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In the present paper we shall generalize some of the results obtained
in a previous paper [5].”

As is well known, a normal space R is called to be of dimension not
greater than », dim R < #, in case for any finite open covering of R there
exists an open refinement of order not greater than #+1. Our main theorem
reads as follows: Let {G,; « € £} be a locally finite system of open sets
in a normal space R and {/; « € £} a system of closed sets such that
F,CG,, «€L. If the dimension of a closed set 4 of R is not greater
than 7, then there exists a system {U,; a € £} of open sets in R such
that (1) F,cU,CG, ¢ € £ and (2) the order of the system {4- (U —U);
v € £} is not greater than .

As an application of this theorem, we can prove a theorem that for
a metrizable space R the relation dim R < 7 implies the relation dim*R <
77, where we mean by dim*R the dimension of R in the sense of Menger-
Urysohn. In particular, for the case that R is a metric space with the
star-finite property, the relation dim AR <X 7 is shown to be equivalent to
dim*R < n. This theorem may be considered as a generalization of a
well-known theorem for separable metric spaces, since such spaces have
necessarily the star-finite property (Cf. [6]).

Besides the results mentioned above some other theorems will also be

obtained.

§ 1. Locally finite systems.”

A system U8 of subsets in a topological space R is called to be locally
finite, if for each point p of R there exists a neighbourhood U(p) such
that (J(p) intersects a finite number of sets of Jg.

Theorem 1.1. Lot {G,; v € £} be a locally finite open covering of a

1) Numbers in brackets refer to the Bibliography at the end of the paper.
2) The results of §§ 1,2 and 3 were published in except Theorems 2.4 and 3.2.



On the dimension of normal spaces II. 17

normal space R, Then there exists a closed covering {Fy; w € L) such that
F,cG,, uel. |

This is a known theorem. (Cf. or [6]).

Theorem 1.2. Lot O@={G,; « € 2} be a locally finite system of open
sets in a topological space R and let {F,;, o€ 8} be a system of closed sets
suck that FoCG,, a € L. If we denote by & the intersection of all the binary
coverings - |

{Gey R—F,}, ace€f,

then the covering & is a locally finite open covering of R, and it lolds that
S(F, &)C G, Here we mean by S(F,, O) the sum of the sets of &
which intersect F. :

Proof. A non-empty set G’ of & is expressed in the form

(D) G'=MNG,. II(R—-F,)
_ o ser  8Er

where I' is a subset of £. Since @& is locally finite, ['is a finite set. We
shall show that &' is locally finite. For a point p of R there exists a
neighbourhood U () suchthat the set I',(p) of indices « for which U (p) - G,==0
is a finite subset of £. If a set G/ of & expressed in the form (1) inter-
sects U(p), then I'CI,(#). Hence the number of sets of & intersecting
U(p) is finite. This shows that & is locally finite.

Next we shall prove that & is an open covering. Take a point g of
G' e ®. If B€ I (), then U(p)G,=0, and hence U(p) C R—F,. There-
fore, if we put

Mp)=11G,. 11 (R—-F)-U(p),
ael BeTo(p)—T

V(p) is a neighbourhood of p and V(p)CG’. Thus G’ is an open set.
Finally, if G’-F,5£0, then we have « € [, that is, G'C G, This shows
that S(7,&) C G,. |

Corollary. A Jocally ﬁnz'z‘é open covering of a normal space admits an
open Ad-refinement whick is locally finite.

This corollary is an immediate consequence of Theorems 1.1 and 1.2.
(Ct. [6)

Theorem 1.3. Let O={G,; a € 2} be a locally finite system of open
sets in a normal space R and F={Fy u € R} a system of closed sets of R



18 " Kiiti MoRITA.

such that F,C G,, ae Q. Then theve exists a system of open sets U,, aef
sucl that

1° F,cU, U,cG,, aeg;‘

2% the system {Ug, a € 8} is similar to the system .

