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On Invariant Differential Forms on Group Varieties

Shigeo NAKANO.

(Received Apr. 17, 1950)

In this note we shall discuss the invariant differential forms on group
varieties? and prove that for any group variety, there corresponds to it a
Lie ring composed of invariant dervations of the (abstract) field of func-
tions defined on that group variety. We shall also discuss some of its pro-
perties, which are the analogues of the case of usual Lie groups.

§1. Differential Forms on an Algebraic Variety.
Let '™ be a variety in S%, D,(V) the totality of functions defined on
V'x IV which induce on 4, the constant 0. ®,(J) is a module over the
field of constants £%. Let 0 ¢ D,(I) and let £ be a field of definition for

d, P a generic point of V over £ and H(X),...... ,H,(X) a uniformizing
set of linear forms of IV at P. We shall denote by A4;¥"*! the linear
variety in S¥x S¥ defined by A (X—X")=0 (G=1,...... s Jreeean ) (here 7

means to omit ;). Then by F~V/, th. 1%, "x I’'NA, has a unique proper
component MW7}*! containing 4y, W, has the multiplicity 1 in this intersec-
tion and 4 is simple on W, If, therefore, the function U,Vj induced by 6

on W, is not the conatant 0, (@)W, is defined and we have
vAV(HWj)zcoeff. of 4y in (0) - W, > 1.

Proposition 1. Let H!(X) (¢=1,...... ) be another uniformizing set of
linear forms of V at P and W, be defined from H/(X) as W, were from
H(X). If for some j 17 n), ﬁwj is not the constant 0 and v, (OWJ)
=1, then the same is true for some Oy (1 <7 n).

Proof. Let P=(x), and Q= (2") be a generic point of I” over £(x),
then Px Q is a generic point of "X} over £ As 0 is in the specializa-
tion ring of 4y in £(x, 2'),

0(x, x’).—:f.____._(x’ ')
gz, 2)
where AX, X)), g(X, X') € #/[X, X'] and g(x, x)=0. -
Since we are concerned with the components containing 4y, it does not
matter whether we consider the function 6 or £ If we consider the func-

tion /F on S¥ x S¥ defined by F(#, ') =f(x, #) where (%),(z’) are in-
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dependent generic points of S¥ over £, F induces f on Vx IV and Fy; =fw;
on W;. Therefore (F)-W; is defined and by F-VIIIL, th.4 we have

coeff. of 4y in (F) - Wy=vay (Fy;) =vay (fw;) =1.

This means that (), has a unique component containing 4y, and this com-

ponent contains 4, as a simple subvariety and is transversal to W, along

4,. Therefore if Asz(X)z'Zag{ (Xo—2,)=0 (B=1ye...N—1) (Fo(2)
» w

being in the ideal defining V" in S¥) are the set of equations of the tangent

linear variety of 17 at P, the linear forms

4,.f(X, X)=3 aff; (X,—2,) +3] a‘}‘, (X =), 4F(X),.
® B ®

47X (=1,......N—2n) and H(X—X") (G=1,cc.rfr...,)

are linearly independent. (Here of , 9 are taken at X=ux X'=2x) But
X X
as H;(X—X'") are linear combinations of 4,7 (X), 4,F(X’) and H/ (X—
X') (#=1,...,n), for a suitable /, 4, (X, X"), 4.F.(X"), 4,F (X", H (x—
X") (¢#/) are linearly independent. From this we can arrive at the asser-
tion of the proposition by reasoning in the inverse direction.
From Prop. 1 we see that

DA V) =1{0] € Dy(V), vay(byp;) =2 whenever 0y, is not the constant 0.}

is a submodule of D;(V) defined independently of the choice of H(x).

Next we prove that D,, D, are birationally invariant. Let I’ and U™
be two varieties respectively in S¥ and S¥, 7™ be a birational correspen-
dence between 7 and U. Then the transform 77 of 7x 7 by the trans-
formation of the product S¥x S¥ x S¥x S which interchanges the second
and the third factors is a birational correspondence between Fx I and -
Ux U, and it is biregular along 4.

