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On the dimension of normal spaces. II.

Kiiti MORITA

(Received Sep. 1, 1949)

In the present paper we shall generalize some of the results obtained
in a previous paper $[$ 5 $]^{}$

As is well known, a normal space $R$ is called to be of dimension not

greater than $n,$ $\dim R\leqq n$ , in case for any finite open covering of $R$ there
exists an open refinement of order not greater than $r\iota+1$ . Our main tlieorem
reads as follows: Let { $G_{\alpha};$ a $\epsilon\Omega$ } be a locally finite system of open sets
in a normal space $R$ and { $F_{\alpha};$ a $\epsilon\Omega$ } a system of closed sets such that
$F_{\alpha}\subset G_{\alpha},$ $//$. $\epsilon\Omega$ . If the dimension of a closed set $A$ of $R$ is not greater
than , then t’here exists a $sy^{\mathscr{C}}te\dot{m}$ { $U_{\alpha};$ a $\epsilon\Omega$ } of open sets in $R$ such
that (1) $F_{\alpha}\subset U_{\alpha}\subset G_{\alpha}$ $a$

$\epsilon!2$ and (2) the order of the system { $A\cdot(\overline{U}_{\alpha}-U_{\alpha})$ ;
a $\epsilon 0$ } is not greater than $n$ .

As an application of this theorem, we can prove a theorem that for
a metrizable space $R$ the relation $\dim R\leqq n$ implies the relation $\dim^{*}R\leqq$

’ where we mean by $\dim^{*}R$ the dimension of $R$ in the sense of Menger-
Urysohn. In particular, for the case that $R$ is a metric space with the
star-finite property, the relation $\dim R\leqq n$ is shown to be equivalent to
$\dim^{*}R\leqq n$ . This theorem may be considered as a generalization of a
well-known theorem for separable metric spaces, since such spaces have
necessarily the star-finite property (Cf. [6]).

Besides the results mentioned above some other theorems will also be
obtained.

\S 1. Locally finite systems.2)

A system $\mathfrak{V}$ of subsets in a topological space $R$ is called to be locally
finite, if for each point $p$ of $R$ there exists a neighbourhood $U(p)$ such
that $U(p)$ intersects a finite number of sets of $\mathfrak{W}$ .

Theorem 1.1. $L\sim\prime t$ { $G_{\alpha}$ ; a $\epsilon\Omega$ } be a locally finite open $CO7/c^{\prime’\prime ing}$ of a

1) Numbers in brackets refer to the Bibliography at the end of the paper.
2) The results of \S \S 1,2 and 3 were published in [7] except $T1_{1}eore1\Pi s2\cdot 4$ and 3.2.
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normal space R. $T1\iota en$ there exists a closed covering $\{F_{\alpha};u\in\Omega\}suc1\iota t/\iota at$

$F_{a}\subset G_{\alpha},$ a $\epsilon\Omega$ .
This is a known theorem. (Cf. [4] or [6]).
Theorem 1.2. Let $\mathfrak{G}=$ { $G_{\alpha};$ a $\epsilon\Omega$ } be a locally finite system of open

sets in a topological space $R$ and let $\{I_{\alpha}^{\backslash };\circ. \epsilon\Omega\}$ be a system of closed sets
suck that $F_{\alpha}\subset G_{\alpha},$ a $\epsilon\Omega$ . $1f^{r}ve$ denote by $\mathfrak{G}_{\iota}^{\prime s}I_{l}e$ intersection of all tlie binary
$coz;\iota rings$

$\{G_{\alpha}, R-F_{\alpha}\}$ , a $\epsilon\Omega$ ,

then Cbe covering $\mathfrak{G}^{\prime}$ is a locally finite open covering of $R$ , and it lolds $t/\iota at$

$S(\Gamma_{\alpha}\prec, \mathfrak{G}^{\prime})\subset G_{\alpha}$ . Here we mean by $S(F_{\alpha}, \mathfrak{G}^{\prime})$ tlte sum of the sets of $\mathfrak{G}$‘

$ w/lic1\iota$ inlersect $F_{\alpha}$ .
Proof. A non-empty set $G^{\prime}$ of $\mathfrak{G}$ ‘ is expressed in the form

(1)
$G^{f}=\prod_{\alpha e\Gamma}G_{\alpha}.$ $\prod_{\overline{\epsilon}\Gamma}(R-F_{\theta})$

where $\Gamma$ is a subset of $\Omega$ . Since $\mathfrak{G}$ is locally finite, $\Gamma$ is a finite set. We
shall show that $\mathfrak{G}^{\prime}$ is locally finite. For a point $p$ of $R$ there exists a
neighbourhood $U(p)$ such that the set $\Gamma_{0}(p)$ of indices $a$ for which $U(p)\cdot G_{\alpha}\neq 0$

is a finite subset of $\Omega$ . If a set $G^{\prime}$ of $\mathfrak{G}$ ‘ expressed in the form (1) inter-
sects $U(p)$ , then $\Gamma\subset\Gamma_{0}(p)$ . Hence the number of sets of $\mathfrak{G}^{\prime}$ intersecting
$U(p)$ is finite. This shows that $\mathfrak{G}^{\prime}$ is locally finite.

Next we shall prove that $\mathfrak{G}$‘ is an open covering. Take a point $p$ of
$G^{\prime}\epsilon \mathfrak{G}^{\prime}$ . If $\beta\overline{\epsilon}\Gamma_{0}(p)$ , then $U(p)G_{\beta}=0$ , and hence $U(p)\subset R-F_{\beta}$ . There-
fore, if we put

$V(p)=\prod_{\alpha e}G_{\Gamma^{\alpha}}$ .
$\beta\epsilon\Gamma_{0}(p)\Gamma\Pi(R_{-}-F_{\beta})\cdot U(p)$

,

$V(p)$ is a neighbourhood of $p$ and $V(p)\subset G^{\prime}$ . Thus $G^{\prime}$ is an open set.
Finally, if $G^{\prime}\cdot F_{\alpha}\neq 0$ , then we have a $\epsilon I^{v}$, that is, $G^{\prime}\subset G_{\alpha}$ . This shows
that $S(F_{\alpha},\mathfrak{G}^{\prime})\subset G_{a}$ .

Corollary. A locally finite open covering of a normal space admits an
$ open\Delta$ -refineme$ntw/lich$ is locally finite.

This corollary is an immediate consequence of Theorems 1.1 and 1.2.
(Cf. [6], [8])

Theorem 1.3. Let $\mathfrak{G}=$ { $G_{\alpha};$ a $\epsilon\Omega$ } be a locally finite system of open
sets in a normal space $\backslash R$ and $\mathfrak{F}=$ { $F_{\alpha};$ a $\epsilon\Omega$ } a system of closed sets of $R$
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such tlat $F_{\alpha}\subset G_{\alpha},$ a $\epsilon\Omega$ . Then there exists a system of opin sets $U_{\alpha},$ a $\epsilon\Omega$

such $t/lat$

1o $F_{\alpha}\subset U..,$ $\overline{U}_{\alpha}\subset G_{\alpha}$ , a $\epsilon\Omega$ ;
$2^{o}$ the syslem { $\overline{U}_{\alpha};$ a $\epsilon\Omega$ } is similar to the system $\mathfrak{F}$ .
Proof. Let us assume that the set of indices $a$ consists of all (trans-

finite) ordinal numbers which are less than a fixed ordinal $\Omega_{0}$ . If we denote
by $\Phi_{1}$ the system of sets which are $e$xpressible as finite intersections $F_{\alpha_{1}}$

$F_{\alpha_{r}}$ of sets of $\mathfrak{F}$ and are disjoint to $F_{1}$ , then $\Phi_{1}$ is locally finite, since
$\mathfrak{F}$ is locally finite. Hence, if we denote the sum of the sets of $\Phi_{1}$ by $S_{1}$ ,
$S_{1}$ is closed in $R$ , and $F_{1}\cdot S_{1}=0$ . Therefore there is an open set $U_{1}$ . such
that

$F_{1}\subset U_{1}$ , $\overline{U}_{1}\subset G_{1}$ , $\overline{U}_{1}\subset R-S_{1}$ .
If we construct a system $\mathfrak{U}_{1}=\{\overline{U}_{1},F_{2},\ldots\}$ by replacing $F_{1}$ in $\mathfrak{F}$ by $\overline{U}_{1}$ , it
follows that the system $\mathfrak{U}_{1}$ is similar to $\mathfrak{F}$ .