Proof. et us assume that the set of indices « consists of all (trans-
finite) ordinal numbers which are less than a fixed ordinal £,. If we denote
by @, the system of sets which are expressible as finite intersections £,
...... £, of sets of ¥ and are disjoint to /7, then @, is locally finite, since
% is locally finite. Hence, if we denote the sum of the sets of @, by S,
,.S] is closed in R, and F,-S _O Therefore there is an open set U1 such
that "

F,.cU,, U .CG,, U,cR-—S,. v
If we construct a system W,={U,,F,...} by replacing 7, in ¥ by U,, it
follows that the system U, is similar to .

We shall prove the theorem by transfinite induction. For this purpose
let us suppose that for any 3 less than some fixed ordinal «< £, there
exists an open set U, such that 7, C U, U,C G, and the system U, ={T
r=p F; B<y< %} is similar to . Then the system {U.; r< a,
Fria< 7 <48} is-also locally finite and similar to {, as is easily shown.
Hence by the method -described above we can construct an open set U,
such that F,cU,, U,CG, and the system U,={T,; r < a, F.; a<y

< £,} is similar to §. The system U={U,; a € 2} of open sets U,
constructed in such a way is shown to be similar to . This proves the
theorem:.

§ 2. Locally finite coverings and the dimension.

Theorem 2.1. Zet R be a normal space of dimension < n, and let §=
{Ga; @€ R} be a locally finite open covering of R. Then there exists an open
covering W={U,; a € 2} } of order S n+1 suck that U,C G,y o € 2.

This theorem is proved by 'C.H. Dowker [1°. We shall give here
our proof based on the same idea as in a previous paper [5].

'Proof: In case the cardinal number of the set £ is finite the theorem
reduces to the definition dim R < 7. To prove the theorem by transfinite in-
duction, we shall prove the theorem for the case that the cardinal number
of £ is -p,, under the assumptlon that the theorem holds in case the car-

3) Dowker's proof seems to be contained in his paper ‘ Mapping theorems for non-
compact spaces ” in Amer. Jour. Math. 69, but his paper is not yet available to us.
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dmal number of £ is less than &, (v=>0). For this purpose let us sup-
pose that the set 2 of indices « consists of all transfinite ordinals « less
than an “ Anfangszahl” o, belonging to . For the sake of simplicity
we write £=w,, that is, @={G,; a< £}.

Since ® is locally finite thére exists a closed covering {F,; a<@2}
such that 7, C G,.  There exists an opén set L, such that F,cZ,, Z.C
G, Let us construct an open covering {U,} by transfinite induction.
Suppose that for any ordinal £ less than some fixed « we have constructed
open sets Uy, (y <#) such that

U =0, for B<y < £;
o ﬁBTCLBLT’ for Té/g; '
() - .
. }’BCZ U}f‘r»

=8 -
the order of {3 U ; 7 I B n+1.
g ,

‘Then we shall show the existence of open : sets Ua.,(r< ) satisfying the
condition (). If we put .

©® o Ul =3 Uy, for  <a,
S . s . . g<a '

then we have
(3) [j'r,":g]a [767 C‘LT)‘

since U4, €L, and hence the system {U,,; 8< a} is locally finite. Then
we have ' ‘ -
(4) the order of the system {U. 5 y<a} < n+1.
Because, if there is a point p such tflatp € (7.,/, z'=‘l,2,..., n+2, there exist
B: < @ such that p € Up, 4, and since there exists'a B such that 8, < fB<a,
re = B fori=1, 2,...,n+2, we have .
2 €] (70.”, i=1,2,....n+2,

6=

which contradicts the last condition of ((3)..
According to Theorem 1.3 there exist open sets V (r <(/) such that

6)) U C Vs V cZy;
(6) {V,; r<a} is similar to {Z7 0 r<al.
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If we construct the intersection $B of all the binary coverings { ¥V, R— U/},
r< u, B is a locally finite open covering of R and satisfies the condition

(7 S BYCVyy 7 <4,

by virtue of Theorem 1.2. Here the cardinal number of the family of sets
of B is not greater than the cardinal number of the set {r; r < a}, and
hence less than p,. Hence, by the assumption of induction and the rela-
tion dim #, < dim R < #, there is a system of open sets /,(4 € A) such
that

@ F,c3 H, H,cL,
. A
) {H,; A €A} is a refinement of B and has order < z+1.

