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On the Multivalency of Analytic Functions
E1icHr SAkAr

(Received March 20, 1949)

The purpose of the present note is to extend NosHIRO’s theorem?
(generalization of DEUDONNE’s theorem®) concerning the univalency
of analytic functions to the case of n-valence. First, assuming that
o(2)=cot.eueu. , €00, Is regular and ¢(z) CD? in |z| <1, where D is a
given connected domain, we obtain a general theorem on the multivalency
and the star-shapedness of the function f(z)=z"¢(z), according to K.
Nostiro’s method with the aid of Kakgva’s principle”. Then, we shall
give some consequences of this theorem, taking some special domains as
D, one of which gives a result obtained by Lynn H. Loomis®.

Lemma. Swuppose that ¢(z)=co+...... , cox0, is regular in |z| <1.
Then f(2)=:"¢(2) is n-valent and starshaped with respect to the origin for
lz| <1, provided that

f'(z') )> (sl <1). )

Proof. VIfHSI{(é J;gfg )>O (]z] <1), then f(z) does not vanish in the

unit circle except at the origin and so there exists a function /%(z) which
is regular in |z| <1 and satisfies

F()=z"¢(2) =[2()]"

Consequently

S =ul()TH (2), :/f'(g) AN

By (1) we have

2(2)

As is well known, (2) is a sufficient condition in order that a function

D PRAC, )>o0 (sl <1). ‘ @
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/(2), regular in |z| <1 with 2(0)=0, //(0)30, be univalent and starshaped
with respect to the origin for |z| <1®. This proves our lemma.

Now we shall consider the m-valency of the function f(s)=:"¢(z),
using NoshIro’s method.

Let ¢(2)=co+...... , ¢o=<0, be regular and ¢(2) C D in |z| <1, where
D is a given connected domain. Let us denote by g(z) an arbitrary
branch of a function mapping ) conformally on |z| <1, and put

I—lg()’ _g a, D ‘w ¢ D) -
SEOh=0 D) @Dy

here the positive quantity £(«, D) depends only on « and D, and neither
on the selection of a mapping function nor on that of a branch g(2) of a

mapping function”.  Then, applying a theorem of E. Laxpau,” we
obtain
e ¢ (=) ‘_<__ =] ) 2(¢(=), D) (2] <1), (3)
e(z) | 1-—[z? le ()|

provided that ¢(z) does not vanish at a point z(|z| <1).

Thus we have the following extension of NOsHIRO’s theorem to the
case of the z-valency:

Theorem 1. Under these assumptions, [(2)==:z"¢(z) is n-valent and
starshaped with respeet to the origin jfor |z| <p, X1, provided that

£l . L. D)_,
= el

Proof. Putting

(= <pa)- (4)

S()=="p(s),

we have

"(N=nu""'o(s) + 5" (= 5'&: 350’(3) .
S (2)=n""9(s) +2"¢ (=), e n+ ()

Hence, ‘Zﬁ(s f;{i; >> 0 (Jz] <pn) whenever

RAC))
¢(2)

<n (Is] <pw)- ()
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While, by (3) and (4), the inequality (5) is obtained, our theorem Iis
proved. :

Theorem 2. Lot ¢(z)=co+...... y o0, be regular and bounded in
2| <1: ()| <M. Then f(z)=:"¢(z) s n-valent and starshaped with
vespect to the origin for |z| <p, <1, if

RS A ) ©

Proof. Take a circular domain |z| <7 as D in the preceding theorem.

Since g(z)=-2_ is a mapping function, we see easily that (4) takes the

M
form
EAON:
1_7_’7 . ! , ?;f){. | <n (z|=7),

provided that ¢(g) does not vanish at a point z(|z| <1). Consequently
we get (6) and the theorem is proved.

