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A Note on Finite Ring Extensions

Emil Artin and John T. TaTE

Let RC S be two commutative rings. We shall say that S is a
modul finite extension of R if a finite number of elements w,, @,, --- w, of
S can be found such that

S=Rw,+ Rw,+ --- + Rw,.

This modul finite extension has to be distinguished from what we
shall call a ring finite extension

S=R[¢,, &, - &)

in which every element of S can be written as polynomial in the generators
&, &, - &, with coefficients in R. If we call S’ the ring of all polynomials
in the indeterminates x,, #,, --- x, with coefficients in R then S is a
homomorphic image of S’ and the following well known lemma is im-
mediate :

Lemma 1. If R is a Noetherian ring” with unit element and
S=R[§,, &, -+ &,] a ring finite extension of R then S is Noetherian.

Lemma 2. Let R be a Noetherian ring with unit element and S=Rw;
+Rw,+ -+ + Rw, a modul finite extension of R. Then any intermediate
ring 77: RC7'CS is also a modul finite extension of R.

The proof is simple and also well known. We consider S as an R-
space. The R-subspaces of S—and 7"is one of them—satisfy the ascending
chain condition. 7 is therefore a modul finite extension of R.

“The main result of our note is:

ZJweorcme 1. Let R be a Noetherian ring with unit element, S= R[¢§,,
&y, -+ €]  a 1ing finite extension and 7" an intermediate ring such that S
is a modul finite extension of 7: S=7w,+ 7Tw,+ --- +7w,. Then T is a
ring finite extension of R.

Proof : There exist expressions of the form:

(1) Sizi‘ai\«(‘)v; i=1, 2, n; a7
y=1

1) ie. a ring with ascending chain condition for ideals.
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(2) w.iwj:?:"i by 2, J=1, 2, -5 b,,,eT.

Let 7, be the ring finite extension of R generated by the @, and the
Py shows that 7, is Noetherian. Tiivially 7,c 7CS.

An element of S is a polynomial in the & with coefficients in R.
Substituting (1) and making repeated use of (2) shows that

S=T,0,+ Tow,+ -+ + Thw,,

so that S is a modul finite extension of 7,. Because of lemma 2 our
ring 7" is also a modul finite extension of 7,, say by e'ements a, Uy -+ Uy,
of 7. Therefore 7" is a ring firite extension of R by the elements a,,,
b5, and a,. S

As an application we prove the following theorem of Zariski.?

Theorem 2. Let % be a field and assume that the ring finite extension
E=H§, &, is a field. Then E/% is algebraic and consequently
modul finite. )

Proof : Suppose £/# is transcendental. Let &, §,,---§, be algebraically
independent, all other &, algebraically dependent on &,, &,, ---&,. Call F
the field #£(§,, &, ---§,) of all rational functions of &, &, ---&. Then
£#CFCZE and £ is a modul finite extension of / (being a finite algebraic
extension of /7). Because of theorem 1 F would be a ring finite extension
A1 N =+ 9] of £ Each y, is a rational function of &, &, ---§,.. Let M
be the set of all denominators of the 7. In the polynomial domain £[£,,
&5, -+-§,] there are infinitely many irreducible polynomials. (One can make
a uniform proof for all fields # which is similar .to Euclid’s proof: for the

existence of infinitely many primes.) I.et f be irreducible and assume f
divides none of the polynomials of M. The element L of /' could not

be a polyriomial in 7, %5 -+ 9. This is a contradiction.

Zariski uses theorem 2 for a short proof of Hilbert’s Nullstellensatz.
He concludes as follows: .,

Let a7p be an ideal in the domain of polynomials o=/4[%,, &, ‘- x,]
in indeterminates x,. Let pDa be a maximal ideal above a. Then o,p
is a field on oie hand and a ring finite extension of 4 by the residue

2) Oscar Zariski, A new proof of Hilbert’s Nullstellensatz. Bull. Amer. Math. Soc. 53
(1947).
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classes p, po, --+ pta Of %y, %o --- %, on the other. Therefore each p; is
algebraic over £ If f(x,, %, -+ x,)€p then f(t4, fo, -+ ptn) =0. Therefore
-p has an algebraic zero and a fortiori a.