Proposition 2. Let 0 be a function on VXV and % a field of definition
for V. U, T and 0. Let PxQ and Rx S bz corvesponding genmeric points of
VxVand UxU by T over k. Then the formula 0' (R x S)=0(Px Q) d-fines
a function on UXU and if 0¢D,(I) or 0 € Dy(V), we have respectigely '
€ D(U) or 0D, (U).

Proof. Only the assertion abo t ¥, is not evident. To prove this we
assume 0’ ¢ D,(U). Then for some 7, we have Vs, (0’,;j )=1 where V;

are constructed for U as W, were for I” before. As 77 is biregular along
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dy, there is a subvariety ¥ of X [/ corresponding to ¥}, and we have
1=7’Ar(0”’j Y=coeff. of 4, in (¢')-Y,=coeff. of 4, in (0)- Y.

This means that that there is a unique component of () containing 4, and
it is transversal to Y along 4,.

/
Now we put P=(x), Q= (2"), 0(x, x,)zf(x,—x) as in the proof of
&x 2)
Prop. I, and find that the linear forms

4, .f(X, X", 4, F(X), 4, F,(X') and 4,,9, (X, X')
(z=1,..., n—1; *k=1,..., N—=n)
are linearly independent, where @,(X, X’) belong to the ideal defining Y
in S¥x S¥and 4,,9; (X, X’) form, together with 4, F,(X) and 4, F.(X'),
the equations of tangent linear variety of ¥ at Px . But Y contains 4,

so we have @,(x, x)=0 and therefore @(X, X)=3/(X)G,(X)(/u(X)e€
#X] and G,(X) belong to the ideal defining 77), and hence

&
LY/ (x, %) +_a_,}-(x, x)=Xu(x) 3G, ®).
0x,, ox', 0x,

This shows that we can choose @; so that 4,,@,(X, X’) have the form
H(X—X"). If we take these #,(X) (?=1,...,#—1) and a suitable A,(X)
for a set of linear forms to define I, we have v, (0y;) =1, that is a
contradiction.

In the above proof, we saw that the tangent linear variety of ¥™*! at
Px P can be defined by the system of equations

d, F(X)=0,4,F(X")=0, H(X—A")=0 (G=1,....u—1; k=1,..., N—n).
Evidently this remark holds true for any subvariety Z"*" of ”x I/ contain-

ing 4, (1 <X»<#n—1), that is to say, the tangent linear variety of Z at
Px P can be defined by the system of equations of the form

4,F(X) =0, 4F(X"N) =0, H,(X—X"N)=0. (@=l...n—r, k=1,....N—n).

Applying this to the case of »=#—1, we have the following

Proposition 3. [f Zy™7,...... , 227, are n subvarieties of VX U™ and
dy is a proper component of ZiN...... N Z, with multiplicity 1, then we can
Jfind a uniformizing set of linear forms H,(X),...... J(X) of V at a generic
point P of V over a field of definition k of Vi, Zi,...... 1Ly SUCH that the tangent
linear varicty of Z, at Px P are defined by the system of equations
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4,5,(X)=0, 4,F(X')=0 and H(X—X")=0 (&=1,.......N—2z),

where F,(X) are in the ideal defining I” in S¥

If an abstract variety I is given, we can define ®,(V), D,(V) inde-
pendently of its representative, by Prop. 2. D, and D, are £-modules
and 2, is a submodule of D,, so we can construct the factor module D(V)
=D,(V)/DV). We can, as in Weil’s book?, define in D(P’) multiplica-
tion by the element of £(V), and make D(V) a L(V)-module. This
module is called the module of differential forms of the first degree on V),
and its element w is called the, differential form of the first degree on .
If 0 is in the class w, we say that € defines w and write w=1{60}, if one of the
functions of class w is defined over K, we say  is defined over K.

