When v's are of the form (a, a, b, 6), (a==b).

We can easily prove that
Theorem [4-2] A necessary and sufficient condition that

a* =cosh wu, + sinh wf;, PB*==sinh wu;+ cosh wf, (4 -3)
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where e“’“’:}::{:] ée again c. v. of S, is given by

p b and Vo= — (do) o+ (Bwp) B (w, ) (4-4)
and p*, x*,---corresponding to (us*, B,*) are given by

;*:;, x*=x cosh @+ x sinh w, -;*-:xvsinh w+x coshw (4-5)

o*= (6—d’w,) coshw— (64 Fw,) sinhw,

o*=— (6—d'w,) sinhw+ (a+ B*w,) coshw.

We call this transformation of c. s. [K]|—=[K*], w—transformation.

Next, let [X] and [£*] be any two sets of C. s. s of thls So and take
the s. c. s. for [K]. From the condition p p and ‘o+2p={=0 we have
(i) When at least one of «*, «*, 8%, B* is not zero, any [K*] must
be obtained from [K] by €—, i—, and w—transformations and vice versa.
(ii) When «*=(0, «*, u*, 0), B.*= (0, B,*, B;* 0), both (», #)—space
and (0, ¢) —space must be of different constant curvature and J&s* reduces
to the form

-=—B(d0’+sm°0a’¢) + {1+ (—~+¢ )/4R° 2(—dr*+d*), (B==R?)
(4-6)

where B and R® are constants. Thérefore when and only when dJs* is
reducible to (4-6), there exist two c. s.s [K] and [K*], their c. v.’s
together constitute an orthogonal ennuple and any c. s. of S, is obtained
from either [K] or [K*] by €—, i—, and w—transformations. x=x=0
holds for any c. s. In terms of p’S this space-time is char’actérize;d by

2

3 1 2
p=p, p+2p=const.==0, (=4(1/B—=1/K%)),
4 4 . . .
p+20=0, p=const. (=—2/B=40). - (4-7)

p*’s are obtained from (4-7) by interchanging B and R*® and remaining
members of [K] and [K*] are also easily obtained. In any s. c. s. for
g one of [K] and [K*] is real and the other is complex.

Case III. When v’s are of the form (a, a, a, &), (a=Eb).

In this case we= can show that a necessary and sufficient condition

formations is that ‘dsils reduc1ble (including. imaginary transformat1ons) to
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pio)
1+/4R?F

ds*= — (dr'°-‘}-rgd0"’+rﬁsin20d¢2) +dts. (4-8)
And in this case [K*] is obtained from [K] by a motion i. e. a transfor-
mation of 2* which keeps the form of gy; invariant. ‘'We shall call this
way of obtaining [K*] from [K], m—transformation. Thus we know that
in this space-time c. s. is determined to within €—, 7— and m— transfor-

mations.  Especially p’s are determmed umquely and m terms of p this
2

space-time is characterized by p =0, p=|=0 and p,a —p «*=0.

When S, is not of this type c. s. is determined to within €—~ and
i—transformations. The group of motions for (4:8) is known,® so by
some m—transformations we can obtain new c. s.’s not s. s. in the usual
sense. In any s. s. space-time, since c. s. is defined by tensor conditions
[K*] obtained from one c. s. [K | by ahy 7—transformation again becomes
a c. s. of the space-time. In general, however, excluding some special
cases like the one mentioned above, the set of [K]'s is invariant under
m —transformations.

Case 1V. When vs are of the form (a, a, a, a) i. e. when K;=(K/4)g;.

In this case p p holds and when S, is not of constant curvature we
can show that a condition in order that there exist two sets of c. s.’s not
transformable by € —, and w—transformations is given by that the space-
time is decomposed into two 2-dimensional spaces of the same constant

curvature. In this S,, &s° is reducible to

ds=— R (d0 +sin*0d8*) + {1 + (= +2£°) /4R 2 (—dP +dr®)  (4-9)

and any c.s. is given by €—, /—, and w—transformations from two c.s.’s
[K] and [K*] whose c.v.’s together form an orthogonal ennuple and in
any s. c. s. for g; one is real and the other is complex. For all cases
p’s are the same and x=x=0 holds good.