If consequently a is an ideal without algebraic zeros then a=po. The
full Nullstellensatz is an easy consequence of this statement.”

Now let R be a Noetherian integral domain with unit element 1 and
quotient field F.

Theorem 3. R has a ring finite extension S=R[§,,§,, ---, §,] which is
a field, .if and only if F is itself a ring finite extension of R. If this is
the case the fields of type S are simply all modul finite extension fields
of F. :
Proof: If S is a field, then RCFCS and S=F{§,, §,,---§,]. Accord-
ing to theorem 2 S is a modul finite extension of /. From theorem 1 it
follows that F is s ring finite extension of R. Conversely, if £ is a ring
finite extension, then any modul finite extension of F is obviously a ring
finite extension of R. '

Our next theorem gives necessary and sufficient conditions for F to
be a ring finite extension of R.

Theorcin 4. The following four statements about K are equivalent :

(A) F is a ring finite extension of R.
*  (B) There exists an element 230 of R which is contained in all
prime ideals of R.

(C) There are only a finite number of minimal prime ideals of R.

(D) There are only a finite number of prime ideals in R, and every
one of them is maximal.
(By ideal we always mean a “proper” ideal, different from {0} and R.)

Proof :

(A)—(B): Let F=R[%;, %2 *»7a)- Let a € R be a common de-
nominator of the z,. Then for any element f=/(3,, %, -+, 7.) €F we have
a'feR for some v. Given any prime ideal p of R, let 4#0 be an element

of p. Then we have a"%eR; hence @*€¢ bR CPp and therefore aep.

(B)—=(C): Let aR=q,Nq,N---NQq,, each q, primary belonging to ;.
For a sufficiently high m we have pprCq, for all 2. Let p be any prime
ideal. Then

3) See for instance: van der Waerden, Moderne Algebra, vol. 2 (1931), p. 11,
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PrPR P C qua-+q, C 1N Go N -+~ N q,=aR C P,

and therefore p,Cp for some 7. It follows that the minimal primes must
be among the primes p,, Py, -+, b, .
(C)—>(D): We shall use the fact that any element ceR which is
not a unit is contained in some minimal prime. This follows directly
from a theorem: of Krull® which states that any prime ideal which is
minimal among the primes containing a principal ideal ¢R is minimal in R&.
Let p;, Ps -+, P, be the minimal primes of R. For each 7, there
exists an element . p; such that ¢;ep; for j7%7. Otherwise we would have
P:D Nywih; D My, p;, and therefore p;Dp; for some 7547, contradicting the
minimality of p,. Take now any element &¢p,. The element
=6+ 3 a=6 (mod p,)
» Z;30€py
is clearly contained in none of the minimal primes p, and is therefore a
unit. It follows that p,, and similarly any p,;, is maximal.
(D)—(C) : Trivially. '
(C)-—)(B) Take an @70 in the product of the minimal primes.
(B)—>(A): Take 630 in R. Write 6R=q,NqN--NG each g,

primary belonging to p;. From a e p; we conclude some power of

a is in all the q;, therefore in 6R: &™ = bc. Then %=;7 shows that

F=R[l].
a .
The question whether a field £ DR can be imbedded in a ring finite
extension S=R[§,, §,, -+, £,] of R can be answered immediately. Let p
be a maximal ideal of S. The residue class field S/p still contains £ and
S/9=R[5 5 ***» 7a] where 7, is the residue class of §,. According to
theorem 3 R has to satisfy the condition stated in this theorem and S/p
is a modul finite extension of F. Therefore £ is a modul finite extension
of F.

Princeton University.

4) W. Krull, Dimensionstheorie in Stellenringen, Journal fiir die reine und angewandte
Mathematik, vol. 179, p. 221 (1938).
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