Let ¢ be a function defined on IV over 4, then we define a differential
form d¢ on 17 defined over:#4, by the formula

do={¢y}, ¢2(PxQ)=¢(Q)—¢(P),

where /2 and Q are independent generic points of 7 over £. This differ-
- ential form is called the differential of the function ¢.

Proposition 4. Let 'V be a variety in S¥, k a field of definition for V,
and P= (x) a generic point of V over k. Let H(X) (¢=1,...,n) b¢ a uni-
Jormizing set of lincr forms with cocfficients in % at P. Consider the functions
u, defined by u,(x)=H,(x). Then

(1) du; G=1,....n) are Linearly independent over 2(V'),

(2) any w € D is a linear combination of du; with coefficients in 2 (1),
and especially with coefficients in 2, (V) if w is defined over k.

Proof. (1) Notations being as above, assume that

0(x, )= () H (x—2) + - +u(2)Ha(2—7) €D,

with ¢; not all 0. We can here assume ¢,(x) to be polynomials. If ¢,
() %0, we have Oy,=¢,(x) -H;(x—+")70, and considering the function #
defined in S¥x S¥ by F(z, #) =¢,(%)H, (¥—=*'), we have v, (0),) =coeff.
of 4, in (F)-W,=1, which is a contradiction.

(2) - Let w={0}, we can here also assume that (X, X’) is a polyno-
mial in X,X’. As 0(x, x)=0 we have as in the above proof of Prop. 1
and Prop. 2, :

4,.0(X, X)) =2 alH(X—X") + 3} d.50(X) + X ,d F (X7)
(@5 bpy e € 2(V)),
and therefore if we put ¢ (X, X)) =0(X, X') —Xla; Hi(X—X"), 4,.» (X, X')
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is linearly dependent on 4,/ (X), 4,F,(X"). This implies that I7; and the
component of (¢), containing dJ, are not transversal. Therefore ¢ € D,,
and we have w=3Y] a;, du,.
The last assertion is now immediate.
Proposition b. Notations bcing as above, the fuction induced on 4, by
[M] shall be denoted by 4,(x, x) (this is not O when vy (Oy;) =
[{j(x —x’) Wi :
1, and O otherwise). Thon the functions a; suckh that wz,E aduy; are given

by ay(x)=yx,(%, x).

Proof. Put ¢(x, 2')=0(x, x)—Y‘x,(x, x) Hj(x—x'), then it can
easily be seen that ¢y, =0 or vsy (¢yy; )> 1, and therefore ¢ € D,. This
implies (U—ij(x, x) duy.

By deﬁmtlon, d(@+¢) =do+dP, and d(gog/J) dde + od, for two func-
tions ¢, ¢ on V. So, if we put do=3"2; du; we can define » derivations
of (V) over £ by Dip=5". As D;u;=20,, D, are linearly independent
over £(V), and therefore form a £(})-base of the module 4(V) of deriva-
tions of (V) over £. Therefore we can consider a differential form of
the first degree ® as a linear mapping of 4(V") into £(V), by the relation:
wxD=3"¢, Du; if o=3¢, du,. And it is easy to see that D (V) and 4(V)
are dual modules with respect to this px:oduct. By the last assertion of
Prop. 3, this duality holds when we restrict the field of definition of differen-
tials, derivations and functions to any field X which is at the same time a
field of definition for V®®. Thus our definition of differential forms of the
first degree agree with that given by Weil in F-IX,. We can therefore,
speak of whether a differential form is finite or not at a point of [, and
also speak of differential forms of higher degrees. Cf. also Koizumi’s paper”.

Concerning the Prop. 6 in Koizumi’s paper, we have the following

Proposition 6. Let V" be a variety and Z* be its simple subvariety. If
a differential form of the first degree w on V is finite along Z, there is a
Junction 0 in D(V) such that {0}=cw and 0, defines the differential form
whick is induced on Z by w (in Koizumi's sense). Moreover if {¢}=0 on V
and if ¢ is defined along d,, then we have ¢zy; € D(2).