We shall prove the theorem by transfinite induction. For this purpose
let us suppose that for any $\beta$ less than some fixed ordinal $a<\Omega_{0}$ there
exists an open set $U_{\beta}$ such that $F_{\beta}\subset U_{\beta},\overline{U}_{\beta}\subset^{\prime}G_{\beta}$ and th$e$ system $\mathfrak{U}_{\theta}=\{\overline{U}_{\gamma}$ ;
$\gamma\leqq\beta,$ $F_{\gamma}^{\backslash }$ ; $\beta<\gamma<\Omega_{0}$ } is similar to $\mathfrak{F}$ . Then the system { $\overline{U}_{\gamma}$ ; $\gamma<a$,
$F_{\gamma}$ ; $a\leqq\gamma<\Omega_{0}$ } is also locally fin $i$te and similar to $\mathfrak{F}$ , as is easily shown.
Hence by the method described above we can construct an open set $U_{\alpha}$

such that $F_{\alpha}\subset U_{\alpha},\overline{U}_{\alpha}\subset G_{\alpha}$ and the system $\mathfrak{U}_{\alpha}=\{\overline{U}_{\gamma}$ ; $\gamma\leqq a,$ $F_{\gamma}$ ; $ a<\gamma$

$<Q_{0}\}$ is similar to $\mathfrak{F}$ . The system $\mathfrak{U}=$ { $\overline{U}_{\alpha}$

. ; a $\epsilon\Omega$ } of open sets $U_{\alpha}$

constructed in such a way is shown to be similar.to $\mathfrak{F}$ . This proves the
theorem.

\S 2. Locally finite coverings and the dimension.
Theorem 2.1. Let $R$ be a normal space of dimension $\leqq n,$ $a\prime ld$ let $\mathfrak{G}=$

{ $G_{\alpha}$ ; a $\epsilon\Omega$ } be a locally finite open covering of R. Then therg exists.an open
covering $\mathfrak{U}=$ { $U_{\alpha}$ ; a $\epsilon\Omega$ } of order $\leqq n+1$ such that $U_{\alpha}\subset G_{\alpha},$ a $\epsilon\Omega$ .

This theorem is proved by ‘C.H. Dowker [1]3). We shall give here
our proof based on the same idea as in a previous paper [5].

Proof. In case the cardinal number of the set $\Omega$ is finite the theorem
reduces to the definition $\dim R\leqq n$ . To prove the theorem by transfinite in-
duction, we shall prove the theorem for the case that the cardinal number
of $\Omega$ is $+_{\nu}$ , under the assumptIon that the theorem holds in case the car-

3) Dowker’s proof seems to be contained in his paper ” Mapping theorems for non-
compact spaces ‘’ in Amer. Jour. Math. 69, but his paper is not yet available to us.
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dinal number of $\Omega$ is less tl $n+_{\nu}(\nu=>0)$ . For this purpose let us sup-
pose that the set $\Omega$ of indices $a$ consists of all transfinite ordinals $a$ less
than an “ Anfangszahl “

$\omega_{\nu}$ belonging to $+\nu$ . For the sake of simplicity
we write $\Omega=\omega_{\nu}$ , that is, $\mathfrak{G}=\{G_{\alpha} ; a<\Omega\}$ .

Since $\mathfrak{G}$ is locally finite there exists a closed covering $\{F_{\alpha} ; a<\Omega\}$

such that $F_{\alpha}\subset G_{\alpha}$ . There exists an open set $L_{\alpha}$ such that $ F_{\alpha}\subset L_{\alpha},\overline{L}_{\alpha}\subset$

$G_{\alpha}$. Let us construct an open covering $\{U_{\alpha}\}$ by transfinite induction.
Suppose that for any ordinal $\beta$ less than some fixed $a$ we have constructed
open sets $U_{\beta\gamma}(\gamma<\Omega)$ such that

$(C_{6})$ $\left\{\begin{array}{lllll} & & & & U_{p\gamma}=0, for \beta<\gamma<\Omega.\cdot\\ & & & & \overline{U}_{\beta\gamma}\subset L_{s}L_{\gamma}, for \gamma\leqq\beta.\cdot\\ & & & & F_{\beta}\subset\sum_{other}U_{\beta\gamma}\tau\leqq_{d^{\beta}erof}\{\Sigma\overline{U}_{o\gamma}.\gamma\leqq\beta\}\leqq n+1.\end{array}\right.$

$\sigma\leqq\beta$

Then we shall show the existence of open sets $U_{\alpha\gamma}(\gamma<\Omega)$ satisfying the
condition $(C_{\alpha})$ . If we put

(2) $U_{\gamma^{\prime}}=\sum_{\beta<\alpha}U_{\theta\gamma}$
, for $\gamma<a$ ,

then we have

(3) $\overline{U}_{\gamma^{\prime}}=\sum_{\alpha>\alpha}\overline{U}_{\beta\gamma}\subset L_{\gamma}$ ,

since $\overline{U}_{\theta\gamma}\subset L_{s}$ and hence th $e$ system $\{\overline{\overline{U}}_{\beta\gamma} ; \beta<a\}$ is locally finite. Then
we have

(4) the order of the system $\{ \overline{U}_{\tau^{t}};\gamma<a\}\leqq n+1$ .
Because, if there is a point $p$ such that $p\in\overline{U}_{\gamma i^{\prime}},$ $i=1,2,\ldots,$ $n+2$ , there exist
$\beta_{t}<a$ such that $p\in\overline{U}_{\beta_{i}\gamma_{i}}$ and since there exists a $\beta$ such that $\beta_{i}\leqq\beta<a$,
$\gamma_{i}\leqq\beta$ for $i=1,2,$ $..,n+2$ , we have

$p\epsilon\sum_{\sigma\leq,-\beta}\overline{U}_{\sigma\gamma i}$
, $i=1,2,\ldots,n+2$ ,

which contradicts the last condition of $(C_{\beta})$ .
According to Theorem 1.3 there exist open sets $V$ $(\gamma<a)$ such that

(5) $\overline{U}_{\gamma}^{\prime}\subset V_{\gamma}$ , $\overline{V}_{\gamma}\subset L_{\gamma}$ ;

(6) $\{V_{\gamma} ; \gamma<\alpha\}$ is similar to $\{U_{\gamma}^{\prime} ;\leftarrow \gamma<a\}$ .
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If we construct the intersection $\mathfrak{V}$ of all the binary coverings $\{V_{\gamma}, R-\overline{U},’\}$ ,
$\gamma<\sigma,$

$\mathfrak{B}$ is a locally finite open covering of $R$ and satisfies the condition

(7) $S(\overline{U}^{r_{\gamma}}, \mathfrak{B})\subset V_{\gamma}$ , $\gamma<a$ ,

by virtu $e$ of Theorem 1.2. Here the cardinal ntimber of the family of sets
of $\mathfrak{B}$ is not greater than the cardinal number of the set $\{\gamma;\gamma<a\}$ , and
hence less than $+_{\nu}$ . Hence, by the assumption of induction and the rela-
tion $\dim F_{\alpha}\leqq\dim R\leqq n$ , there is a system of open sets $H_{\lambda}(\lambda\in\Lambda)$ such
that

(8) $\{F_{\alpha}\subset\sum_{\overline{H}_{\lambda};^{\lambda}\lambda}{}^{t}H_{\lambda}\{\epsilon\Lambda\}\overline{H}_{\lambda}\subset Lisare^{\alpha}finement$

of $\mathfrak{V}$ and has order $\leqq n+1$ .
Here we may assume that {Zil‘$\lambda;\lambda\in\Lambda$ } is also locally finite, since $\mathfrak{B}$ is
locally finite.

