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On the structure and representations of Clifford algebras.

Yukiyosi Kawapa and Nagayosi IwWAHORLI.
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The structure and representations of Clifford algebras over the complex
number field were studied by many authors.” The purpose of this note is
to investigate them over any ground field X with y(X)>x2. Moreover, to
apply the results to the problems of Eddington on sets of anticommuting
matrices,” we shall consider slightly generalized Clifford algebras. In
Appendix we shall give irreducible representations of such algebras in their
explicite form. '

1. Let X be any field with the characteristic y(X)3x2, and 7, g two
integers such that 0 < g < n, 2 >0. The Clfford algebra of ype (n, g)
C(i,g) /K over K is defined as an algebra with generators.

Uyy Uyy oeey Uy
and with fundamental relations
(1) ul=u,, wpu=upy=1, ui=u, (1<:i<g), ul=—u, (¢+11n),
ut;+up,=0 (7, ¢>0,7>0).
C(n,g) has rank 2" and
gy (IS n0), nway (170 <j=X ), ... s WUylhy. ..l
form a basis of C(1,¢)/K> C(2,0)/K is the ordinary Clifford algebra.”

We distinguish now three cases according to the properties of KX :
Case 1. There is an element 2 € K with 144=0.

Case 11. There is no solution 4 € X of 144>=0, but there are elements
u, B € K with 144>+ 5°=0.

Case 111. There are no solutions «, 8 € K of 1+«*+ 3*=0.

All three cases may arise, when y(KX)=0. Of course we have Case
I when KX is the complex number field, and Case III when X is the real
number field. If y(K)=px0, then we have either Case I or Case II.?
Case I occurs when p=1 (mod. 4), and Case II when p=3 (mod. 4) for
prime field K.Y

Now we consider three algebras. The one is the quarternion algebra

Q/K=C(20) /K :
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| Q/K=K+ik+JK+EK,
P=r=F=—1, ij=—ji=%k ji=—ki=i, ki=—ik=),
In Cases I, II we have
Q/ K=Kk (2)
(We mean by K(») the full matric algebra over K with degree » for the
convention of printing). In Case III, Q is a normal division algebra over
KG) .
Lemma 1. Let Qy=K+iK+jK+#iK and Qu=K+pK+ gk + K be two
quarternion algebras. Then their divect product Q, x Q, is isomorphic to K(4).”
The other two are C(2,1)/K, C(2,2) /K.
Lemma 2. C(2,1)/K=~C(2,2) /K=K (2).?
2. The structure of G(n,g) /K for n=2m, g=2d+39 (3——-0,1). We
denote #,,ut1ye .. tts, DY 2y, Vyy Wiy Usy WoyeeeyUpy W, in this order, so that
Pi=we=u, (1 £ =d), vl = (—1)"° ”o.: Wiy = — 2y,
() { vi=wi=—u, (d+ 2 B m). '
We put then

Dr= U0 WOWye o Uy Wiy Vpy Gp= VW VsWoeoeVpq Wiy Wiy Vp=0,00;

(3 { P1=U, =Wy, 7=, .
(Ee=m).

Conversely we can represent v,,2y,...,7,,, W, BY Pus Quy 72 :
V1=21, Wi=g1
@) { vn=(—D* g pr o= (—1D*" riuris oo QX Ed+1),
U=(—=1)**"1 piecros Pr» W= (—D)** Y iiiri 1 g, (d+2=0b<i0).
Hence p;, gz 7. (1 < %2 < m) generate the algebra C(2wm, g)/K. Let us
put
(B)  RY=uK+pK+qK+rK (At m).
Since

P=(=1)*"uy, ¢'= (—1)*"uy, prgr= —utn=(—1)* ', (1<),
(6) Dot = (—1)d+6+1”0x a1 =(—1) “*lag,, Paga= ("'1)47’“1
b= (— 1)“6”0: 7= (— 1) K%, D= — Qr= (— 1) e
(@2 m)

hold, we have
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/R(");Q for 1 < £<d, /=0 (mod. 2) or for d+2 < 2 <,
‘ 0+ /=1 (mod. 2),
)‘
|

) | REC2,2) for 1 <k <d, i=1 (mod. 2) or for d+2 < k< m,
0+/4=0 (mod. 2),
\ C@20)=Q for 8=0, d=0 (mod. 2)
R~ 4 C(2,2) for 6=0, d==1 (mod. 2)

c@2,n for 0=1.
‘We can also easily verify that a,a,=a,a, for a, € R, a, ¢ R® (kx4%). From
this and from the fact C(2im, g) =RPR®...R"™, and comparing the rank
over K, we have a decomposition of C (272, g) in a direct product of sub-
algebras R® :
(8) . C2mg) ~RY x R® x ... x R™.