Here we may assume that {/,; 4 € A4} is also locally finite, since B is
locally finite.

Let us denote by U, the sum of the sets A, such that Z,-U /=0
and by U,, the sum of the sets /A, such that H,-U /=0, but 7,-U /=0,
and so on. Further we shall denote by U,, the sum of the sets /A, such
that 77, U',=0 for each y < a. For y > a, let us put U,,=0. Then these
open sets Uy (y <&) satisfies the condition (C,). To prove this we have
only to prove

€)) the order of {Z?'.‘+l7“; r<a, Ugl < n+1,
(10) U, CLL,, 7<a.

By the construction of A, we have
(11) Ui CS(U',, B)CV,, V,.cL, for y<a,
and hence we have (10). To prove (9) let us suppose that
A’———i{(ljn’+ Uor) U oaot0, 1< 1n<... < 7» <.
Then, since U’+;+ U ,,=0, we have
X=I1 U uyi U o0
and hence »+1 < z+1 by (8). If

X=II(U,+ U oy )40,
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then we have, by (11), XCH Ve and hence the mequahty r<n+l is

Aestabhshed by (6) (4).
Thus we have proved for any ordinal B less than 2, the existence of
open sets U/, satisfying the condition (C3). If we put

Ua=2 Uoon a< "Q»

G
then we have
| " U,cL,CcG,,

- | k=2 Ve

Hence U={U,; a< £} is an open covering of R and its erder is not
greater than z+1, since, if p € Ua s i=1,...,2+2, we have p € U for
some o; < & and hence p ¢ E Usa z_1 ..s#+2 for some f such that g; < B,

B <2 contradlctmg the condition (C3). Thus- Theorem 2.1 is
completely proved. :

In the above proof the following theorem is essentlally proved.

Theorem 2.2.. Lot O={G,; a € 2} be a regular® open covering of a
normal space R suck that every subsystem of & whose cardinal number is less
than that of & is locally finite. Then, if dim R n, there exists an open
yefinement of ® of order < n+1:

Corollary. [f ® is a countabdle regular open covermg of a normal space
of dintension X n, then there exists an open yefinment of order < n+1.

‘The following theorem is an:immediate consequence of Theorems 2.1
and 1.3. _ ‘

" Theorem 2.3. Lot O={G,; a € 2} be a locally finite open covering of
a normal space-R. If the dimension of a closed subset A of R is not greater
than n, then there exists an open covering {Uy; a € 2} such that U,C G,,
a € 2 and the ovder of {A-U,; a € 2} is not greater than n+1.

Theorem 2.4. Lot R be a fully normal space. In order that dim R < u
it is necessary and sufficient that for any open covering of R theve exists an

open vefinement of order < n+ 1.
This theorem follows readily from Theorem 2.1 and a theorem of A.

H. Stone [8]

§ 3. The sum theorems.

Proceeding analogously as in the proof of Theorem 2.1 we can estab-

9 cf. [B]-
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lish the following theorem.

Theorem 3.1. Lez F={F,; a € 8} bz a closed covering of a normal
space R and let the dimension of each set F, be not greater than n. If there
exists an open covering @={G,; « € R} such that cvery subsystem of ®&
whose cardinal number is less than that of & is locally finite and F,CG,, «
€ 2, then we have dim R < n.

The sum theorem in the usual sense is a special case of this theorem.

Corollary, A normal space whick is the sum of a countable number of
closed subsets of dimension < n has dimension < n.

Theorem 3.2. Lot {F,; « € 2} be a locally finite closcd covering of a
fully normal space R. If for each o dim F, < n, then we lave dim R < ».

For the proof of Theorem 3.2 it is sufficient, in view of Theorem 3:1.,
to prove the following lemma.

Lemma. Let F={F,; « € 2} be a locally finite system of closed subsets
in a fully normal space R. Then there exists a locally ﬁmte system of open
sets Go, a € R such that F,C G,.