Let us denote by $U_{\alpha 1}$ the sum of the sets $H_{\lambda}$ such that $\overline{H}_{\lambda}\cdot U_{1^{\prime}}\neq 0$

and by $U_{\alpha 2}$ the sum of the sets $H_{\lambda}$ such that $\overline{H}_{\lambda}\cdot\overline{U}_{1^{\prime}}=0$ , but $\overline{H}_{\lambda}\cdot\overline{U}_{2^{\prime}}\neq 0$ ,
and so on. Further we shall denote by $U_{\alpha\alpha}$ the sum of the sets $H_{\lambda}$ such
that $\overline{H}_{\lambda}\cdot\overline{U}^{t_{\gamma}}=0$ for each $\gamma<a$ . For $\gamma>a$ , let us put $U_{\alpha\gamma}=0$ . Then these
open sets $U_{\alpha\gamma}(\gamma<\Omega)$ satisfies the condition $(C_{\alpha})$ . To prove this we have
only to prove

(9) the order of [ $\overline{U}_{\gamma}^{\prime}+\overline{U}_{\alpha\gamma}$ ; $\gamma<a,\overline{U}_{\alpha\alpha}$ } $\leqq n+1$ ,

(10) $\overline{U}_{\alpha\gamma}\subset L_{\alpha}L_{\gamma}$ , $\gamma<a$ .

B.$y$ the construction of $H_{\lambda}$ we have

(11) $U_{\alpha\gamma}\subset S(\overline{U}_{\gamma}^{\prime}, \mathfrak{B})\subset V_{\gamma}$ , $\overline{V}_{\gamma}\subset L_{\gamma}$ , for $\gamma<a$ ,

and hence we have (10). To prove (9) let us suppose that

$x=\acute{\prod_{i=1}}(\alpha\gamma_{i}\cdot\gamma_{1}<\gamma_{2}<\ldots<\gamma_{r}<a$ .

Then, since $\overline{U}^{;_{\gamma_{i}}}\cdot\overline{U}_{\alpha\alpha}=0$ , we have

$X=\prod_{i=1}^{r}\overline{U}_{\alpha\gamma i}\cdot\overline{U}_{\alpha\alpha}\neq 0$

and hence $r+1\leqq n+1$ by (8). If

$X=\prod_{i=1}^{r}(\overline{U}_{\gamma_{i}}^{\prime}+\overline{U}_{\alpha\tau_{t}})\neq 0$ ,
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then we have, by (11), $X\subset\prod_{i=1}V_{\gamma i}$ and hence the inequality $r\leqq n+1$ is

established by (6), (4).
Thus we have proved for any ordinal $\beta$ less than $\Omega$ , the existence of

open sets $U_{\beta\gamma}$ satisfying the condition $(C_{\beta})$ . If we put
$U_{\alpha}=\sum_{\sigma}U_{\sigma\alpha},$

$ a<\Omega$ ,

then we have
U. $c$ L. $c$ G.,

$R=\sum_{\alpha}U_{\alpha}$ .
Hence $\mathfrak{U}=\{U_{\alpha} ; a<\Omega\}$ is an open covering of $R$ and its order is not
greater than $n+1$ , since, if $p\in U_{\alpha_{t}},’ i=1,$ $.,n+2$ , we have $p\in U_{\sigma_{i}\alpha_{i}}$ for
somc $\sigma_{i}<\Omega$ and hence $p\epsilon\sum_{\sigma>\theta}U_{\sigma\alpha_{i}},$

$i=1,\ldots,n+2$ for some $\beta$ such that $\sigma_{i}\leqq\beta$ ,

$\sigma_{i}\leqq\beta,$ $ a\leqq\beta<\Omega$ contradicting the condition $(C_{\beta})$ . Thus Theorem 2.1 is
completely proved.

In the above proof the following theorem is essentially proved.
Theorem 2.2. Let $\mathfrak{G}=$ { $G_{\alpha}$ ; a $\epsilon\Omega$ } be a regular4) open covering of a

normal space $R$ sucth that every subsystem of $\mathfrak{G}$ whose cardinal number is less
than that of $\mathfrak{G}$ is locally finite. Then, $lf\dim R\leqq n$ , there exists an $opeFl$

refinement of $\mathfrak{G}$ of order $\leqq n+1$ .
Corollary. $1f\mathfrak{G}$ is a countable regular open $coz$ ering of a normal space

of dimension $\leqq n$ , then there exists an open refinment of order $\leqq n+1$ .
The following theorem is an immediate consequence of Theorems 2.1

and 1.3.
Theorem 2.3. Let $\mathfrak{G}=$ { $G_{\alpha}$ ; a $\epsilon\Omega$ } be a $locall\parallel finite$ open covering of

a normal space R. If $tf_{l}e$ dimension of a closed subset $A$ of $R$ is not greater
than $n$ , then tlere exists an open covering { $U_{\alpha}$ ; $a$ $\epsilon$ S2} such that $\overline{U}_{\alpha}\subset G_{\alpha}$ ,
a $\epsilon\Omega$ and the order of { $A\cdot\overline{U}_{\alpha}$ ; $a$ $\epsilon$ S2} is not greater tlan $n+1$ .

Theorem 2.4. Let $R$ be a fally normal space. $1\prime l$ order thal $\dim R\leq,l$

it is necessary and $sn_{\sim}fficient$ that for any open covering of $R$ there $existsan-$

open refinement of order $\leqq n+1$ .
This theorem follows readily from Theorem 2.1 and a theorem of A.

H. Stone [8].

\S 3. The sum theorems.
Proceeding analogously as in the proof of Theorem 2.1 we can estab-

4) Cf. [5].
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lish the following theorem.
Theorem 3.1. Let $\mathfrak{F}=$ { $F_{\alpha}$ ; a $\epsilon\Omega$} $bl$ a closed covering of a normal

space $R$ and let $t/\ell e$ dimension of each set $F_{\alpha}$ be not greater than $n$ . $1f$ there
exists an open covering $\mathfrak{G}=\{G_{\alpha} ; u\in\Omega\}$ such $t/lat$ every subsystem of $\mathfrak{G}$

zvhose cardinal number is less than $t\gamma_{at}$, of $\mathfrak{G}$ is locally finite and $F_{\alpha}\subset G_{\alpha},$ $a$

$\epsilon\Omega$ , then $\prime zveha’\iota/e\dim R\leqq n$ .
The sum theorem in the usual sense is a special case of this theorem.
Corollary. A normal space which is the sum of a countable number of

closed subsets of dimension $\leqq n$ has dimension $\leqq’$ .
Theorem 3.2. Let { $F_{\alpha}$ ; a $\epsilon\Omega$ } be a locally finite closed $C0^{\prime}JC$ of a

fnlly normal space R. $1f$ for each a $\dim F_{\alpha}\leqq n$ , then $\prime i!e$ have $\dim R<_{\backslash }n=$ .
For the proof of Theorem 3.2 it is sufficient, in view of Theorem 3.1.,

to prove the following lemma.
Lemma. Let $\mathfrak{F}=$ { $F_{\alpha}$ ; a $\epsilon\Omega$ } be a locally finite system of closed subsets

in a fully normal space R. Then tlere exists a locally finite system of open
sets $G_{\alpha},$ a $\epsilon\Omega$ such $tl_{l}atF_{\alpha}\subset G_{\alpha}$