Proof. We can assume’ that 7 is in an affine space S¥, Let £ be a
field of definition for V, Z and w, and P=(x) and P =(x") be ‘two inde-
pendent generic points of 7 over £, Q a generic point of Z over A If
(U=§;:3i di;, where u, are uniformizing parameters of 7 at @, then our

first assertion is satisfied by
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0(xx") = — Zzi(x) {u(x) —2 (&) |
Next we suppose {¢}=0, we choose a uniformizing set of linear forms
H(z), (=1,...... #) of Z at Q. As Q is simple on V, we can choose
a uniformizing set of linear forms A, (x),...... () Hyp(2),eeeen. (%)
~of V at Q, in such a way that H;(a),...... ,H,(x) appear among them, and
H, 1 (2),...... H,(x) appear among the equations for tangent linear variety
of Z at Q. As above we define the varieties W;(j=1,...... 2) for VxV

and W/ (j=1,......n) for ZxZ.
We write ¢’ instead of ¢;,z. We have for some j (1 </7<7)

l1=coeff. of 4, in {(¢') - W]/} 242

But the right hand side is equal to the coefficient of 4, in { (@) Wj}lzxy
where @ is the function on Zx V' induced by ¢. Consider W; and Zx V.
These are transversal to each other at Q on "XV, and therefore W;Nn (£
x V) has a unique component W, containing 4, and W}/’ has 4, as a
simple subvariety. Moreover W and W/ have the same tangent linear
variety at Q in S¥x S¥. If, therefore, we denote by A the component of
(@), containing 4., we have i[A4A- W', 4,; Zx V]=1, and by F-VI, th.
9, i[A-W,, d;; Vx V]=1. From this we deduce by F-VI, th. 5 ., (¢y;)
=1, which is a contradiction.

If w and 0 are differential forms on ¥, we can define the product w-¢
and dw in the usual way®. These induce w'.¢’ and dw’ respectively on a
simple subvariety Z of J/, where «’, & are forms induced on Z by o, 0
respectively.

Let 4 be a function defined on J with values in U such that its values
exhaust U. 'If £ is a field of definition for V, U and 4, and if x is a ge-
neric point of I over £ and y=4A.x, we have £(») C4(x). Therefore a
differential form «’ =23,~1 Aoy ... du,, on U can be considered as
one on IV, by thinking z, as functions on V' and du; as differentials
of functions on V. We denote, following Chevalley®, the differential form
thus obtained by w=9d4-&'.

§ 2. Invariant Differential Forms on a Group Variety.

Let G" be a group variety and & a point of G. The left translation
7, is an everywhere biregular birational correspondence between G and G
itself, defined over a field of definition K for G over which « is rational.’®
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If w is a differential form on G, we write »® instead of 67, w.

If w*=w for any a € G, we say that w is (left) invariant. It is clear
that invariant differential forms of given degree form a £-module.

In the case of a form w={0} of the first degree, w® is given by "=
{6*} where 0* is defined by 0°*(x,2')=0(ax, ax’)™.

If therefore, 0*=6 for any a € G, w={0} is invariant.

Theorem 1. [f G* is a group variety, then there are n tnvariant di-
Lerential forms of the first degree on G, linearly independent over . Moreover
they form a £(G)-basc of D(G).

Proof. Let £ be a field of definition for G, and x, y be independent
generic points of G over £ and s=x""p. Let G, be a representative of
G in S% in which the neutral element ¢ has a representative with coordi-
nates (0) and is a simple point, and let z, (v=1,...... , V) be the coordinates
of the representative of z in G,. Then the functions ¢, on G x G defined
by ¢,(x, )=z, give invariant differential forms on G. As z is generic
on G over %, we can find among =z, a set of uniformizing parameters at e.
We can assume that z,......,5, are such. Then z,—0 (v=1,...... V) is a
proper specialization of (z,) over zj,..... 2,—0. On the other hand if we
denote by A the locus of ¥ Xy xz over £in GXxGX G, we have 4- (G x G x
¢)=dgxe. These imply that d; is a proper component of (¢,)eN...... N
(¢2)o- We shall prove that 4 is contained in this intersection with multipl-
icity 1. .