Proof of Lemma. For each point p of R there exists a neighbourhood
U(p) such that U(p) intersects only a finite number of sets of . Let
us put U={U(p) ; p € R} and construct a d-refinement B of some 4-refine-
ment of U, B** <N®. If we denote by G, the set S(F,, B), then {G,}
satisfies the condition of the lemma. Because, if S(x, B)-G,==0, we have
S(x, B*)F,=0, and since S(x, B?) is contained in some U(p), S(x, B)
intersects only a finite number of sets G,.

Finally we state the following theorem, which can be proved similarly
as in the previous paper [5], with the aid of Therem 2.1 and theorems of
§ 1. For a detailed proof, Cf. [7] For another proof, Cf. § 4.

Theorem 3.3. Lot & be a locally finite open covering of a normal space
R and let A, B be two closed subsets of R. If it lholds that

(®)-dim 4<», (B)-dim B<#, dim A-B<n—1,
then we have
(®)-dim [4+B] < n.
4. Main theorem.

Now we shall proceed to the proof of our main theorem.
Theorem 4.1. Lot {G,; v € £} be a locally finite system of open sets
in a normal space R and {F,; a € 2} a systemn of closed sets such that F,

5) Cf. [9], p. 44.
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CGa a€ 8. If the dimension of a closed subset A of R is not greater than
n, thei there exists a sysiem of open sets U,, a € & suck that

(12)  FuCU.CG. ae @,
(13) the order of the system {A(U,—U,); a € 2} < n.

In case the set £ of indices a is a finite set this theorem has already
been proved in [5] ‘ )

Proof. Let us construct the intersection § of all the binary coverings
{Gyy R—F,}, a € 2 and put H={H,; 2 € A} where

a4  m=IIG, I(R—F,),
. . GEA TEA .

and 4 means a finite subset of £ (including the empty set) and 4 means
the family of finite subsets of £. Since $ is a locally finite open covering
of R by Theorem 1.2., there exists an open covering &={Z,; 4 € A} such
that ,

(15)  L.cH, A4,

(16) the order of {A-L,; A e A} Jn+1. »
According to Theorem 1.1., since & is locally finite, there is a closed covering
N=1{N,; 4 € A} such that N, CZ,. '

Let us construct for each 2 € 4 a continuous function f,(x) such that

0=/i(x)=1 and

an - p@={] E
and put, for 0< <1,

(18) M(0) ={x; fi(x) <60
Then M, (6) is clearly an open set and

(19) MM ) cL, 0<b6<1, A€,

(20) M, (0,) c M, (6,), for 6,< 6,
If we set k

@) e ={a; FuN;0, e},
then we have

(22) L2) ca

Because, if « ¢ 2(2), then F,-N,==0 and hence Fy-Hy=F,-II G,-II(R—

BEA TeA
F.)==0, so we have ¢ € 4. .
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Since 4 is a finite subset of £, £(4) is also finite. We can, therefore,

correspond to each « € 2(4) a real number 6,(«) such that 0< 6,(«) <1
and

(23) 0,(2)==0,(B), for a=kB, ¢, B e L2().
Now let us put

@4) My (@) =M5(6,(0)), < 2QD),
and :

@25) Uu=3M,(6), « € 2D,

where 37 means the sum extending over all 4 such that « ¢ £(4). We
shall prove that these U, satisfy the condition of the theorem.
Since {N,; A € A} is a closed covering of R we have
FoC S(F,y R) =XV, C U,
Q(A)3a
and it follows from Theorem 1.2 that
U,cS(F, &) cS, ) CG..
Thus U, satisfies the condition (12) of the theorend.
To prove (13) we take »+1 different indices «, (:=1,2,...,2+1) be-
longing to £ and consider the set

n+1l

26) P=a-l (T.~U.).

Then our aim is to prove that P is empty. Since {Z,; 4 € A} is locally
finite, we have

Ue=3 M («), i=12,..., n+1

n(A)aai
and hence
n+l
P=A4-11 [ 33 M («) I {R—M(4)}]
=1 Q(A))di Q(A)?a’.
=2 ~"Z Q(l],.,,, 2n+1 )9
Q(l;)9a1 .Q(ln+1) dAn+1
where

n+1 .

Q- o) =411 (D5, («)  11{ R— B3 () }].