Proof of Lemma. For each point $p$ of $R$ there exists a neighbourhood
$U(p)$ such that $U(p)$ intersects only a finite number of sets of $\mathfrak{F}$ . Let
us put $\mathfrak{U}=\{U(p) ; p\in R\}$ and construct a $\Delta$-refinement $\mathfrak{V}$ of some $\Delta- refine-$

ment of $\mathfrak{U},$ $\mathfrak{B}^{\Delta\Delta}<\mathfrak{U}^{6)}$ . If we denote by $G_{\alpha}$ the set $S(F_{\alpha}, \mathfrak{V})$ , then $|G_{\alpha}$ }
satisfies the condition of the lemma. Because, if $S(x, \mathfrak{V})\cdot G_{\alpha}\neq 0$ , we have
$S(x, \mathfrak{V}^{\Delta})F_{\alpha}\neq 0$ , and since $S(x, \mathfrak{V}^{\Delta})$ is contained in some $U(p),$ $S(x, \mathfrak{V})$

intersects only a finite number of sets $G_{\alpha}$ .
Finally we state the following theorem, which can be proved similarly

as in the previous paper $[\overline{i)}]$ , with the aid of Therem 2.1 and theorems of
\S 1. For a detailed proof, Cf. [7]. For another proof, Cf. \S 4.

Theorem 3.3. Let $\mathfrak{G}$ be a locally finite open covering of a normal space
$R$ and let $A,$ $B$ be two closed subsets of R. $1f$ it liolds that

$(\mathfrak{G})-\dim A\leqq n$ , $(\mathfrak{G})-\dim B\leqq n$ , $\dim A\cdot B\leqq’\iota-1$ ,
then we kave

$(\mathfrak{G})-\dim[A+B]\leqq n$ .
4. Main theorem.

Now we shall proceed to the proof of our main theorem.
Theorem 4.1. Let { $G_{\alpha}$ ; a $\epsilon\Omega$ } be a locally finite system of open sets

in a normal space $R$ and { $F_{\alpha}$ ; a $\epsilon\Omega$ } a system of closed sets sltch $t1_{l}atF_{\alpha}$

5) Cf. [9], p. 44.
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$\subset G_{\alpha},$ a $\epsilon f2$ . If $t/le$ dimension of a closed subset $A$ of $R$ is not greater than
$n$ , then $t/lere$ exists a system of $open$ sets $U_{\alpha},$ a $\epsilon\Omega$ such that

(12) $F_{\alpha}\subset U_{\alpha}\subset G_{\alpha}$ , a $\epsilon tf2$ ,
(13) the order of the system { $A(\overline{U}_{\alpha}-U_{\alpha});$ a $\epsilon\Omega$ } $\leqq n$ .

In case the set $\Omega$ of indices $a$ is a finite set this theorem has already
been proved in [5].

Proof. Let us construct the intersection $\mathfrak{H}$ of all the binary coverings
$\{G_{\alpha}, R-F_{\alpha}\},$ $a$

$\epsilon\Omega$ and put $\mathfrak{H}=\{H_{\lambda} ; \lambda\in\Lambda\}$ where

(14)
$H_{\lambda}=\prod_{\alpha\epsilon\lambda}G_{\alpha}\cdot\prod_{\gamma\overline{\epsilon}\lambda}(R-F_{\gamma})$

,

and $\lambda$ means a finite subset of $\Omega$ (including the empty set) and $\Lambda$ means
the family of finite subsets of $\Omega$ . Since $\mathfrak{H}$ is a locally finite open covering
of $R$ by Theorem 1.2., there exists an open covering $\mathfrak{L}=\{L_{\lambda} ; \lambda\in\Lambda\}$ such
that

(15) $L_{\lambda}\subset H_{\lambda}$ , $\lambda\epsilon\Lambda$ ,
(16) the order of $\{A\cdot L_{\lambda};\lambda\in\Lambda\}\leqq n+1$ .

According to Theorem 1.1., since $\mathfrak{L}$ is locally finite, there is a closed covering
$\mathfrak{N}=\{N_{\lambda};\lambda\in\Lambda\}$ such that $N_{\lambda}\subset L_{\lambda}$ .

Let us construct for each $\lambda\in\Lambda$ a continuous function $f_{\lambda}(x)$ such that
$0\leqq f_{\lambda}(x)\leqq 1$ and

(17) $f_{\lambda}(x)=\left\{\begin{array}{lllllll} & & & & & & 0, x\epsilon\Lambda^{\Gamma_{\lambda}}\\ & & & & & & l, x\overline{\epsilon}L_{\lambda},\end{array}\right.$

and put, for $0<\theta<1$ ,

(18) $M_{\lambda}(\theta)=\{x;f_{\lambda}(x)<\theta\}$ .
Then $M_{\lambda}(\theta)$ is clearly an open set and

(19) $1V_{\lambda}\subset M_{\lambda}(\theta)\subset L_{\lambda}$ , $0<\theta<1$ , $\lambda\epsilon\Lambda$ ,

(20) $\overline{M_{\lambda}(\theta_{1})}\subset M_{\lambda}(\theta_{2})$ , for $\theta_{1}<\theta_{2}$ . $\cdot$.

If we set
(21) $\Omega(\lambda)=$ { $a$ ; $F_{\alpha}\cdot\Lambda^{\gamma_{\lambda}}\neq 0$ , a $\epsilon\Omega$ },

then we have
(22) $\Omega(\lambda)\subset\lambda$ .

Because, if a $\epsilon\cdot\Omega(\lambda)$ , then $F_{\alpha}\cdot N_{\lambda}\neq 0$ and hence
$F_{\alpha}\cdot H_{\lambda}=F_{\alpha}\cdot\prod_{\beta\overline{\epsilon}\lambda}G_{\beta}\cdot\prod_{\gamma^{\leftarrow}e\lambda}(R-$

$F_{\gamma})\neq 0$ , so we have a $\epsilon\lambda$ .
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SInce $\lambda$ is a finite subset of $\Omega,$ $\Omega(\lambda)$ is also finite. We can, therefore,
correspond to each $a$ $\epsilon\Omega(\lambda)$ a real number $\theta_{\lambda}(a)$ such that $0<\theta_{\lambda}(a)<1$

and

(23) $\theta_{\lambda}(a)\neq\theta_{\lambda}(\beta)$ , for $ a\neq\beta$ , $a,$ $\beta\in\Omega(\lambda)$ .
Now let us put

(24) $\mathscr{N}I_{\lambda}(a)=M_{\lambda}(\theta_{\lambda}(a))$ , a $\epsilon\Omega(\lambda)$ ,

and

(25) $U_{\alpha}=\sum_{\lambda}M_{\lambda}(a)$ , $a\in\Omega(\lambda)$ ,

where $\Sigma$ means the sum extending over all $\lambda$ such that a $\epsilon\Omega(\lambda)$ . We
shall prove that these $U_{\alpha}$ satisfy the condition of the theorem.

Since $\{\lrcorner V_{\lambda} ; \lambda\in\Lambda\}$ is a closed covering of $R$ we have

$F_{\alpha}\subset S(F_{\alpha}, \mathfrak{N})=\sum_{\Omega(\lambda)a\alpha}N_{\lambda}\subset U_{\alpha}$ ,

and it follows from Theorem 1.2 that
$U_{\alpha}\subset S(F_{\alpha}, \mathfrak{L})\subset S(F_{\alpha}, \mathfrak{H})\subset G_{\alpha}$ .