To do this, let U=GxGx G, and V=G x G x D*, where D" is a pro-
duct of # projective lines. We consider the loci A, 4’ of *rxyxa~yxx
xyx(2) and rxxrxexrxxx(0) respectively in U x I over 4, and the
locus A" of xxyx (zpe.... , #,) In V over £ We can apply F-VII; th. 8

to calculate {[A”.(Gx Gx (0), d;x (0) ; A]. The formula in that theorem
becomes

[ : A7]i[A7- (G x G x (0)), dgx (0) ; V]
=[d 4% (0)] 4[4 - (GXGXxGCxGxGx (0), d; UxU].

On the right hand side of this equality, the first factor is clearly 1, the
second is calculated by F-VII; theor. 9 and gives the value 1. Therefore
A" (Gx Gx (0)), dgx (0); V]=1. From this we deduce, by successive
use of F-VII; theor. 16, that d; is contained in (¢)),N...... N (¢n), with
multiplicity 1.
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Now we consider the representative G,x G, of G X G and its point #
x x. (For simplicity’s sake we use the same symbol for a point on G and
its representative in G, which will cause no confusion.) We take a uni-
formizing set of linear forms H,(x),...... H,(x) of G, at x as in Prop. 3,
and put #,(x) =/H,(x) and define W as in Prop. 1. It is easy to see that
Vg ([%]W_,)=1 only for z=j. It follows from Prop. b. that {¢;}=qa, du,,
which shows that {¢,} form a £(G)-base of D(G).

Corollary.' # invariant differential form in Th. 1 can be found among
{0} where ¢, (x,y) is the v-th coordinate of x™y in the representative G,.

Let K be an (eventually abstract) field containing a field 4, and let
a derivation D of K over # and an automorphism ¢ of K over £ be given. -
We put Dz=z" for # € K, then the operation D° defined by D°:°=z'° is
a derivation of K over 4.

Let G be a group variety and a a point of &, and let D be a deriva-
tion of 2(G) over £. As ¢—¢? is an automorphism of £(G) over £, we
have as above a derivation D% D* is defined by

D= (Dg=") for ¢ € 2(G).

If D*=D for any a € GG, we say that D is an invariant derivation. The
totality of invariant derivations of G forms a £-module 8.

-

If o=, du;, we have w*=3¢¢(du,)*=31¢? d(«?) and
D=3 9% Du%= (¢, D1;)*= (wxD)".

Therefore if @ and D are both invariant, we have
wx D =constant.

Theorem 2. Tl Q-module WM of invariant differential forms of the
Jirst degree on a group variety G and the R-module § of invariant dervivations
o R(G) are dual with each other with respect to the product wxD. Their
common rank over 2 is equal to the dimension n of G.

Proof. That w+D is bilinear is evident.

By Th. 1 there are 7 forms wy,...... »w, in PN which form a £(G)-base
of D(G). Therefore wxD=0 for all w € M implies D=0. If we consider
the derivations D; such that wxD,=d,, we have wxDi=wf+Di=wD;)*
=0y, so that Dj=D;; D, are invariant. An arbitrary w € I is expressed
in the form w=3]¢; @; where ¢; € £(G), then wxD;=¢, and ¢, must be
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a constant. This shows that 9% has rank 7 over £, and that w*D=0 for
all D € & implies w=0.

Let X" ' be a subvariety of G”, and let w=3Xz,...... o @hygeen... it
be an expression of a differential form w by the uniformizing parameters
along X, van der Waerden defined the order vx(w) of w on X as vx(w)=
min vx (Z...... ). This is independent of the choice of the uniformizing
parameters.

