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A Note on Finite Ring Extensions

Emil ARTIN and John T. TATE

Let $R\subset S$ be two commutative rings. We shall say that $S$ is a
modul finite extension of $R$ if a finite number of elements $\omega_{1},$ $\omega_{2},$ $\cdots\omega_{n}$ of
$S$ can be found such that

$S=R\omega_{1}+R\omega_{2}+\cdots+Rru_{n}$ .

This modul finite extension has to be distinguished from what we
shall call a ring finite extension

$S=R[\xi_{1}, \frac{\prime}{\backslash }2’\ldots\xi_{n}]$ ,

in which every element of $S$ can be written as polynomial in the generators
$\xi_{1},$ $\xi_{2},$ $\cdots\xi_{n}$ with coefficients in $R$ . If we call $S^{\prime}$ the ring of all polynomials
in the indeterminates $x_{1},$ $x_{2},$ $\cdots x_{n}$ with coefficients in $R$ then $S$ is a
homomorphic image of $S^{\prime}$ and the following well known lemma is im-
mediate:

Lemma 1. If $R$ is a Noetherian ring1) with unit element and
$S=R[\xi_{1}\xi_{\underline{7}}, \cdots\xi_{n}]$ a ring finite extension of $R$ then $S$ is Noetherian.

$L^{\rho}mma2$ . Let $R$ be a Noetherian ring with unit element and $S=R\omega_{1}$

$+RctJ_{2}+\cdots+Rc/J_{n}$ a modul tinite extension of $R$ . Then any intermediate
ling $T:R\subset T\subset S$ is also a modul finite extension of $R$ .

The proof is simple and also well known. We consider $S$ as an $R-$

space. The R-subspaces of S–and $T$ is one of them–satisfy the ascending
chain condition. $I^{\urcorner}$ is therefore a modul finite extension of $R$ .

The main result of our note is:
$z\gamma_{zeorem}$ J. Let $R$ be a Noetherian ring with unit element, $S=R[\xi_{1}$

$\hat{\zeta}_{2},$ $\cdots\xi_{n}$ ] a ling finite extension and $T$ an intermediate ring such that. $S$

is a modul finite extension of $T:S=T\omega_{1}+I’\omega_{2}+\cdots+T\omega_{m}$ . Then $T$ is a
ring finite extension of $R$ .

Proof: There exist $e$ xpressions of the form:

(1) $\xi_{i^{=}}\sum_{\nu=1}^{m}a_{i\nu}\omega_{\nu}$ ; $i=1,2,$ $\cdots n$ ; $a_{i\nu}\epsilon T$

1) i.e. a ring with ascending chain condition for ideals.
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(2) $\omega_{l}\omega_{j}=\sum_{\nu=1}^{m}b_{ij\nu}\omega_{\nu}$ ; $i,$ $j=1,2,$ $\cdots m_{)}$
.

$b_{ij\nu}\epsilon T$.

Let $T_{0}$ be the ring finite extension of $R$ generated by the $a_{i^{\backslash }\prime}$ and the
$\lambda_{ij\nu}$ . Lemma 1 shows that $T_{0}$ is Noetherian. Tiivially $T_{0}\subset T\subset S$ .

An element of $S$ is a polynomial in the $\xi_{i}$ with coefficients in $R$ .
Substituting (1) and making repeated use of (2) shows.that

$S=T_{0}\omega_{1}+T_{0}\omega_{2}+\cdots+T_{0}cu_{m}$ ,

so that $S$ is a modul finite extension of $T_{0}$ . Because of lemma 2 our
ring $T$ is also a modul finite extension of $T_{0}$ , say by $e$ ements $a_{1},$ $a_{2},$ $\cdots a_{p}$

of $T$. Therefore $T$ is a ring fi iite extension of $R$ by the elements $a_{\nu}$ ,
$b_{ij\nu}$ and $a_{\nu}$ .

As an application we prove the following theorem of Zariski.2)

$T/le\circ rem2$ . Let $k$ be a field ancl assume that the ring finite extension
$E=k[\xi_{1}\xi_{2}, \cdots\xi_{n}]$ is a field. Then $E/k$ is algebraic and consequently
modul finite.