Thus $U_{\alpha}$ satisfies th $e$ condition (12) of the theorem.
To prove (13) we take $n+1$ different indices $a_{i}(i=1,2,\ldots,n+1)$ be-

longing to $\Omega$ and consider the set

(26) $P=A\cdot\prod_{i=1}^{n+1}(\overline{U}_{\alpha_{i}}-U_{\alpha_{l}})$ .
Then our aim is to prove that $P$ is empty. Since $\{L_{\lambda} ; \lambda\in\Lambda\}$ is locally
finite, we hav $e$

$\overline{U}\alpha_{i\frac{I^{1_{1}}}{\Omega(\lambda}}=\overline{M_{\lambda}(a_{i})})\alpha_{i}$
$i=1,2,\ldots,$ $n+1$

and hence

$P=A\cdot\prod_{i=1}^{n+1}$
$[ \sum_{t1(\lambda)\alpha_{i}}\overline{M_{\lambda}(a_{i})} \prod_{\Omega(\lambda)\alpha_{i}}\{R-M_{\lambda}(\ell/i)\}]$

$=\sum_{\Omega(\lambda_{1})a_{1}}$ $\sum_{\Omega(\lambda n+1)a_{n+1}}Q(\lambda_{1},\ldots, \lambda_{n+1})$
,

where

$Q(\lambda l’\ldots,\lambda_{n+1})=A.\prod_{i=1}^{n+1}\overline{[M_{\lambda_{i}}(a_{l})}$
$\prod_{\Omega(\lambda)}\{R_{\alpha i}-M_{\lambda}(a_{i})\}$ ].

Consequently it is sufficient to prove that $Q(\lambda_{1}, \lambda_{2},\ldots, \lambda_{n+1})=0$ . For this
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purpose we distinguish two cases; the first is the case that among $\lambda_{1},\ldots,\lambda_{n+1}$

there are at least two indices $\lambda_{i},$
$\lambda_{j}$ such that $\lambda_{t}=\lambda_{j}$ and the second is the

case that $\lambda_{1},\ldots,\lambda_{n+1}$ are different from one another.
Case 1). Let us put $\lambda_{i}=\lambda_{j}=\lambda$ . Then we have $a_{i}\in\Omega(\lambda),$ $a_{j}\in\Omega(\lambda)$ ,

$/J_{i}\neq\alpha_{j}$ . By (23), $\theta_{\lambda}(a_{i})\neq\theta_{\lambda}(a_{j})$ and so we may assume that $\theta_{\lambda}(a_{i})<\theta_{\lambda}(a_{j})$ ,

Then it follows from (20) and (24) that $\overline{M_{\lambda_{i}((/.)}i}\subset M_{\lambda_{j}}((x_{j})$ . Hence we
have

$Q(\lambda_{1},\ldots,\lambda_{n+1})\subset\overline{M_{\lambda_{i}}(a_{i})}\{R-M_{\lambda_{j}}(a_{j})\}=0$ .
Case 2). First we shall show that

(27) $Q(\lambda_{1},\ldots,\lambda_{n+1})\cdot\Lambda^{\Gamma_{\lambda}}=0$ , for every $\lambda\in\Lambda$ .
a). In case $\lambda$ is equal to some $\lambda_{i}$ , we have

$N_{\lambda}\subset M_{\lambda}(’/i)=M_{\lambda j}(//i)$ ,

and hence
$Q(\lambda_{1},\ldots,\lambda_{n+1})\cdot\angle V_{\lambda}\subset\{R-M_{\lambda\iota}(a_{i})\}\cdot N_{\lambda}=0$ .

b). In case $\lambda\neq\lambda_{t}$ for $i=1,2,\ldots,$ $l+1$ , we have

$Q(\lambda_{1},\ldots, \lambda_{n+1})\cdot N_{\lambda}\subset A\{\prod_{t=1}^{n+1}\overline{\lrcorner VJ_{\lambda_{i}}(a_{i}})\}N_{\lambda}$

$\subset A\cdot\{\prod_{i=1}^{n+1}L_{\lambda_{i}}\}\cdot L_{\lambda}=0$ ,

in view of (16).
Hence the relation (27) is established. Since $\{N_{\lambda};\lambda\in\Lambda\}$ is a cover-

ing of $R$ it follows from (27) that $Q(\lambda_{1},\ldots,\lambda_{n+1})=0$ .
Thus we have proved that $P=0$ . This shows that the order of the

system { $A(\overline{U}_{\alpha}-U_{\alpha})$ ; a $\epsilon\Omega$ } is not greater than $n$ , and the theorem is
completely proved.

According to Theorem 1.3 we can easily deduce the following theorem
from Theorem 4.1. (Cf. [5]).

Theorem 4.2. Under the $sam_{\vee^{\prime}}J$ assumption as in $\tau\gamma_{leorem}4.1$ there
exist two systems of open sets $U_{\alpha},$ a $\epsilon\Omega;V_{\alpha},$ a $\epsilon\Omega$ such fhat

(28) $F_{\alpha}\subset\nabla_{\alpha}$ , $\nabla_{\alpha}\subset U_{\alpha}\subset G_{\alpha}$ , a $\epsilon\Omega$ ,

(29) the order of { $A(\overline{U}_{\alpha}-V_{\alpha})$ ; $a$ $\epsilon$ S2} $\leqq n$ .
As an application of Theorem 4.1 we give here a proof of Theorem 3.3.
Proof of Theorem 3.3. Let $\mathfrak{G}=$ $\{ G_{\alpha} ; a<\Omega\}$ be a locally finite open
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covering of R. By th $e$ hypothesis that $(\mathfrak{G})-\dim A\leqq n,$ $(\mathfrak{G})-\dim B\leqq n$ ,
there exist closed sets $A_{\alpha},$ $B_{\alpha}$ and open sets $L_{\alpha},$ $M_{\alpha}(a<\Omega)$ such that

$A=\sum A_{\alpha}$ , $A_{\alpha}\subset L_{\alpha}$ , $\overline{L}_{\alpha}\subset G_{\alpha}$ ,
$B=\sum B_{\alpha}$ , $B_{\alpha}\subset M_{\alpha}$ , $\overline{M}_{\alpha}\subset G_{\alpha}$ ,

and the orders of the systems $\{\overline{L}_{\alpha} ; a<\Omega\},$ $\{\overline{M}_{\alpha} ; a<\Omega\}$ do not exceed
$n+1$ . According to Theorem 4.1 we can find open sets $U_{\alpha},$ $\nabla_{\alpha}$ such that

$A_{\alpha}\subset U_{\alpha}\subset L_{\alpha}$ , $1\supset^{\supset}\alpha\subset V_{\alpha}\subset M_{\alpha}$ ,

and the order of {AB $(\overline{U}_{\alpha}-U_{\alpha}),$ AB $(\overline{V}_{\beta}-V_{(},);a,$ $\beta<\Omega$ } $\leqq n-1$ . If we
put $P_{\alpha}=U_{\alpha}-\sum_{\theta<\alpha}\overline{U}_{\beta}$ , $Q_{\alpha}=r_{\alpha}^{\nearrow}-\sum_{\theta<\alpha}\overline{V}_{8}$ , then we have $A=\Sigma A\cdot\overline{P}_{\alpha},$ $ B=\Sigma$

$B\cdot Q_{\alpha}$ , and the order of $\{A\cdot\overline{P}_{\alpha}, B\cdot\overline{Q_{s}} ; a, \beta<\Omega\}$ does not exceed $n+l$ .
Because, if it holds that for $a_{1}<\ldots<0_{r},$ $\beta_{1}<\ldots<\beta_{s}$ ,

$X=\prod_{\nu=1}^{r}A\cdot\overline{P}_{a\nu}\prod_{\nu=1}^{p}B\cdot\overline{Q}_{\beta_{\nu}}\neq 0$ ,

then we can show that $r+s\leqq n+1$ :
Case 1). In case $r=0$ or $s=0$ , we have clearly $r+s\leqq n+1$ .
Case 2). In case $r>0,$ $s>0$ , we have

$X\subset A\cdot B\prod_{\nu=1}^{r-1}(\overline{U}_{\alpha\nu}-U_{a_{\nu}})\prod_{\nu=1}^{\epsilon-1}(\overline{V}_{\beta_{\nu}}-V_{\beta_{\nu}})$ ,

and hence $(r-1)+(s-1)\leqq n-1$ , that is, $r+s\leqq n+1$ . Q.E.D.
By virtue of Theore$m3.3$ , as in the case of separable metric spaces,

we can prove the following theorem, if we utilize Zorn’s lemma instead of
Biouwer’s reduction theorem.