The particular case ¢o=1 of Theorem 2 gives Loomis’ extension of
DieupoNNE’s theorem to the 7-valency :

Theorem 3. (Loowmrs’ theorem). Suppose that f(z)=:z"+...... e 2S
regular and bounded in |z| <1: |f(2)| <M. Tlen

(@) The radius p, of n-valence and starshapedness of f()'° is given
by

on=Mp— ~IE—1, M= 2{(1+ )M+(1__ %]

(&) The modulus m, of n-valence of f(5) is given by

M=y -
M—

() These limits (@) and (&) are attained by the function

Mz (1— M=)

fo(g)": —z

Proof. Put co=1 or ¢(0)=1 in Theorem 2 and consider the function
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1.2

M
F(z)= o(z
M—_"X

Since F(2) isregular and |F(2)]| <1 in |z| <1, F£(0) =0, ScawArz’s lemma
gives |F(2)|X|z|, whence
1—Mr | ¢() | 1+Mr
< < z|=vr). 7
= = = s I ™

And so by (6) and (7) the radius p, of n-valence may be calculated
from the inequality : '

1— My >—11(1——-7'2)—}-‘\/;12(]-—72)24-472. (8)
M—yr 27

Multiplying the both sides by —#z(1—7°) — v#*(1—7°)*+4y*, we have

1— My —4°
T [—n(1)— ~ .
7 [—7(17?) 7z(l ) +47] < 5
Hence
_M—r  —n(=) = VF(I—r)+4" 9)
1—Mr 27 .
Adding (8) and (9), we have
1—-Mr _ M—r >;if(1—ri’)
M—r 1—2Mr v
Namely . ~
w>_ P (10)

M—r)y A=Mr)

which is the same as an inequality obtained by I.oomis. And

reduces, for r<-}‘/[—, to

((1 M+(1—__> ]r+1>0
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which is satisfied (as we see by factoring the left member) if

r <Mom VIR T=pn M= (1) (1= )]

Notice that pn'<%. Using the radius p,, we have from (7)

@2 EC= ) —, (1o =p0).

in
Thus, Loomis’ theorem is proved, if we consider the function

M (1 — M)

O e
such that
Fo(n) =t fo' (o) ~_(41_LT[ —{(1+ 2+ (1) L pur1]=0.

Theorem 4. Lot ¢(2) be regular and R(p(2))>0 for |z| <1. Then,
the radius pp of m-valence and starshapedness of f(&)=:s"¢(s) is given éy

vViiyrl—1
On = 7+ .

This limit can be attained by the function
7 '

w 1—2
fo (&) =cz e (¢>0).

~

Proof. Considering a half-plane D: R (2) >0 and taking a mapping

, we have

function g(z )_

v D)% (e and e E @ < 2 R@EE) . 2
2, D) =2R() and p L < T THEC ST (el=n)

2r -.<#. Finally, this reduces to

Hence, (4) holds whenever ~—

11242 —n <Q,
which is satisﬁed if

ViE1—1
7

r< =,0n.7
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Our theorem is proved, if we consider the function

1—=
So(z)=ez" T (c>0),
with
n—1
f’o(pn)=ﬂ__q - (n—2p,—np;) =0.
(L+pn)*
Theorem 5. /Lot ¢(z)=co+...... be regular and O <|@(2)| <M for

el <1, Then f(s)=s"¢(s5) is n-valent and starshaped with respect to the
origin for |z| <p, <1, if
_ a(l—=7Y)

e(=) IS, 2r (|| =7). (11)
M ; '

Proof. = Considering a pricked (punktiert) circular domain D:
0 <|z| <M, and taking a mapping function

1+10g%
g(=)= 5
‘ l—logM
we see that
2r ) M |
log <n (|z|=r
I—7 "l e(@) | .

The theorem is thus proved.