Consequently it is sufficient to prove that Q(4,, 4,..., 4,,,)=0. For this
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purpose we distinguish two cases; the first is the case that among /11, et
there are at least two indices 4, 1 such that 2, -—/1 and the second is the
case that 4,,...,4,,1 are different from one another.

Case 1). Let us put 4,=4,=2. Then we have «, ¢ 2(2), «, ¢ 2(2),
vy By [(23), 0,(e;)*<0,(2;) and so we may assume that 0,(«,) <0,(=,),
Then it fouowﬁs from (20) and (24) that A2),(«,;) C My(ay). Hence we

have

Q(zn---:zn;l) CW{R_ M/Ij(“j) {=0.

Case 2). First we shall show that

27 Q(4y,...,0,11) - V=0, for every A ¢ A.
a). In case 4 is equal to some 4, we have

N,y C M (u)=2MM,; (),
and hence
Q(Ayseeeshnn) « Ny C{R— M () } - V=0.

b). In case A=F4, for /=1,2,...,2+1, we have

n+1

Q(lj,., ] n+1) NACA{ H /V/x,(a)}

n+1

CA-A{ I L+ L,=0,
i=1

in view of (16). : : ) o
Hence the relation is established. Since {Vy; A€ A} is a cover-
ing of R it follows from (27) that Q(4,...,4,41) = =0.
Thus we have proved that P=0. Thlq shows that the order of the

system {A(U,—U,); a € £} is not greater than 7, and the theorem is

completely proved.
According to Theorem 1.3 we can easily deduce the following theorem

from Theorem 4.1. (Cf. [5]).
Theorem 4.2. Under the same assumption as in Theorem 4.1 there
exist two systems of open sets U, v € 2, V,, o € & such that

@) FuCVi VuiCU,CGa acf,
(29)  the order of {A(To—V.); a € 2) <.

As an application of Theorem 4.1 we give here a proof of Theorem 3.3.
Proof of Theorem 3.3. Let @={G,; u<8} be a locally finite open
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covering of R. By the hypothesis that (®)-dim 4 <7, ()-dim B < #,
there exist closed sets 4,, B, and open sets L,, M, («< £) such that

A=A, A,CL, L.CG,
B=23a, BczCMas jwaCGm

and the orders of the systems {Z,; a<®}, {M.; a <L} do not exceed
n+1. According to Theorem 4.1 we can find open sets U,, V, such that

A.cU,CcL,, B.ClV,CIL,

and the order of {AB (U,—U,), AB(Vs—V,); a, <2} < n—1. If we
put Po=U,—~3U,, Qu=V,—3! Vs, then we have A=34.P,, =73
p<a

§<a
B-Q,, and the order of {4-P,, B+0s; u, 3 <82} does not exceed 7+1.
Because, if it holds that for «,<... <e,, B, <... <5,

X=1IT A-Pa,l1B-0p,+0,
v=1 v=1
then we can show that »4+s < 7+1:
Case 1). In case »=0 or s=0, we have clearly r+s < n+1.

Case 2). In case »>0, s>0, we have

r-—-1 s§—1

XCA-B 1 (Tay—Ua) I (V 3,—V3),
yv=

v=1

and hence (r—1)+ (s—1) < n—1, that is, »r+s < n+1. Q.E.D.

By virtue of Theorem 3.3, as in the case of separable metric spaces,
we can prove the following theorem, if we utilize Zorn’s lemma instead of
Biouwer’s reduction theorem. _

Theorem 4.3. Any n-dimensional bicompact normal space contains a
subset whick is an n-dimensional Cantor-manifold. '

§ 5. Metric spaces with the star-finite property.