Theorem 4.3. Any n-dimensional bicompact normal space contains a
subset $7uhic/l$ is an n-dimensional Cantor-manifold.

\S 5. Metric spaces with the star-finite property.

Let us define, after K. Menger, the dimension $\dim*R$ ot a topological
space $R$ by induction as follows: (1) If $R$ is empty, $\dim*R=-1$ , (2)
If for each point $p$ of $R$ and its any nelghbourhood $U$ there exists a
neighbourhood $V$ such that $p\subset\nabla\subset U,$ $\dim*(\overline{\nu}-V)\leqq n-1$ , then we define
$\dim*R\leqq n$ . We shall first prove

Theorem 5.1. For any metric space $R$ the relation $\dim R\leqq n$ implies $t/le$

relation $\dim*R\leqq n$ .
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Proof. According to a theorem of A.H. Stone [8], there exists a
countable collection $\mathfrak{U}_{1},$ $\mathfrak{U}_{2},\ldots$ of locally finite open coverings such that for
each point $p$ of $R\{S(p, \mathfrak{U}_{t});i=1,2,\ldots\}$ is a basis of neighbourhoods at
$p$ . Let us assume that $\mathfrak{U}_{t}$ consists of open sets $U_{t\alpha},$ a $\epsilon\Omega$ . By Theorem
1.1 there is a closed covering { $F_{\alpha}$ ; a $\epsilon\Omega$ } such that $F_{t\alpha}\subset U_{\iota\alpha},$ a $\epsilon\Omega$ . Since
$\dim R\leqq n$ there exist, by Theorem 4.2, open sets $U_{1\alpha}^{1}$ , $V_{1\alpha}^{1},$ $a$

$\epsilon\Omega$ such
that

(30) $F_{1\alpha}\subset V_{1\alpha}^{1}$ , $\overline{V}_{1\alpha}^{1}\subset U_{1\alpha}^{1}\subset U_{1\alpha},$ a $\epsilon\Omega$ ,

(31) the order of { $\overline{U}_{1\alpha}^{1}-\nabla_{1\alpha}^{1}$ ; a $\epsilon\Omega|\leqq n$ .
By an inductive process we can construct successively open sets $U_{k\alpha}^{i}V_{k\alpha}^{i}$ ,
$1\leqq k\leqq i$ such that

(32) $F_{\iota\alpha}\subset V_{i\alpha}^{i}$ , $\overline{V}_{i\alpha}^{i}\subset U_{i}^{\iota_{\alpha}}\subset U_{i\alpha}$ , a $\epsilon\Omega$ ,

(33) $\overline{V}_{k\overline{\alpha}}^{t1}\subset V_{k\alpha}^{i}$ , $\overline{V}_{ka}^{i}\subset U_{ka}^{i}\subset U_{ka}^{i-1}$ , $1\leqq k<i$,

(34) the order of { $\overline{U}_{ka}^{i}-V_{ka}^{i}$ ; $k=1,2,\ldots,i,$ a $\epsilon\Omega$ } $\leqq n$ .

The existence of such open se ts is assured by Theorem 4.2, since the system
{ $U_{k\alpha}^{i-1}$ ; $k=1,2,\ldots,$ $i-1,$ a $\epsilon\Omega,$ $U_{ia}$ ; a $\epsilon\Omega$ } is locally finite. Now let us put

$V_{ka}=\sum_{i=k}^{\infty}V_{ka}^{i}$ , a $\epsilon\Omega$ .

Then we have
$V_{ka}^{i}\subset V_{ka}\subset U_{ka}^{i}$ , a $\epsilon\Omega$ .

If $n+1$ pairs of $(k_{\nu}, a_{\nu}),$ $\nu=1,2,\ldots,$ $n+1$ are different from one another,
we have, for any integer $k$ such that $k>k_{\nu}$ for $\nu=1,\ldots,$ $n+1$ ,

$V_{k_{\nu}a_{\nu}}^{k}\subset\iota\nearrow_{k_{V}a_{\nu}}\subset U_{k_{\nu}a_{\vee}}^{k}$

and hence by (34)

$\prod_{\nu=1}^{n+1}(\overline{V}_{k}-V_{ka})\subset\prod_{\nu=}^{n+1}(\overline{V}_{ka}^{k}-V_{ka}^{k}\nu^{a}\nu\nu\nu\nu\nu\nu\nu)=0$ .

The system of open sets $V_{ia},$ $i=1,2,\ldots;$ $a$
$\epsilon\Omega$ is clearly an open basis

of $R$ , and the order of the system {V $ia$
– $V_{ia}$ ; a $\epsilon\Omega,$ $ i=1,2,\ldots$ } is not

greater than $n$ , as is shown above. Therefore our theorem is established
if the following lemma is proved.

Lemma. Iffor a topological slace $R$ there exists an open basis { $V_{a}$ ;
a $\epsilon\Omega$ } such that the order of {V $a$

– $V$ ; a $\epsilon\Omega$ } does not exceed $\cdot$

$n,$ $tf_{l}en$ we
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$1_{l}ave\dim^{*}R\leqq;$ .
Proof of Lcmma is the same as in [.5]. If $n=0,$ then $\overline{V}_{a}=V_{a}$ and the

lemma is evident by the defiIiition of the dimension dini$*R$ . Suppose that the
lemma holds for $n-1$ . Then for each point $p$ and its arbitrary neighbour-
hood $U$ there is some open set $V_{a}$ such that $p\subset V_{a}\subset U$. If we denote by
$A$ the subspace $\overline{V}_{a}-V_{a}$ , then $\{A\cdot V_{\gamma} ; \gamma\in\Omega, \gamma\neq a\}$ ’is an open basis of

the space $A$ and the order of the system )
$\backslash A\cdot\overline{A\cdot V_{\gamma}}-A\cdot\nabla_{\gamma}$ ; $\gamma\neq a$ } does

not exceed $n-1$ by the assumption of the lemma. Hence, by the
assumption of induction we have $\dim*A\leqq n-1$ Therefore it holds that
$\dim*R\leqq n$ .

Theorem 5.2. Let $R$ be aiormal $sf\iota\iota cewit/lt/lestar- finit_{\vee}^{p}$ property.
$1f\dim*R\leqq n$ , then we iave $\dim R\leqq n$ .