When S, is of constant curvature, &s* is reducible to

A= — (1—B") ' dP —r*(dO 4-sin*0dF) + (1—Fr*)dr*  (4-10)

and any c. s. is obtamed from one c. s. by €—, ;4, o— and m—trans-
formations. o ‘ o
Thus we have determined the freedom of c. s. in a s";'”;;. 'spaceitime.
ps are determined uniquely except the case of (4- 6). '
' ‘Hereafter we shall consider only the ¢. s. which is réal in s. c. s for
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gy Inany s c. s for g a real c. s. is given by (3-3) and (3-5) and
other real ones are obtained from this by at most €—, w—, and m—
" transformations. By this assumption p’s are determined uniquely in all S,
and we have the following table concerning c. s. to within € —transforma-

tion :
1 2 . 1 .3 2 3
I (@ a, &, ¢) ie. (p+2p=0, p+2p==0, p==p) : unique
1 2 2 3
II. (2, a, 4 6) ie. (p+20=0, p=p) : (®)
E 1 2 1 3 .
UL (a, a a 8) ie. (p+20=0, p+2p=0) or (p+20=k0, p+20=0)
(i) When 45 is reducible to (4-8) : fB; is unique

1 2 — - a

(p=p=06=0—x=0’p,=0) for all cs.’s
i} e . o pi )
(ii) When Js° is reducible to (4-8') : @, is unique

1 3 - a

(p=p=0=0—x=pp,=0) for all cs.’s

(iii) Other cases: unique
1 2 2 3
IV. (a, a, a, a) ie. (p+2p=0, p=p)
(i) When S, is of const. curvature: (w, )

(ii) When S, is not of const. curvature : ()

where (4:8") denotes ds*= —dy*+ ™ dys, and dm’= —56(¢) (d0® +sin*0 J¢°)
+f(#)ds defines a space of const. curvature. By an imaginary transforma-
tion v'6 =r(1+7°/4R*) ™ and r=i¢, (4-8') becomes (4-8).

§5. S; and S;,. cs. in a s. s. coordinate system

We denote S, whose B==const. and B=const. in s. s. coord. system

by S; and Sy respectively. This classification has an invariant meaning by
virtue of the following theorem.
[5-1] A necessary and sufficient condition that S, ée Sy is given
by that there exists a c. s. whose x=x=0, and when this condition is satisfied
it holds good for all c.s’s. In the same way S, is characterized by the
existence of a c.s. which does not satisfy x=x=0.

The proof is evident.. In [5.1] the condition x=x=0 can be replaced
by F=const. '
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Next we shall denote S, in which ;:; and ;:I:; hold good by S,
and S, respectively. Then by using the results of §3 we can easily prove
Theorem [5-2] 7In S, any s.s. coord. system is slandard for g, Moreover
a necessary and suffficient condition that S, be S, is given by that a=f and
7=0 hold in any coord. system obtained by any transformation of (r,t) from
a s.s. coord. system. (In such a system g, does not vanish necessarily.)

By solving (F,), (F,) and (F,), we have the following formulae
giving c. s. in any s. s. coord. system to within €—, 7— and m—trans-
formations.

(a) When S, is S,. T(; within w—transformation
p=4(E+7—2a), o=p=4(a—7), p=2y, F=—(1/2)logB
wy=vA8, B=vC8, o=—A/24AVC, 6=—C'/2C¥A  (5-1)
x=—B'/2B~ A, »=B/2BVC
where «, B,--- are given by (3-4). Specially when S, is Sy, since a=p
=y=0, y=—1/B=const. (==0), this becomes
p=4(E+7), p=p=—2p=4/B, (40), F=—(1/2)log B
{u,: VA8, f=vC8 a=—A/2AYV C, 6=—C"/2C VA, »=x=0.
‘ (5-1)
(b) When S, is S,. When y=E0 i.e. when the coord. system is not
standard for g,
0=4(EF +9—a—B), p=M+N, p=M~N, p=2, F=—(1/2)log B
M=2(sv+p—29), N=2(a—p) /cosh2f, 20 =tanh~ {2V C/Ay/(v—B)}
w;= (¥ Acoshe, 0, 0, vV Csinh¢), fi=(~Asinh¢, 0, 0, v Ccosh?)
*achoshC-—JVsinhc, o= — Msinh¢ + N cosh{
M= (g~ A2V AC) /YA, N=({,—C"/2VAC) /Y C, (=)
‘x={— (B /¥ A)cosh{ + (B/~ C)sinh} /2B, x={— (B' v A)sinh¢
+ (8/v C)cosht} /2B.
(5-2)

‘When the coord. system is standard for g, by putting y=0, (5-2) be-
comes .
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1 2 3 4
p=4E+y—a—pf), p=4(a—7), p=4(B—7), p=2y

F=— (1/2)10g8) U= VZ&;» 481': '\/?61

o=—A/24YC, a=—C'/2CV A, x=—B 2BV 4, x=B/2B~C.