Proof: Suppose $E/k$ is $t1$-anscendental. Let $\xi_{1},$ $\xi_{2},$ $\cdots\xi_{r}$ be algebraically
independent, all other $\xi_{v}algeb_{1}$ aically dependent on $\xi_{1},$ $\xi_{2},$ $\xi_{r}$. Call $F$

the field $k(\xi_{I}, \xi_{2}, \cdots\xi_{r})$ of all rational functions of $\xi_{1},$ $\xi_{2},$ $\cdots\xi_{r}$ . Then
$k\subset F\subset E$ and $E$ is a modul finite extension of $F$ (being a finite algebraic
extension of $F$ ). Because of th $\epsilon$ orem 1 $F$ would be a ring finite $e_{\lambda}t.e\iota 1sio\dot{n}$

$k[\eta_{1}, \eta_{2}, \cdots\eta_{rn}]$ of $k$ . Each $\eta_{i}$ is a rational function of $\xi_{1},\tilde{\zeta}_{2}$ $\xi_{r}$. Let ma
be the se $t$ of all denominators of the $\eta_{i}$ In the polynomial domain $k[\overline{\backslash }]$

’

$\xi_{2},$ $\cdots\xi_{r}$] there are infinitely many irreducible polynomials. (One can make
a uniform proof for all fields $k$ which is similar to Euclid’s proof for the
existence of infinitely many primes.) Let $f$ be irreducible and assume $f$

divides none of the polynomials of $M$ The element $\frac{1}{f}$ of $F$ could not

be a polynomial in $\eta_{1},$ $\eta_{2},$ $\cdots\eta_{m}$ . This is a contradict.on.
Zariski uses theorem 2 for a short proof of Hilbert’s Nullstellensatz.

He concludes as follows:
Let $\mathfrak{a}\neq 0$ be an ideal in the domain of polynomials $0=k[x_{1}, x_{2}, \cdots x_{n}]$

in indeterminates $x_{\nu}$ . Let $\mathfrak{p}\supset \mathfrak{a}$ be a maximal ideal above $\mathfrak{a}$ . Then $0_{/}\mathfrak{p}$

is a field on $ole$ hand and a ring finite extension of $k$ by the residue

2) Oscar Zariski, A new proof of Hilbert’s Nullstellensatz. Bull. Amer. Math. Soc. 55
(1947).
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classes $\mu_{1},$ $\mu_{2},$ $\cdots\mu_{n}$ of $x_{\iota},$ $x_{2},$ $\cdots x_{n}$ on the other. Therefore each $\mu_{i}$ is
algebraic over $k$ . If $f(x_{1}, x_{2}, x,,)\epsilon \mathfrak{p}$ then $f(\mu l’\mu_{2}, \cdots\mu_{n})=0$ . Therefore

$\mathfrak{p}$ has an algebraic zero and a fortioli $\mathfrak{a}$

If consequently $\mathfrak{a}$ is an ideal without algebraic zeros then $\mathfrak{a}=0$ The
full Nullstellensatz is an easy consequence of this statement.3)

Now let $R$ be a Noetherian integral domain with unit element 1 and
quotient field $F$.

$T/l\ell orem3$ . $R$ has a ring finite extension $S=R|^{-}\xi_{1},$ $\xi_{2},$
$\cdots,$

$\xi_{n}$] which is
a field, if and only if $F$ is itself a ring finite extension of $R$ . If this is
the case the fields of type $S$ are simply all modul finite extension fields
of $F$.

Proof: If $S$ is a field, then $R\subset F\subset S$ and $S=F^{\cdot}[\xi_{1}, \xi_{2}, \cdots\xi_{n}]$ . Accord-
ing to theorem 2 $S$ is a modul finite extension of $F$. From theorem 1 it
follows that $F$ is $s$ ring finite extension of $R$ . Conversely, if $F$ is a ring
finite extension, then any modul finite extension of $F$ is obviously a ring
finite extension of $R$ .

Our next theorcm gives necessary and sufficient conditions for $F$ to
be a ring finite extension of $R$ .

Theorem 4. The $fol!owing$ four statements about $R$ are equivalent:
(A) $F$ is a ring finite extension of $R$ .
(B) There exists an element $a\neq 0$ of $R$ which is contained in all

prime ideals of $R$ .
(C) There are only a finite number of minimal prime ideals of $R$ .
(D) There are only a finite number of prime ideals in $R$ , and every

one of them is maximal.
(By ideal we always mean a “proper ” ideal, different from $\{0\}$ and $R.$)

Proof:
$(A)\rightarrow(B)$ : Let $F=R[\eta_{1}, \eta_{2}, \cdots, \eta_{n}]$ . Let $a$

$\epsilon R$ be a common de-
nominator of the $\eta_{i}$ . Then for any element $f=f(\eta_{1}, \eta_{2}, \cdots, \eta_{l})\epsilon F$ we have
$a^{\nu}f\epsilon R$ for $som_{\vee}^{\circ}\nu$ . Given any prime ideal $\mathfrak{p}$ of $R$ , let $b\neq 0$ be an element
of $\mathfrak{p}$ . Then rve have $a^{\nu}\frac{1}{b}\epsilon R$ ; hence $a^{\nu}\epsilon bR\subset \mathfrak{p}$ and therefore $a\epsilon \mathfrak{p}$ .