Remark. In case for any open covering of a topological space $R$ there
exists a refinement which is a star-finite open covering, $R$ is said to have
the star-finite property. It is to be noted that for a regular space the
Lindel\"of property implies the star-finite pryperty. (Cf. [6])

Proof of $T/\iota eorem5.2$ . We shall carry out the proof by induction. For
this purpose we shall assume the theorem for $n-1$ and prove the theorem
for $n$ . Let us first prove that if $\dim*R\leqq n$ , then for an open set $G$ and
a closed set $F$ such that $F\subset G$ there exists an open set $H$ satisfying the
conditions

(35) $F\subset H\subset G$ ,

(36) $\dim(\overline{H}-H)\leqq n-1$ .
Now take an open set $L$ such that $F\subset L,\overline{L}\subset G$ and construct for each
point $p$ of $R$ a neighbourhood $U(p)$ such that

(37) $\{\overline{\frac{U(p)}{U(p)}}\overline{L}=0\subset G$

,
$i^{\prime_{\ell}}i_{;^{l}}casecase$ $p\overline{\epsilon}\overline{L}p\epsilon\overline{L}$

,

(38) $\dim^{*}(\overline{U(p)}-U(p))\leqq n-1$ .
Then from the star-finite property of $R$ it follows that there exists a star-
finite open covering $\mathfrak{U}$ which is a refinement of the covering $\{U(p);p\in R\}$ .
We may assume that $\mathfrak{U}$ consists of open sets $U_{\gamma}^{i},$ $\gamma\in l^{7},$ $ i=1,2,\ldots$ such
that

(39) $U_{\gamma}^{i}\cdot U_{\delta}^{j}=0$ , for $\gamma\neq\delta$ .
If we put



On $ th\ell$ dimension of normal spaces 11. 29

(40) $U_{\gamma}=\sum_{:\Rightarrow 1}^{\infty}U_{\gamma}^{i}$ ,

$U_{\gamma}$ is at the same time closed and open. By the construction, for any
$U_{\gamma}^{i}$ there is a neighbourhood $U(p_{\gamma}^{t})$ of some point $p_{\gamma}^{i}$ of $R$ satisfying the
conditions (37), (38) and containing $U_{\gamma}^{i}$ . Now let us put

$V_{\gamma}^{i}=U_{\gamma}\cdot U(p_{\gamma}^{i})$ .
Then we have $\overline{V}_{\gamma}^{i}-V_{\gamma}^{i}\subset U_{\gamma}\cdot\{\overline{U(p_{\gamma}^{i})}-U(p_{\gamma}^{i})\}$ and hence by (38)
$\dim^{*}(\overline{V}_{\gamma}^{i}-- V_{\gamma}^{i})\leqq n-1$ , and consequently by the assumption of induction
$\dim$ (V $i*-\nabla_{\gamma}^{i}$) $\leqq n-1$ . Therefore

(41) $ U_{\gamma}=\sum_{i=1}^{\infty}\nu_{\tau}^{t}/\cdot$ , $\dim$ (V $\gamma^{-\nabla_{\tau})\leqq r\iota-1}l$

If we construct open sets

$W_{\gamma}^{1}=V_{\gamma}^{1}$ , $W_{\gamma}^{2}=V_{\gamma}^{2}-\overline{V}_{\gamma}^{1},\ldots,$ $ W_{\tau}^{i}=V_{\gamma}^{i}-(\overline{V}_{\gamma^{1}}\cdot+\ldots+\overline{V}_{\gamma}^{i-1}),\ldots$

and denote the $W_{\gamma}^{i}$ whose closures Intersect $\overline{L}$ by $X_{\gamma}^{1},$ $ X_{\gamma}^{2},\ldots$ and denote
the other $W_{\gamma}^{i}$ by $Y_{\gamma}^{1},$ $ Y_{\gamma}^{1},\ldots$ , and put

$Y=\sum_{\gamma\epsilon\Gamma}Y_{\gamma}$
, $Y_{\gamma}=\sum_{i=1}^{\infty}I_{\gamma^{i}}^{\prime}$ ,

then we have

(42) $\overline{Y}-Y=\sum(\overline{Y_{\gamma}}-Y_{\gamma})$ , $]_{\tau\gamma_{i=1}}^{\overline{\nearrow}-Y\subset\Sigma^{\infty}(\overline{V}_{\gamma}^{i}-i_{\gamma}^{\nearrow i})}$ .

By virtu $e$ of the sum theorem, $\dim(\overline{Y}_{\gamma}-1^{I_{\gamma}})\leqq n-1$ and so it follows from
Theorem 3.2 that

(43) $\dim(\overline{Y}-Y)\leqq n-1$ ,

since any normal space with the star-finite property is fully normal. (But
in this case (43) can be proved directly without appealing to Theorem

3.2.) Hence, if we put $H=R-\overline{Y,}$ it is easily seen that

$L\subset H\subset G$ , $\dim(\overline{H}-H)\leqq n-1$ .

Thus the existence of an open set $H$ satisfying the condtions (35),
(36) is proved. According to Theorem 3.3 in [5], this shows that $\dim$

$R\leqq n$ .
By Theorem 5.1 and 5.2 we obtain the following theorems.
Theorem 5.3. Let $R$ be a $m_{\vee}^{zf}ric$ space with the star-finite property.

Then the relation $R\leqq n$ is equi $’\iota^{\prime}alent$ to the relation $\dim*R\leqq n$ .
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Theorem 5.4. Let $R$ be a $m$etric space with th, star-finile propery, $1n$

order $t/lat\dim R\leqq n$ it is necessary and sufficient $t/\iota at$ for each pair of a
closed set $F$ and an open set $G$ such that $F\subset G$ there .exists an open set $U$

safisfying tfte conditions
$F\subset U\subset G$ , $\dim(\overline{\overline{U}}-U)\leqq n-1$ .

\S 6. Some theorems on mappings in spheres.
In a previous paper [5] we have proved the theorem: Let $\mathfrak{G}$ be a

finite open covering of a normal space $R$ and let $A$ be a closed set of $R$ .
If $(\mathfrak{G})-\dim A\leqq n,$ $\dim(R-A)\leqq n$ , it holds that $(\mathfrak{G})-\dim R\leqq n$ . The
validity of this theorem is also seen from the proof of Theorem 2.1. Cor-
responding to this theorem and Theorem 3.3 we have the following theorems
concerning mappings in spheres (Cf. [3]).

Theorem 6.1. Let $A$ be closed subset of a normal space $R$ and $f$ a
continuous mapping of $A$ into an n-dimensional $sp/\iota ereS^{n}$. $1f\dim(R-A)$ .

$\leqq n$ , then $f$ can be extended to a continuoas $m_{-}epping$ of $R$ in $S^{n.(9}$

Theorem 6.2. Let a nornzal space $R$ be the sum of $t_{\angle}^{\prime}vo$ closed subsets
$A$ and $B$ and let $f$ and $g$ be continuous mappings of $A$ and $B$ into $S^{n}$ . If
$\dim A\cdot B\leqq n-1$ , then $f$ can be extended over $R$ .

Proof. of $T/leorem6.1$ . Let $a_{0},a_{1},\ldots,$ $a_{n+1}$ be linearly independent points
situated in an $(n+1)$ -dimensional Euclidean space. If we denote by $l_{i}^{\prime}$ the
closed cell determined by $a_{0},\ldots,$ $a_{i-1},$ $a_{i+1},\ldots,a_{n+1}$ , then the sum $ T_{0}+T_{1}+\ldots$

$+T_{n+1}$ is homeomorphic to an n-sphere. Hence we may set $S^{n}=T_{0}+T_{1}$

$+\ldots+T_{n+1}$ . It is to be noted that $T_{0}T_{1}\ldots T_{n+1}=0$ .
If we put

(44) $A_{i}=f^{-1}(T_{:})$ , $i=0,1,\ldots,n+1$

and construct an open covering $\mathfrak{G}=\{G_{0},\ldots,G_{n+1}\}ofR$ such that $A_{i}\subset G_{i}$ , then
we have $(\mathfrak{G})-\dim A\leqq n$ , since $A_{0}A_{1}\ldots A_{n+1}=0$ . Therefore by the theorem
referred to above we have $(\mathfrak{G})-\dim R\leqq n$ , in particular there is a closed
covering $\{C_{0}, C_{1}\ldots C_{n+1}\}$ such that