(5-2')

In (5-1), (5-1’), and (5-2') all quantities are real and in (5-2) they
are also real when and only when |[4<1] where A=2VC/Ay/(a—f),
naimely when the six principal invariants of K,p=Kj;,, are all real.”? But
when |4]|>1, i.e. when K, has two pairs of conjugate complex principal
invariants, sinh¢, cosh¢, sinh2¢,--- must be interpreted as the symbolical
notations of +/ {i/ vV A—141}/v2, v {i/VE=1—-1}/~2, iV -1, re-
spectively. Of course in all cases gy; and consequently K, are all real.
The fact that we must treat c. s. of complex values in some special s. s.
coord. system of some S, shows that in such S, the s. s. coord. system
can not be obtained by a real transformation of (», #) from the standard

one. :
Using the above formulae, we have
Theorem [5-3] A wecessary and sufficient condition that S, be Sy is given

oy

p=p=—2p=const. =40, (=4/B). (5-3)

Hence Su belongs to S,.
Evidently the line element of S; is transformable into the form

A= —A(r, )dr*—r*(dF+sin®0d*) + C(r, s’ (9-4)

by a suitable transformation of (», ¢#) from a s. s. coord. system. In this
coord. system it holds that

{a:—A’/QA“’r, B=C'/2ACr, y=—A/2ACr, p=(1—A)/r*4
(5-5)

b=—(2(A=C")Y+A'C')A— AC/C— A%/ A+ C"*/C} J4AC.
We shall denote S, which belongs to both S; and S,, by S;. For 515,
in the coord. system of (5:4), from «=pf and y=0, we have A=A(»)
and AC=f(¢). Hence by a suitable transformation of z we have AC=1,
ie. S , :
St ds=—A@P)dr—r (db° +sin*0dF) + (1/ A)de*. (3-6)

Cbnversely for (5-6), we have ‘r;=;7. Hence
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Theorem [5-4] S, is either Su or Sy, The fundamental form of S,; is
reducible to (6-6) and vice versa. )

By putting A= (1—2m/7)™" and =(1—4#%*) "' in (5-6), we have the
space-time of Schwarzschild and de Sitter respectively.

Next, using (F}), (#2), (F;) and the results above obtained we can
easily show that

Theorem [5-5] When Sy is S, ie. Sy, in the coord. system of (6-4) A is
dlways static i.e.. A=A(r). When Sy is not S, a necessary and sufficient
condition that the fundamental form be reducible to (5-4) in whick A is
static is given By that x=0 holds good for a c.s. and when this condition is
sarisfied a necessary and suffictent condition that not only A but also C is
static is given by ,8‘;,=0 which is equivalent to Bo,=0. When x=0 ctc. is
satisfied for a c. s. they holds good for all c. s.

From this theorem we can determine whether a s. s. space-time is
static or non-static independently of the coord. system. This result will
be useful in theoretical physics.

§ 6. Geometric interpretation of the c. s.

As stated in §4 both o' and B are principal directions of the Ricci
tensor and corresponding invariants are 12- and :— ie. —-22' and —: are mean
curvatures of S, for the directions «' and B respectively. The remaining
principal invariants are ——-(;+ ;+6;) /4.  From (F,) we know that ;
and ;)/2 are Riemannian curvatures for the orientations determined by

(', #) and (%, 0°) respectively where (7%, ) are any set of vectors
introduced in § 2.

By putting (1-2)=1, (1-3)=2, ---, (3:-4)=6, if we renumber the
indices, from (F,), we have

{(KAB+gAB)P 1=0 where K (=Kijm» P*=P%, gir=2808 1

(6-1)
G, =4, (I, m)=B, (4, B=1, ---, 6)

and g zPAP’=P,P*=—1/4. Hence 2P* is a unit vector which gives a
principal direction of K, and the corresponding invariant i.e. the root of
1

|K;Z7—vd%]|=0 is —r. Using s. c. s. we know that 6 principal invariants
are given by
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, PO . 4
(o+20)/4 w5 G2V . —7t; 02 (6-2)
and the corresponding principal directions are (R4==2d"%"1, S4=24'67),
(RA=280y1, S4=2p0¢"), 2P4, 204=2y0". In a previous paper the
writer tried to classify S, in terms of these invariants.®
If we put (&, 7%, 0% 3*) =4, (=1, ---, 4) and calculate the coefficients
of rotation 7y, we have ' ' o

. (6-3)

{7’4u= —T11=0, V4= —7414=0
To12= — 7 100=7 315~ —T=% Y™ Va2 7’343— —Taz=ZX.

By considering the geometrlcal meaning of T We obtaln a geometrlcal

interpretation of o, o, x, and =x.

Research Institute for Theoretical Physics, leoshlma University ; Ta-
kehara-machi, Hiroshima-ken

(Revised March 10, 1951)

Notes

(1) J. Eiesland, Trans. Amer. Math. Soc,, 27, (1925), 213,

(2) This theorem was read at the annual meating of the Math, Soc. of Japan held in Nov.
1, 1948. We can prove this by showing that p O is equivalent to the vanishing of
the conformal curvature tensor.

(8) H. Takeno, Jour. Sci. Hiroshima Univ. 11, (1942), 228,

(4), (). H. Takeno, Jour. Sci. Hiroshima Univ. 12, (1942), 131.
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