Let us define, after K. Menger, the dimension dim* R ot a topological
space R by induction as follows: (1) If R is empty, dim* R=—1, (2)
If for each point p of R and its any neighbourhood U there exists a
neighbourhood 7 such that #C V'c U, dim* (V' — 1) < n—1, then we define
dim* R < #. We shall first prove

Theorem 5.1. For any metric space R the relation dim R X n implies the
velation dim* R < 7.
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Progf.  According to a theorem of A.H. Stone [8], there exists a
countable collection 1;, N,,... of locally finite open coverings such that for
each point p of R {S(p, N,); 7=1,2,...} is a basis of neighbourhoods at
p- Let us assume that 10, consists of open sets U, « € £. By Theorem
1.1 there is a closed covering {F,,; « € £} such that /,, CU,,, a € £. Since
dim R < » there exist, by Theorem 4.2, open sets U,%,, I, « € £ such
that

(SO) EGC Vlla’ frllac U]1¢C U]G’ o € ‘Q’

(31) the order of {T—Tiy; o € 2} <.
(]

By an inductive process we can construct successively open sets Uhe Vies

1< £< 7 such that

(32) FuClVlie, VieCULCUs ac€l,
(33) Via'C Vi VieCULCUR, 1Zk<i,
(34) the order of { U, —Vi,; #=1.2,....0, a € 2} < n.

The existence of such open sets is assured by Theorem 4.2, since the system
e k=12,...,i—1, a € 2, U,,; a € 2} is locally finite. Now let us put

ka
: (==}
V’“‘=-Z;Z Vi, ae€f.
7=

Then we have
Iiac VkaCUza) u € ‘!2'

If n+1 pairs of (&, @), v=1,2,..., +1 are different from one another,
we have, for any integer Z such that £> %, for v=1,..., n+1,

/I‘fv“v c []"v“v c Uzv“v
and hence by (34)

n+1 n+1

11 (V"v“u_ V’”v“v) C”(pllgv“v - V’/gv”u )=0
y=1 v=

The system of open sets 17,, i=1,2,...; a € £ is clearly an open basis
of R, and the order of the system {V;,—TV;; a«ae€ £, i=12,...} is not
greater than #, as is shown above. Therefore our theorem is established
if the following lemma is proved.

Lemma. [f for a topological space R there exists an open basis {V,;
a € 2} suck that the order of {V ,—Vy; v € 2} does not exceed- n, then we
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have dim*R < .

Proof of Lemmna is the same as in [5].  If #=0, then 7 ,=V, and the
lemma is evident by the defidition of the dimension dim* R. Suppose that the
lemma holds for »—1. Then for each point p and its arbitrary neighbour-
hood U there is some open set V, such that pC V,CU. 'If we denote by
A the subspace V,—V,, then {4.V,; y € £, y =a} is an open basis of

the space 4 and the order of the system {A4.-A-V,—A-V,; 7 ==a} does
not exceed n—1 by the assumption of the lemma. Hence, by the
assumption of induction we have dim* A4 <{z—1. Therefore it holds that
dim* R < . .

' Theorem 5.2. Let R be a normal space with the star-finite property.
If dim* R < », then we have dim R < ».

Remark. In case for any open covering of a topological space R there
exists a refinement which is a star-finite open covering, R is said to have
the star-finite property. It is to be noted that for a regular space. the
Lindelsf property implies the star-finite pryperty. (Cf. [6])

Proof of Theoremn 5.2. We shall carry out the proof by induction. For
this purpose we shall assume the theorem for #—1 and prove the theorem
for ». Let us first prove that if dim* R < #, then for an open set G and
a closed set F such that FC G there exists an open set A satisfying the

conditions
(35) FcHcG,

(36) dim (X—H) < n—1.

-

Now take an open set Z such that #CZ, Z CG and construct for each
point p of R a neighbourhood U(p) such that '

@7 { U(p) CG, in case pel,

U(p)L =0, incase p€L
(38) dim* (TP —U(p)) < n—1.

Then from the star-finite property of R it follows that there exists a star-
finite open covering 1 which is a refinement of the covering {U(p); p € R}.

We may assume that 11 consists of open sets U%, y e I, 7=1,2,... such
that
39) Ut U%=0, Jfor r=ko.