(45) $C_{0}C_{1}\ldots C_{n+1}=0$ ; $C_{i}\supset A_{i}$ , $i=0,1,\ldots n+1$ .
6) It has already been known that a normal space $R$ has dimension $\leqq n$ if and only if for

each closed set $C$ and each continuous mapping $f$ of $R$ in $S^{n}$ there is an extension of $f$ over $R$

(Cf. [1], [2], [5]). The “ only if ” part of this theorem follows immediately from Theorem
6.1. In particular, in this case the existence of a closed covering $\{C_{0}\ldots.,C_{n+1}\}$ satisfying (45) is
proved simply as follows. Since $\{R-A_{0},\cdots, R-A_{n+1}\}$ is an open covering of $R$ and $\dim R$

$\leqq n$, there is an open covering $\{U_{0}\ldots., U_{n+1}\}$ such that $U_{l}CR-A_{i}$ and $U_{0}U1$ $U_{n+1}=0$ . If
we put $C_{i}=R-U_{l},$ $\{C_{0},\cdots, C_{n+1}\}$ is a closed covering satisfying (45). For a simple proof of the
“ if” part, cf. [2], [5].
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Then there are open sets $H_{i}$ such that $C_{i}\subset H_{i},\dot{H}_{\mathfrak{d}}H_{1}\ldots H_{n+1}=0$ .
Define real-valued contInuous functions $\tau v_{i}(x)$ such that $0\leqq’\iota v_{i}(x)\leqq 1$ .

and

$w_{i}(\mathcal{X})=\left\{\begin{array}{lll} & & 0, forx\epsilon C_{i},\\ & & l, forx\overline{\epsilon}H_{i}.\end{array}\right.$

Then the continuous mapping $\varphi$ defined by

$\varphi(x)=(\sum_{i=0}^{n+1}w_{i}(x)a_{i})/\sum_{i=0}^{n+1}w_{i}(x)$ .

carries $R$ into $S^{n}$, since for each point $x$ we $hav^{z}.w_{i}(x)>0$ for some $i$ and
$\tau v_{j}(x)=0$ for some $J$ .

Take any point $x$ of $A$ and $ass_{L}{\rm Im}^{\underline{\alpha}}$ that $f(x)\in T_{i}$ . Then $x\in A_{i}$ and
hence $w_{i}(x)=0$ . This shows that $\varphi(x)b\circ longs$ to $T_{i}$ . Thus for any
point $x$ of $A$ the points $f(x)$ and $\varphi(x)$ are contained in the same $T_{i}$ .
Hence, if we $denote\cdot by\varphi|$ A the partial mapping $\varphi$ operating $011$ the set
$A,$ $f$ and $\varphi|A$ are. homotopic. By Borsuk’s theorem $f$ can be extended to
a continuous mapping of $R$ into $S^{n}$ .

Proof of Theorem 6.2. We use the same notation as above. If we put
$A_{i}=f^{-1}(T_{i})$ , $B_{i}=g^{-1}(T_{i}),$ $i=0,1,\ldots,$ $n+1$

and construct an open covering $\mathfrak{G}=\{G_{0},\ldots,G_{n+1}\}$ such that $A_{i}+B_{i}\subset G_{t}$ .
Then we have $(\mathfrak{G})-\dim A\leqq n,$ $(\mathfrak{G})-\dim B\leqq n$ and hence by the proof given
in [5] of T.heorem 3.3 for the finite case there is a closed covering $\{C_{0},C_{1}$ ,

$C_{n+1}\}$ such that
$C_{0}C_{1}\ldots C_{n+1}=0$ ; $A_{i}\subset C_{i}$ , $i=0,1,\ldots,n+1$ .

$F_{\sim}rom$ now on we may proceed in exactly the sam way as in the above
proof of Theorem 6.1. T.his proves Theorem 6.2.

Theorem 6.2 is also ,deduced, as in [3], from the following theorem.
Theorem 6.3. Let $f$ and $g$

. be continuous mappings “ of a normal space
$R$ into an n-dimensional sphere $S^{n}$ such that $t^{r}/\iota e$ set $D$ of $t_{F}he$ points for $’\iota vhich$

$f(x)$ is not equal to $g(x)$ has dimension $\leqq n- 1$ . The$nf$ and $g$ are homotopic.
Remark. Here as well as in the proof of Theorem 6.1 we understand

the notion of homotopy in the sense of P. Alexandroff and H. Hopf, To-
pologie, I p. 319. If two continuous mappings of $R*$ in $S^{n}$ are homotopic
in this sense, they are also $bomot\dot{o}pic$ in the sense of Hurewicz and Wal-
lman [3]. Hence our theorem states much more than the theorem in [3]
p. 87. In case $R$ is bicompact $th\circ.se$ definitions are, however, equivalent.

If two continuous mappings $f$ and $g$ of $R$ in $S^{n}$ are homotopic, their
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extensions over C\^ech’s bIcompactification $\beta(R)$ of $R$ are also homotopic.
Since Dowker’s proof stated in [3] p. 86 remains true for bicompact spaces,
we obtain, returning to the original space $R$, Borsuk’s theorem in exactly
the same form as given in [3].

Proof of $T/teorem6.3$ . Let us consider C\^ech’s bicompactification $\beta(R)$

of $R$ and the extensions of $f$ and $g$ over $\beta(R)$ which shall be denoted by
$\tilde{f}$ and $\tilde{g}$ respectively. If we put for $\epsilon>0$

$U=\{x ; \rho[f(x), g(x)]<\epsilon, x\epsilon R\}$

then we have
$\eta(\overline{U})\subset\{x ; \rho[\tilde{f}(x),\tilde{g}(x)]\leqq\epsilon, x\in\beta(R)\}$ ,

where $\eta(X)$ means the closure of a subset $X$ of $R$ in the space $\beta(R)$ . If
$\epsilon$ is sufficiently small, then the partial mappings $\tilde{g}|\eta(\overline{U})$ and $\tilde{f}|\eta(\overline{U})$ are
homotopic, and hence, by Borsuk’s theorem, the partial mapping $\tilde{g}|\eta(\overline{U})$

admits an extension $G$ defined over $\beta(R)$ such that $G$ is homotopic to $\tilde{f}$.
We shall show that two mappings $G$ and $\tilde{g}$ of $R$ in $S^{n}$ are homotopic.

For this purpose let us note that

$\beta(R)=\eta(\overline{U})+\eta(R-U)$ ,

$\dim\eta(R-U)=\dim(R-U)\leqq\dim D\leqq n-1$

and proceed as in [3]. Namely we define a continuous mapping $F(x, t)$

of $C$ in $S^{n}$ as follows:
$F(x, t)=G(x)=\overline{g}(x)$ , for $x\in\eta(\overline{U}),$ $0\leqq t\leqq 1$ .
$F^{\backslash }(x, 0)=G(x),$ $F(x, 1)=\tilde{g}(x)$ for $x\in\beta(R)$ ,

where we denote by $C$ the set consisting of points $(x, t)$ for $x\in\eta(\overline{U})$ ,
$o\leqq t\leqq 1$ and $(x, 0),$ $(x, 1)$ for $x\in\beta(R)$ . $C$ is clearly closed in the
product space $\beta(R)\times I$, where 1 is the unit segment $0\leqq t\leqq 1$ . Since the
complement of $C$ is contained in $\eta(R-U)\times I$ which has dimension $\leqq r\iota$

(Cf. [2]), the mapping $F(x, t)$ is shown to be extensible over $\beta(R)\times 1^{\gamma}$

Hence $G$ and $\tilde{g}$ are homotopic. As $G$ is homotopic to $\tilde{f},\tilde{f}$ is homotopic
to $\tilde{g}$ . Therefore $f$ and $g$ are homotopic. This proves the theorem.

Institute of Mathematics,
T\^oky\^o University of Education.

7) By Theorem 6. 1.
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