If w is an invariant differential form on G and 74(w)#0 for a X ™7,
then vx,(w)7#0 for any @ € G (X, is the transform of X by Z7,), which
is impossible. This shows on one hand:

Proposition 1. Invariant differential forms are everywherve finite.

On the other hand, let D; be a base of ¥ defined over 4, and w, a
base of M dual to D,, and let @ be a point of . Then w, are expressed
by uniformizing parameters %, at @ as w;= 2] 2;; du; and therefore

Oy=wxDy= fk_,‘ Zax Dty

As wy...... wa=det |zy| - duy...... du, is an invariant differential form on G, we
have der |z,;720 at a, therefore D,u; are defined and finite at a. Tnus we
have

Paocposition 8. An invariant derivation D s, so to speak, everywhere
finite ; that is to say, by D, a function on G defined and finite at a point of

G goes over to a function of the same kind®.

§ 3. Lie Ring of a Group Variety.

In the following the characteristic of the universal domain is assumed
not to be equal to 2.

In & we can define a commutator product which makes & a Lie ring.
In fact, if D,, D, € 8, [DD,|=D,D,—D,D, is evidently a derivation of £
(G) over £ and it is also invariant, so that [D;, D.] € 8. Let ¢, be the
structure constants of Lie ring : [DD])=3X¢iy. D, then it is shown as
usual® that

1
dwy= "—"—Efﬁk W;* W
2ij I

Now let G* be a group variety and A" its group subvatriety, both
defined over 2. As A is simple on G and w € M is everywhere finite,
® induces a differential form «’ on A, which 1s evidently invariant.

Let x,2” be two independent generic points of G over £ and y, ¥’ such
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of A, and let ¢,(x, 2’) be, as in Th. 1 v-th coordinate of x™'z’ in some
representative G, of G in which /A has a representative AZ,. Then ¢,(yy")
are defined and are coordinates of y~!'. Therefore, by Th.1 Coroll. 7
of ¢’s define » differential forms which form a 2-base of My This means
that whole ﬂﬁﬂ'is induced by IM; on A, and therefore we can choose a

base @;y.e..... W,y Wyplyeseeen ,w, of Ms; so that w/,......,®,” form a base of M4
1 i A + G 1 H
and o, ,1=...... =w,’=0. Then the formula
1
dwp=——-31C13p ;W
2143
implies
d [ g— 1 ! !
W= — iy 0, -y
i3

and therefore ¢,;,=0 for 7, /<7, £ > 7.
If we consider the base D,,...... , D, of 84 dual to w,...... , W, We see
Di,...... ,D, form a base of a Lie subring of ¢ which is isomorphic to €.
The relation between & and %, can further be explained as follows -
We can suppose that D, and e, are defined over £. Let us denote by >}
the specialization ring of y in £(x), and by p the ideal of 37 composed of
elements which have specialization 0 over x—y. Let v €p, we have dv=

(D; v) -w; and by Prop. 82 D e 3. But dv induces O on A, so that
=1

Do (i=1,...... ) have specialization O over x—y, therefore D; v e p for
i=1,...... , 7 ' )

Since D; 31 c 3! and DpcCh for 1 < ¢ < », D, define » derivations of
>1/p=k(y) over %, which form precisely the dual base of 85 to w/,......

!’
o

1)

We resume the result in the following

Theorem 3. If H is a group subvariety of a group variety G, then &g
is isomorphic with a Lic subring of ¢, and this isomorplism is given by that-
the elements of the subring in question can be considered, in a natural way, as
derivations of @ (H) over 2.

Next we consider homomorphisms of group varieties.

Let A be a homomorphism of a group variety G" onto a group variety
H7. Let a be a point of &, and % a field of definition for &, /A and 4,

over which @ is rational. Let x be a generic point of G over &, then y=
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A.xis a generic point of A over 4 and é=A-a is rational over 4. It is
easily seen that if ' is a differential form on A and w=04-¢', then w*=
d4-w'®, so invariant @' goes to an invariant w by d4.