From [Lemma 1, 2 and (7),(8) we can give the structure of C(2m,5) by
simple enumeration as follows:

Theovemn 1. CQ@m,g) is a normal simple algebra over K, and its Wed-
derburn’s representation as a dirvect product of a normal division algebra and
[full matric algebra is given as follows :

Case 1, 11:
%) C@2mg) =K(2"),

Case 111 :
(10) C2m,g) ~K(2™) for g—m==0, 1 (mod. 4)
(1) C(2m, g)=~Q0x K@2™) for g—m=2, 3 (mod. 4).

C (212, g) has only one (equivalent class of) irreducible representation
D in A, and deg D=2" for (9), (10), and deg D=2"*" for (11) respec-
tively. It is not difficult to give them explicitely since (8) is known.”

3. The structure of C(n, g) for n=2m+1, g=2d+0 (6=0,1). We
permute #,,u,,...,2t, 1n appropriate order and denote them by #y,v,...,V,,
Wyyessy0,, ¥, SO that

(12) vimwi=u, (L2 d), vl=1win=—12%, (d+1 k=< m),
2= (—1)°""u,.

We define gy, g4 72 R® (1 X %2 < m) as above by (3) and (5), and

put

(13) E=P Py VX, then 7= (—1)"*0%y,
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’

(14) Z=u,K+sK.
Then =z belongs to the center of C'(272+1,¢) and we have conversely
(15) x=(—=1)"r1...7,,2

(16){ 2 =
= (=D *"reris pw wi= (=D *"r7ma g0 Q2 m).
Therefore, by the similar reasoning as in § 2, it holds " that
1 CRm+1,g)~RYx...x R™x Z.
Here the elements p;, ¢, 7, satisfies the following relations :
<1s>{ 2E=0i= (=" 1y, pugi=—gute=(—1y"r, (1 <4 <d)
=g’ =(—1)"u, He0=—qx = (— -1)* 'y, (d+1 <:€'§7¢Z)
so that we have

RgQ, for1 < £ < d, #=0 (mod. 2) orford +1 < £,
/=1 (mod. 2)

19 (%
(19) Re(C(22), for 1 <#<d, #=1 (mod. 2) or for d+1=< 4
< m, /=0 (mod. 2)

and Z is the center of C(2/2+1,9).
Now we distinguish three cases:
() m+g=l1 (mod 2). We put

(20) = (uy+2) /2, e,= (2t,—2)/2.
(ii) m+g=0 (mod 2), Case I. We put
(21) o= (uy+22) /2, e,= (u,—2Az) /2, (F=-—1).

In these cases Z is a direct sum of two fields :
Z=e,K+e,K, y=e,+¢,, &*1=¢,, y=e, €,6,=20,7,=0.
(iii) m+g=0 (mod. 2), Case II, III. Then Z is a quadratic field over
K: Z=K (~ —1). From these data, we can give the structure of C(2m+1,¢)

by simple enumeration as follows:
Theoreme 2. CQm+1,g) is a semi-simple algeb a over K and its structure

is:
Case I:
(22) C@m+1,8) =K(©2™) + K(2™).
Case IT:
23) C@m+1,e)=K@")+K(@2")  for m+g=1 (mod. 2)
(24)  C2m+1,9) =Zx K(2™) for m+g=0 (mod. 2).
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Case I17:

(25) Cm+T,g)~Zx K(2™) for g—m=0, 2 (mod. 4)

(26) C2m+1,0)=0(2" ") +Q0@2™") for g—m=3 (mod. 4)

(27) C2m+1,g)~K@2™)+K(2™) for g—m=1 (mod. 4),
where Z is a quadratic field over K given by Z=K (~'=1).

In cases [(22),23),(27), C(2m+1,¢) has two (equivalent classes) of
irreducible representations in &, and both are of degree 2™ ', 1In cases (24)
(25), C(2m+1,¢) has only one irreducible representation in X of degree
2m+110  p case (26), C(2m+1,2) has two irreducible representations in
K of degree 2™+ 19,

For later applications (§ 4), we give here the table of the degrees of
irreducible representations of C(#,0) for various values of » and for Cases
I, 11, IIT (cf. Theorem 1,2):

Cact i 8% . 8+l l 8% +2 84+3 8h+4 | 8445 } 84 +6 8447
1 24h x o 2+l & Qih+l 2h+2  |%  Q4r+2 Q1h+3 |k Qr+3
1I oA Q4h+1 2h+l K QA+l 242 Q4 +3 Q4h+3 % Qh+3
111 2n Q4n+1 Q4n+2 X k42 Q4h+3 Q1A +3 Q4h+3 [k 94r43

(For the cases * there are two inequivalent representations.)