If we put .
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(40) U.=3 U,

U, is at the same time closed and open. By the construction, for any

U5 there is a neighbourhood U(p:) of some point pi of R satisfying the

conditions [37), and containing U%. Now let us put
Vi=U,-U(£Y)- i

Then we have Vi—VicU,-{U(p:)—U(p%)} and hence by

dim*(V=V3) < n—1, and consequently by the assumption of induction

dim (P{—1%) <n—1. Therefore

(41) U;,=‘§‘_1, Vi, dim (Pi—78) <n—1.
If we construct open sets
Wh=V31, We=U2-V3..., Wi=Vi—(Vi+...+7iY),.

and denote the Wi whose closures intersect Z by X,', X.%...and denote
the other Wi by V!, Y.,..., and put
‘ V= T}‘_,; Y, Y =¢§ YT",‘

then we have

(42) V—v=3(V,—v.)), T.—Y. CZ(V"——V“)

By virtue of the sum theorem, dim (V,—Y,) <X z—1 and so it follows from
Theorem 3.2 that

(43) dim (V=Y) < 7n—1,
since any normal space with the star-finite property is fully normal. (But

in this case can be proved directly without appealing to Theorem
3.2.) Hence, if we put Z=R—7, it is easily seen that )

LcHCG, dim (H—H)y < »n—1.

Thus the existence of an open set / satisfying the condtions [(35),
is proved. According to Theorem 3.3 in , this shows that dim
R |

By Theorem 5.1 and 5.2 we obtain the following theorems.

Theorem 5.3. Let R be a metric space with the star-finite pr opert‘y
Then the relation R X n is equivalent to the relation dim* R<n.
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Theorem 5.4. Let R b2 a metric space with the star-finite property, In
order that dim R o n it is necessary and sufficient that for eack pair of a
closed set F and an open set G suckh that F'CG there -exists an open set U
satzsfymg e conditions

FcUucG, dim (U=0U)<n—1.

§ 6. Some theorems on mappings in spheres.

In a previous paper we have proved the theorem: Let & be a
finite open covering of a normal space R and let 4 be a closed set of R.
If (&)-dim 4 <7, dim (R—A4) < », it holds that (@)-dim R <#. The
validity of this theorem is also seen from the proof of Theorem 2.1. Cor-
responding to this theorem and Theorem 3.3 we have the following theorems
concerning mappings in spheres (Cf. [3]).

Theorem 6.1. Lot A be closed subset of a normal space R aiza’ f a
continuons mapping of A into an n-dimensional sphere S*. If dim(R—A) .
< i, then [ can be extended to a continuous mapping of R in S".°

Theorem 6.2. Le# a normal space R be the sum of two closed subsets
A and B and let f and g be continuous mappings of A and B into S*. If
dim A4-B < n—1, then f can be extended over R.

Proof. of Theorem 6.1. Let ayay,..., @, be linearly independent points
situated in an (72+1)-dimensional Euclidean space. If we denote by 7; the
closed cell determined by ..., @;_1, @ii1,...,@,41, then the sum 7+ 73+ ...
+ 75,1 is homeomorphic to an z-sphere. Hence we may set S*"=7,+7;
+...+ 7,1 It is to be noted that 7,7...7,..=0.

If we put

(44) Ai=r"(7)), 7=0,1,...,n41
and construct an open covering &={G,,...,G,..}of R such that 4, C G, then
we have (®)-dim 4 < #, since 4y4;...A4,,,=0. Therefore by the theorem
referred to above we have (®)-dim- R <7, in particular there is a closed
covering {C,, Ci...Cr1} such that

(45) CoCyee.Crs1=0; C.DA, i=01,.n+1.

6) It has already been known that a normal space 2 has dimension < 7 if and only if for
€ach closed set C and each continuous mapping / of &£ in 5% there is an extension of / over &
(Cf. [11, [2], [5]).- The “only if” part of this theorem follows immediately from Theorem
6.1. In particular, in this case the existence of a closed covering {C,,...,Cn+1} satisfying[(45) is
proved simply as follows. Since {R—Ao,..., R—An41} is an open covering of & and dim A&
<, there is an open covering {0),..., Ux11} such that U; aR—A;and Uy «U1 «..Up1=0. If
we put C; =R—U;, {Co,..., Cn+1} is a closed covering satisfying For a simple proof of the

“if ” part, cf..[2], [G]-
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Then there are open sets H; such that C,C &, HH_-l H;,H,—O
Deﬁne real-valued continuous functions v, (x) such that O S 2, (2) < <L
and

for v € C,,
w(x) {1, forx?f}

Then the continuous mappmg @ deﬁned by A
50(75) = (E) wz-(x)ai) /E, w, (x)..

carries R into S”, since for each point ¥ we have w,(#)> 0 for some 7 and
2w,(x) =0 for some j.