We have £(x)D4(p), and if the order of inseparability [£(x) : £(»)].
is equal to 1, 2(x) is separably generated over £(), and if «' is not O on
H, w=04-0w'==0 on G. Such a homorphism shall, provisionally, be called
a separable homomorphism. If A is such, and if «,......,0,) is a base of

My then w,=0d4-d/;...... ,,=08/4-0,’ are independent on G, and we can
find a bese wy,...... Wy Opiygreense- 0, of Me such that w,=d1-w/ (i=1,...,7).
Now consider the dual base Di,...... D, of wy...... w, If ver(y),dv

{considered as a differential foom on /) is a linear combination of w/,...
...,0,) with coefficients in 4Z(»), so that when considered as a differential

form on G, it is a linear combination of w;,...... ,, with coefficients in £(»).
Therefore D, 2(y) Ck(y) 1 i DA(y)=0 » <4, and D,,...... ,D, de-
fine » derivations D/,...... D! of £(y) over £. D/,...... , D,/ are invariant

and form a base of 85 We have thus defined a linear mapping 2:4(D;)
=D (7)), A(D,)=0 (r<i) of & onto L,z 4 is a homomorphism of
Qs onto g, because A(D,) is the contraction of D, to £(y).

Now let C be the component containing ¢ of the kernel of 4, we can

see by Prop. 6 that w,...... , @, induce O on C. But C is a group sub-
variety of G of dimension #—#¥. Therefore the Lie subring of 8¢ ge-
nerated by D, ,...... , D, (which is rothing but the kernel of 1) is the Lie

:subring corresponding to C.

Theorem 4. [f A is a separable Lomomorphism of a group variety G
onto a group variety H, then there cxists a lomomorphism A of 8¢ onto Ly,
and the kernel of A is the Lie ring of the component of ¢ of the kerncl of A.

In conclusion I express my heaitful thanks to Prof. Akizuki for his kind
interest taken in this work.

Yoshida College,
Kyoto Univeisity.

Notes

1) Cf. A. Weil: Variétés Abeliennes et Courbes Algébriques, in the following this shall
be cited as A. '

2) We denote by 2(7") the abstract tield of all functions defined on 7, (each function
having a field of definition in the sense of F-1;.,3) The subfield of 2(77) composed of functions
equal to constants is denoted by @, this is isomorphic to the universal domain. We denote by
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4 (V) the field of functions on 7 defined over X this is xsomorphxc to A(P), where P is a
generic point of 77 over A, and at times they are identified.

3) F-I,. th. 1 means A. Weil : Foundaions of Algebraic Geometry, Chap. VI §1. th. 1.
This abbreviation is used throughout this note.

4) A. Weil: Courbes algébriques et Variétés qui s’en déduisent, Jre partie IL

5) As Q(F) is the compositum of 2,(¥) and £, a derivation of 2,(}) over A is ex-
tended to that of 2(F") over . Conversely, as 2(F") is finitely generated over @2, a derivation
D of (V) over  can be considered as an extension of some derivation of Q4(7) over AL
Here X is a field suitably chosen, in the sense of F-I,. In this case we say, D is defined over X.

6) Of course in this case both are considered as 2, (¥?)-modules.

7) S. Koizumi: Journ. Math. Soc. of Japan, vol. 1.

8) Cf. A. ne 1. .

10) As in A. K is said to be a field of definition for a group variety G if A is a field of
definition both for variety G, and for -the la%w of composition in G.

11) Here x and x/ are independent generic points of G over XK.

12) If we identify 24(G) and K{(x) as is stated in note (2), we can state this Prop. as
follows: If D is an invariant derivation on G defined over K] D leaves the specialization ring
of a in K{(x) invariant.

13) Cf. C. Chevalley: Loc. cit.

]4) This can be seen by a slight modification of A. th, 11, in the case of onto homomor-
phism.
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