Theorem 6. Le! f(z)="+...... be regular for |z| <1 and 0 <|f(2)|
<M for O <|z| <. Tlwen

(@) The radius p, of n-valence and starshapedness of f(2) is given
oy

_log e"M— ~(log " M )2 — 1

n

On

(&) The modulus m, of n-valence of (=) is given by
2n
m,,=[log & M— v (log "M )® —'722:In . j’/[_log M+ (@n+log M)log M
”
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(c)  These limits (@) and (6) are attained by the function

2et02
14 #7102

fo(g):”

Proof. Put ¢o=1 in Theorem 5 and consider the function

log £ _1og L
F(e)= o8 M % M
log L3708 7

taking a branch of logz such that log 1=0. Then the following inequali-
ties result from ScHwarz's lemma :

1—»

147 ( =7
<u 1+7 (Jz]=r<1). (12)

M 1—'3

So by [(11)] and [(12) the radius p, of 7- valence and starshapedness is

calculated from the inequality :
’

n(1—72) 147

e - 2y <M—1—r

-

or

2
> e 100‘
(1—»)? =

Hence

1w —2(log "M ) - +n>0,

<10g "M— ~ (log " M)*— i

7

= On.

And from

2pn

() |=p- M~ 100 =m,  (J5]=pn).

Our theorem is proved, if we consider the function
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PELLFS

folz)=sm M1+e

with
29,, 2
fol—pae™™®) |=pa- M 1=tn =, | flo (—pue®) | =g 24 T0n .
’ﬂ—i“;logﬂf‘z .
| d=pa) |

Lastly, we consider as a further application of Theorem 1 a ring-
domain D :m <|z| <M, which can be magped on |z| <1 by a function’

. z
leg ‘/m M . .7: f\:ﬁﬂf_
LA M

log - log P
conle TE 1)

In this case a discussion similar as above gives

~,
te{::

¢ (2)

mM < z|=7r).
7 Z (lzl=7)

e

nlog\/

(l og " )cos
T —7° m '

log

And we obtain
Theorem 7. Lot ¢(2) be regular and m <|o(2)| <M for |z| <1. Then
J(@)=s"¢(2) is n-valent and starshaped for |z| <p, <l if

I¢(;‘}I L—r

m L nT 7 —

cos 5 S I _m —r (el=n).
log log—

77

Remark. Putting #=1 in Theorem 3, we get DIEUDONNE'S
theorem since AM,=AM and further, putting z=1 in all results of this
paper, NOsHIRO’s results. Loomis’ theorem (see Theorem 3) can be
enunciated, with a slight modification, as follows: Zet f(z)=cos"+...... ,
leo| given and <0, be regular and |f(z)| <M(M> leo| R for |z| <R.
Then the radius p, of n-valence and starshapedness of f(z) and the modulus
1, are given by
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Mo"™(|co| R — Mo)
M—|co|R"o

on=Ro and m,=

vespect.vely, where

S 1 1\ M 1\ |eo]RM Y
M, — T M;,E_[(H__ L +(1— J
g j‘/[n —1’ [ ICO[Rn 72 M

It seems to me very difficult to generalize this theorem to the case
where p initial coefficients ¢, ¢......, ¢, 1(c°x0) are given. We can
treat the case where only two initial coefficients co, c:1(co*0) are given,
by means of the same method as in § IV of Noshiro’s paper, but we
shall refrain from entering into this case.

© January 1949.
Mathemutical Institute,

Nagoya University.

NOTES
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248-358.

3) We mean by ¢(z) @D that the set of values taken by ¢(z) in | 2/<{1 belongs to the domain D.

4) S. Kakeya, On the szero-points of a lmited function, Sci. Rep. of Tokyo Bunrika
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6) A. Kobori, Uber dic notwendige und hinveichende Bedingung dafiir, dass eine Potenzreihe
den Kreisbereick anf den schlichten stevnigen bzw. konvexen Bereick abbildet, Mem. Coll. Sci. Kyoto
Imp. Univ. (A) 15 (1932) pp. 279-291.

7) See 1), foot-notes at p. 90.

8) See 4), p. 161.

9) See 1), p.91.

10) The radius of #z-valence of the function /(z)° means the radius of the largest circle
within which f(s) assumes no value more than 7 times, and assumes at least one value n times.

'11) The modulus of z—valence of #(2) means the radius of the largest circle whose in-
terior is covered exactly 7 times by the map under f(2) of [z|<p where p is. the above radius of
n~valence. :

12) Cf. Corollary 1 of 5).
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