4. Now we consider two problems of A.S. Eddington in a somewhat
generalized form. Let £,(#=12,...,/;V) be matrices with degree /, whose
coefficients belong to K, satisfying the relations

(28) El=—1, EZE=—EE, (j<Fk).

The first problem is to find the maximal value of /V for a given /. Clearly
the matrices {Z;} form representations of {#,} of C(/V,0) with degree Z
Since C(VV,0)/K is semi-simple we can decompose them as a direct sum
of irreducible representations. Let /=27¢, (2,9)=1. Itis easy to see that
NV depends only on the factor 2. The maximal value of NV for /=2" is
given as the largest value # in the above table such that C'(#,0) has an ir-
reducible representation with degree 2™. Hence we have

Theorem 3. The maximal number N of the anticommuting matrices E,
A2 N) in K with is given for various values [=2™ of their
degrees and for Cases 1, 11, 111 as follvws :
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Case l 24h Q4h+1 Q4R +2 24h+3
I * 8%+1 * 84+3 * 8%4+5 * 84+7
I 8% * 8%+3 8%+4 * 8447
II1 8% 8%2+1 * 82+3 * 8%4+7

(For the cases* there are two inequivalent solutions.)

The second problem concerns the Cases II, III. ILet 4 be a field of
Case II, III, and KX be a quadratic field over 4 given by K=41 (A), *= —1.
Then from the second table there exist 272+ 1 matrices £, (1 <2< 2m+1)
in K with degree 2™ satisfying the relations [(28). We call E, real, if all
its coefficients belong to A and purely imaginary if Z,=21 F, (F,: real).
If we set a further condition that g matrices £, among them are purely
imaginary and the rest 2m+1—g are real, what values of g will be
possible ?

As can be seen easily, this problem is equivalent to the one as follows :
“A being a field of Case II, III, find the condition that C(2m+1,¢) /4
has a representation of degree 2™ in A!”

We can answer immediately by [Theorem 2, that is:

Theorem 4. A necessary and sufficient condition that among 2m+1 matrices
{EL} with deg‘ree’ 2" and satisfying (28), g are purely imaginary and 2m+
1—g are real, is

(i) Case 11 for A, g+m=1 (mod. 2)
(i)  Case 111 for 4, g—m=1 (mod. 4).

Remarfk. Theorem 1 gives us the condition that C(2m,2)/A has a

representation of degree 2™ in A as follows:

Case II: no restriction, Case III: g—=0,1 (mod. 4).
If there exists a representation of C(2m+40, g)/4 (6=0,1) in 4 of degree
2™, it is necessarily irreducible.

Appendix.

We shall give here an explicite form of irreducible representations of
Clifford algebras. For its sake we shall consider first subalgebras of them. -
I. Quarternion Q/K=C(2,0)/K in Cases I, II. Then Q/K~K(2)

and a system of matric units is given by

en=(1+awi+5)/2, ep=(—£—Pi+a)/2,
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€91= ('é""ﬂi'*"fi.)/Qv €22=(1_"’.—:@].)/2»

where 1+¢’+3°=0. An irreducible representation of Q is given by

(1 ) (T D (a7

II. Direct product Q;x 0, of two quarternion algebras in Case I, II,
III. Then Q,x Q,~K(4), and a system of matric units {¢,} (¢, ;=1,2,3,
4) is given by

i—ptqk—r] ldpi—qgj—rk —ltpj+qgi—r j4plk+p+ri
J—pk—qg+ri ktpitgtr 1—pitgj—rk —z"—-p+g/¢+rj!
ktpi—qgi—r —jrpk—grri itprghktr; 1—pi—gjt+rk )

(1+p£+qj+r/é — iy ptrgh—r] —j—phtq+ri —,{z+ﬁj'—qi+rw

(4e;y)=

A

An irreducible representation of Q,x 0, is given by

—1 W -1 : -1
. 1 . 1 —1
t—>B,= 1 b J—=>B,= 1 , k> B,= 1 R
’ 1 —1 1
1 N\ 1 1
p—C= —1 —1 f, g—>Co= —1 1J, r—>Cy,= 1_1 ’
1 / —1 —1
‘We use later also the matrices :
—1 1 1 \
. 1 1 —1 \
kp—D,= 1 , Rg—Dy= 1 , fr—>Dy= 1 |
1 1 1/

