A Deformation Theorem on Conformal Mapping.

Masatsugu Tsuji.

(Received Jan. 24, 1950)

We will prove the following deformation theorem on conformal mapping. Theorem 1. Let D be a simply connected domain on the z-plane, which contains z=0 and is contained in |z| < M. Let E be a continuum, which contains z=0 and is contained in D, such that a disc of radius ρ about any point of E is contained in D. If we map D conformally on |w| < 1 by w=w(z), z=z(w) (w(o)=o), then the image of E is contained in |w| < 1-k < 1, where $k=k\left(\frac{\rho}{M}\right)$ depends on $\frac{\rho}{M}$ only.

We can take

$$k = \frac{\rho}{4M} e^{-\alpha \frac{M^2}{\rho^2}} (\alpha = \frac{64\pi}{\sqrt{3}} \log \frac{32}{9} < 100).$$

Proof. We cover the z-plane by a net of regular triangles Δ_i of sides $\frac{\rho}{4}$, whose vertices are $z_{m,n} = m\frac{\rho}{4}e^{\frac{\pi i}{3}} + n\frac{\rho}{4}(m, n=0, \pm 1, \pm 2, \cdots)$. It is easily seen that if Δ_i contains a point of E, then a disc of radius $\frac{3\rho}{4}$ about a vertex ζ_i of Δ_i is contained in D, so that Δ_i is contained in D and w(z) is regular and schlicht in $|z-\zeta_i|<\frac{3\rho}{4}$. Let $\Delta_1,\Delta_2,\cdots,\Delta_N$ be the triangles which contain points of E, where z=0 is a vertex of Δ_i , then since the area of Δ_i is $\frac{\sqrt{3}\rho^2}{64}$ and is contained in |z|< M,

$$N < \mu = \frac{64 \pi M^2}{\sqrt{3} \rho^2}.$$
 (1)

Let z_0 be any point of E and let z_0 be contained in A_{n_0} $(n_0 \leq N)$, then since E is a continuum, there exists a chain of triangles:

$$\Delta_1, \Delta_2, \dots, \Delta_{n_0} \qquad (n_0 \leq N),$$

where Δ_i , Δ_{i+1} have a common side, so that $|\zeta_i - \zeta_{i+1}| = \frac{\rho}{4}$ and each Δ_i con-

tains a point of E.

Since z(w) (z(o)=o) is regular and |z(w)| < M in |w| < 1, we have by Schwarz's lemma

$$\left| \left(\frac{dz}{d\tau v} \right)_{0} \right| \leq M, \text{ or } \left| \left(\frac{d\tau v}{dz} \right)_{0} \right| \geq \frac{1}{M}$$
 (3)

Now

$$w(z) = \lambda z + \cdots \qquad (|\lambda| \ge \frac{1}{M}) \tag{4}$$

is regular and schlicht in $|z| < \frac{3\rho}{4}$, hence by putting $z = \frac{3\rho}{4}t$

$$F(t) = \frac{w\left(\frac{3\rho}{4}t\right)}{\frac{3\lambda\rho}{4}} = t + \cdots$$

is regular and schlicht in |t| < 1, so that by Koebe's theorem,

$$|F'(t)| \ge \frac{1-|t|}{(1+|t|)^3} (|t|<1),$$

or

$$|w'(z)| \ge |\lambda| \frac{1 - \frac{4|z|}{3\rho}}{\left(1 + \frac{4|z|}{3\rho}\right)^3} \qquad (|z| < \frac{3\rho}{4}).$$

Hence for a vertex ζ_2 $(|\zeta_2| \frac{\rho}{4})$ of Δ_2 ,

$$|w'(\zeta_2)| \ge |\lambda| \frac{9}{32}$$
.

Repeating the same process at $\zeta_3, \dots, \zeta_{n0}$, we have

$$|w'(\zeta_{no})| \geq |\lambda| \left(\frac{9}{32}\right)^{n_0-1}$$
.

Since z_0 lies in Δ_{n_0} and $|z_0-\zeta_{n_0}| \leq \frac{\rho}{4}$, if we apply again Koebe's theorem in $|z-\zeta_{on}| < \frac{3}{4} \rho$, we have

$$|w'(z_0)| \ge |\lambda| \left(\frac{9}{32}\right)^{n_0} \ge \left(\frac{9}{32}\right)^N \frac{1}{M}.$$
 (5)

Since

$$w - w_0 = a(z - z_0) + \cdots \quad (w_0 = w(z_0), |a| \ge \left(\frac{9}{32}\right)^N \frac{1}{M})$$
 (6)

is regular and schlicht in $|z-z_0|<\rho$, if we put $z-z_0=\rho\zeta$,

$$F(\zeta) = \frac{\imath v - \imath v_0}{a\rho} = \zeta + \cdots$$

is regular and schlicht in $|\zeta| < 1$, so that by Koebe's theorem, the image of $|\zeta| < 1$ contains a disc of radius $\frac{1}{4}$, so that the disc $|w-w_0| < \frac{a\rho}{4}$ and

hence the disc $|w-w_0|<\frac{\rho}{4M}\left(\frac{9}{32}\right)^N$ is contained in |w|<1, or $|w_0|<1$

$$1 - \frac{\rho}{4M} \left(\frac{9}{32} \right)^{N} \leq 1 - \frac{\rho}{4M} \left(\frac{9}{32} \right)^{u} \qquad (\mu = \frac{64\pi M^{2}}{\sqrt{3} \rho^{2}}).$$

Since z_0 is arbitrary, the image of E is contained in |w| < 1 - k < 1, where

$$k = \frac{\rho}{4M} \left(\frac{9}{32}\right)^{\mu} = \frac{\rho}{4M} e^{-\alpha \frac{M^2}{\rho^2}}$$
 $(\alpha = \frac{64\pi}{\sqrt{3}} \log \frac{32}{9} < 100)$. q.e.d.

Similarly we can prove:

Theorem 2. Let D be a simply connected Riemann surface, whose projection on the z-plane lies in |z| < M, such that D has no branch points and z=0 belongs to D, and |D| be its area. Let E be a continuum contained in D, such that E contains z=0, and a disc of radius ρ about any point of E is contained in D. If we map D conformally on |w| < 1 by w=w(z) (w(z) < 0), then the image of E is contained in |w| < 1 - k < 1, where

$$k = \frac{\rho}{4M} e^{-a\frac{|D|}{\rho^2}} \left(a = \frac{64}{\sqrt{3}} \log \frac{23}{9}\right).$$

Mathematical Institute, Tokyo University.