Take any point # of 4 and assum= that f(x) ¢ 7,. Then z ¢ A4, and
hence w,(x#)=0. This shows that ¢(x) beloags to- 7;. Thus for any
point ¥ of 4 the points f(x) and ¢(x) are contained in the same 73
Hence, if we denote'by ¢|A4 the partial mapping ¢ operating on the set
A, f. and ¢|A4 are. homotopic. By Borsuk’s theorem f can be extended to
a. continuous mapping of R into S™ - L

Proof of Theorem 6.2. We use the same notation as above. If we put

Ai=F(7T}), B;= g™ (7Y, i=0,1,..., n+1
and construct an open covering &={G,,...,Gu1} such that 4,4+ B,CG..
Then we have (®)-dim 4 < », (8)-dim B < » and hence by the proof given
in of Theorem 3.3 for the finite case there xs a closed covering {C,,Cy,
..sCns1} such that , ce-
Colr- Cun=0; A4, CC, (=0,1,.. ;z+1
From now on we may proceed in exactly the same way as -in the above
proof of Theorem 6.1. This proves Theorem 6.2.
" Theorem 6.2 is also deduced, as'in E, from the followmg theorem

Theorem 6.3. Lct f and g be continuous mappmgs ‘of a normal space
R into an n-dimensional sp/zere S" such that the set' D of the points for which
S(x) is not equal to g(x) has dimension < n-1.  Then f and g are homotopic.

Remark. Here as well as in the proof of Theorem 6.1 we understand
the notion of homotopy in the sense of P. Alexandroﬂ' and H. Hopf, To-
pologie, I p. 319. If two continuous mappings of R in S* are homotopic
in this sense, they are also homotopic in the sense of Hurewicz and Wal-
lman [3]. Hence our tlieorem states much more than the theorem in
p- 87. In case R is bicompact these definitions are, however, equivalent.

If two continuous mappings f and g of R in S" are homotopic, their
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extensions over Céch’s bicompactification B(R) of R are also homotopic.
Since Dowker’s proof stated in p. 86 remains true for bicompact spaces,
we obtain, returning to the original space R, Borsuk’s theorem in exactly
the same form as given in [3].

Proof of Theoremn 6.3. Let us consider Céch’s bicompactification 8(R)
of R and the extensions of f and g over B(R) which shall be denoted by

f and F respectively.” If we put for e>o
U={x; o[f(x), g(x)]<e, x € R}

then we have
7(T)ciz; p[F (2), 3(x)]<Ze x € B(R)},

where 7(X) means the closure of a subset X of R in the space B(R). If
¢ is sufficiently small, then the partial mappings Z|5(U ) and f|p(U) are
homotopic, and hence, by Borsuk’s theorem, the partial mapping Z|7(U )
admits an extension G defined over B(R) such that G is homotopic to f

We shall show that two mappings G and & of R in $™ are homotopic.
For this purpose let us note that

B(R)=7(U) +9(R-U),
dim 7(R—0U)=dim (R—0U) < dim D <n—1

and proceed as in [3]. Namely we define a continuous mapping F(x, 2)
of C in S* as follows:

F(x, )=G(x)=g(x), for x e p(U), 0 <t < 1.

F(x, o) =G(x), F(x, 1)=g(x) for x € B(R),
where we denote by C the set consisting of points (x, #) for x € »(U),
0<t<1 and (x, 0), (x, 1) for x € B(R). C 1is clearly closed in the
product space B(R) x/, where 7 is the unit segment 0o <7 <1. Since the
complement of C is contained in »(R—U) x 7 which has dimension < 7
(Cf. [2]), the mapping F(x, #) is shown to be extensible over B(R) x I.”
Hence G and @ are homotopic. As G is homotopic to f, 7 is homotopic
to &. Therefore f and g are homotopic. This proves the theorem.

' Institute of Mathematics,

Tokyo University of Education.

7) By Theorem 6. 1.
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