$(B)\rightarrow(C)$ : Let $aR=\mathfrak{q}_{1}nq_{2}n\cdots n\mathfrak{q}_{r}$ , each $\mathfrak{q}_{t}$ primary belonging to $\mathfrak{p}_{i}$ .
For a sufficiently high $m$ we have $\mathfrak{p}_{i}^{m}\subset q$ for all $i$. Let $\mathfrak{p}$ be any prime
ideal. Then

3) See for instance: van der Waerden, Moderne Algebra, vol. 2 (1931), p. 11.
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$\mathfrak{p}_{1}^{m}\mathfrak{p}_{2}^{m}\cdots \mathfrak{p}_{r}^{m}\subset \mathfrak{q}_{1}\mathfrak{q}_{2}\cdots \mathfrak{q}_{r}\subset \mathfrak{q}_{I}n\mathfrak{q}_{2}n\cdots n\mathfrak{q}_{r}=aR\subset \mathfrak{p}$ ,

and therefore $\mathfrak{p}_{i}\subset \mathfrak{p}$ for some $i$ . It follows that the minimal primes must
be among the primes $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$

$\cdots,$
$\mathfrak{p}_{r}$ .

$(C)\rightarrow(D)$ : We shall use the fact that any element $c\epsilon R$ which is
not a unit is contained in some minimal prime. This follows directly
from a theorem of Krull4) which states that any prime ideal which is
minimal among the primes containing a principal ideal $cR$ is minimal in $R$ .

Let $\mathfrak{p}_{1},$ $\mathfrak{p}_{2}$, $\cdot$ .., $\mathfrak{p}_{s}$ be the minimal primes of $R$ . For each $i$ , there
exists an element $a_{i}t\mathfrak{p}_{i}$ such that $a_{i}\epsilon \mathfrak{p}_{j}$ for $j\neq i$ . Otherwise we would have
$\mathfrak{p}_{i}\supset n_{i\neq i}\mathfrak{p}_{j}\supset\Pi_{J\neq\iota}\mathfrak{p}_{j}$ , and therefore $\mathfrak{p}_{i}\supset \mathfrak{p}_{j}$ for some $j\neq i$ , contradicting the
minimality of $\mathfrak{p}_{i}$ . Take now any element $b\not\in \mathfrak{p}_{1}$ . The element

$\mathscr{K}=b+\sum_{i;b\epsilon \mathfrak{p}_{i}}a_{i}\equiv b(mod \mathfrak{p}_{1})$

is clearly contained in none of the minimal primes $\mathfrak{p}_{i}$ and is therefore a
unit. It follows that $\mathfrak{p}_{1}$ , and similarly any $\mathfrak{p}_{i}$ , is maximal.

$(D)\rightarrow(C)$ : Trivially.
$(C)\rightarrow(B)$ : Take an $a\neq 0$ in the product of the minimal primes.
$(B)\rightarrow(A)$ : Take $b\neq 0$ in $R$ . Write $bR=\mathfrak{q}_{1}n\mathfrak{q}_{2}n\cdots n\mathfrak{q}_{r}$, each $\mathfrak{q}_{i}$

primary belonging to $\mathfrak{p}_{i}$ . From $a$ $\epsilon \mathfrak{p}_{i}$ we conclude some power of

$F=R[\frac{1a1}{a}]aisin1$ .
the $q_{i}$ , therefore in $bR:a^{m}=bc$. Then $\frac{1}{b}=\frac{c}{a^{m}}$ shows that

The question whether a field $E\supset R$ can be imbedded in a ring finite
extension $S=R[\xi_{1},$ $\xi_{2}$ , $\cdot$ .., $\xi_{n}\rceil$ of $R$ can be answered immediately. Let $\mathfrak{p}$

be a maximal ideal of $S$. The residue class field $S/\mathfrak{p}$ still contains $E$ and
$S/\mathfrak{p}=R[\eta_{J}, \eta_{2}, \cdot.., \eta_{n}]$ where $\eta_{i}$ is the residue class of $\xi_{i}$ . According to
theorem 3 $R$ has to satisfy the condition state.$d$ in this theorem and $S/\mathfrak{p}$

is a modul finite extension of $F$ Therefore $E$ is a modul finite extension
of $F$.

Princeton University.

4) W. Krull, Dimensionstheorie in Stellenringen, Journal ftir die reine und angewandte
Mathematik, vol. 179, p. 221 (1938).
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