III Algebras C(2,1) and C(2,2).
C(2,1): matric units system is given by

en= (tg+1y) /2, s5="(ttytotsty) /2, o= (—tty+2,0t,) /2, €= (2tg—2y) /2

and an irr. rep. of C(2,1) is given by
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14,-—>Gl=( 1_1 ), Uy— G= (_1 1 ), (—u,_zzz)——>(}2=( __1—1 )
C(2,2) : matric units system is given by
e = (”o+”1)/2’ 1= (”2‘*’”1”2)/2: Cor= (7/2_Z‘i.”2)/2: 922___(”0“"”1)/2

and an irr. rep. of C(2,2) is given by

1 ' . -
u,-—>F]=( _1 ), zzQ-—>F2=( 1 1 >, (——uluz)—al'g-;-( 1 1 )

IV. We give here as an example the explicite form of irr. rep. of
C(2m0) /K.
(i) m=4%. The decomposition (8) becomes here (cf. (7))
C@m0)=0"xQ0¥x ... x O X PO X P®x...x P

where QW ~=R® D ~C(2,0)=0, P?=R®~(C(2,2). Correspondingly we
have (cf. (4))

( Vs = (rv7s) (7’5”7) coe (Paps Pap )N - 7az)

Vgppe = — (7475) (7)o Panes Pare1 ) Vapsr (PoPgee Pt Puzs2)
Var+s = (773) ) oo PanesVarm1 ) (Pae1 Panes) (P aee-Pain)
Viprs = — (1173) (7572) oo Parcaanm1) (Paper Vanrs) (Fo¥aee Papsz Pares)

and analogous formulas for the w,. Hence we have an irr. rep. D with
degree 2% (cf. Appendix II, III):

Vapr1—> Vyc+1 =
% h—7% 2% 2h—Ek)

R — —_ _“‘*’—“—“\‘ — ——\‘
DX . X DX ByXE X eo. X E;XFoX oo XX E, X Ey% o X E,

Vaps1—> Vigyo =

— DX oo XD, XByXEyX oo X E,XFoX oo X, X Fy X Eyx ... % E,

Vapva =>Viges =

DX .. XDyXx DX EX ... XEXF,X . ..xXF;xF,xE,%x...xE,

Vapra—>Vagra =

DX oo XDy X Dy} By X oo . X E,XFyX oo X, X Fax Fyx E,x ... x £,

and analogous formulas for zo,. (Here Z; denotes unit matrix with degree 7)

Analogously we can give an irr. rep. for the cases

(i) m=-44+1, Case I, II, deg D=2%+",
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(iif) m=4/+2, Case I, II, deg D=2**?; Case IIl. deg D=2%"+*
(iv) m=4r+3, deg D=2"+3

V. The Clifford algebras C(7,2)/K can be treated almost similarly.
Here we outline only C(272+41,0) /K. As can be seen easily, C(2m2+1,0)
=~C(2m0) x Z. _

In cases [(22)], (23), (26), (27) : C(2m+1,0) ~¢,C(2m,0) +¢,C(21m,0),
where ¢; are given by [(20) or (21). C(2m+1,0) has two irr. rep. D;,
D,. Let an irr. rep. of C(2m,0) be D'. Since

Ze,=e,, Se,=—, Or z¢;=2 e, z6,=R e,
according to (20) or [(21) respectively, we have
D(v,)=D"(v,), D;(w,)=D (w,) (1< 2 m)
D(x)=(=D™ & D (ryy...7) (=12),
where §,=1, §,=—1 for and §,=—2, §,=2for [21). As D' is known
by IV, these are the desired irr. rep. (deg D,=deg D,=deg D').
In cases (24), (25) :

(i) =0 (mod. 2), K=Case Il (Case (24))
CCm+1,0)=C(2m,0) xZ, C(2m,0)~K(2™).
Hence we can easily give its irr. rep. in X explicitely from IV and by
using Kronecker product of irr. rep. of C(2m, 0) and of Z.
(ii) =0 (mod. 2), K=Case III (Case (25)).
C(2m+1,0)=C(2m, 0) x Z, C(2m,0) ~ (K(2™) for 7:=0(mod. 4)
QO x K(2™ ') for =2 (mod. 4).
If C(2m,0)~K(2™), we proceed as in (i).
If C(2m,0)~Qx K(2™"), then Ox Z=K(2) x Z holds and we can give its

system of matric units by

€11= (1+h‘)/2» 19— ()]"‘A’)/Q' 1= (Zj+k)/2, o= (1—142) /2
and an irr. rep. of Q%X Z by

1 1 1 I NG

— 1 b Jj— 1 1 , B> 1 —1 , A—> 1 _1J
1 —1 1 1

where A=z, A=-—1.
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We can easily give an irr. rep. of C(27+1,0) from these matrices
and the decomposition (m=4/+2)

C@mA0)=0% x ... x O x PV x x P+ x (Q+D 7)

and from the results in IV.

Tokyo University.

Revised June. 12, 1950.
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