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I. Cluster Sets defined by the convergence set.

1. Let D be a Jordan domain, C its boundary, £ any set on D+ C(%)
and 2, z,/ two points on C. Divide C into two parts C; and C, by #, and
z/. We denote the part of D, C, E, Cy and C, in |s—z,| = by D, C.,
E,, C.* and C,® respectively and the part of |z—z)|=7 in D by 6,. Let
w=/(z) be a meromorphic fanction in D and D, the set of values taken

by f(¢) in D,. Then the intersection N D,=SP () is called the cluster

r>0--

set of f(5) in D at z, and the intersection ND, =R the range of values
>0

of f(¢) in D at z,. The 1nte:sect10n N M =SB, where M,® is the union

r>0

U SP, for zyx5 € K, S consisting of the single value f(s’) for 2’ e D,
is called the cluster set of /(s) on £ at 7, For example, S, S, S{%
and S{”, where Z is a Jordan curve in D terminating at z,, are thus defined.
If S{” consists of only one value &, we call « the asymptotic value, L the
asymptotic path and we denote the set of all the asymptotic values at 2
by I''?, and call it the convergence set of f(z) at z,. When f(z) omits
at least three values in the neighbourhood of z,(*), 1" consists of at most
‘one value (). Then we call the value of non-empty [\ the boundary value

at =, and denote it by f(z,). Furthermore the intersection N ¥}# =/
r>0

for £CC, V¥ being the union U 'Y for z,3xs¢’ € E,, is called the cluster
set of the convergence set of f(¢) on £ at z,.

S includes all the other cluster sets and S includes I'{?. S, S,
S and S{P are continuums but not necessarily /{9, I'{® and I'{?® are (°).
2. Let f(¢) be bounded in the neighbourhood of z, Then it is known

that (%)

lim |f(2)|= hm (hm lf(é)l)

2>z, 2/ >zo 2>l

and that this fs equivalent to B(SY) cB(S?), B(S) being the bound-
ary set of S(*). Also it is known that B(S) cB(['?) holds in the
case where D is a circle (*); then it holds also in the general case where
D is a Jordan domain, by means of a one-to-one continuous corresponden-
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ce between them, with their boundaries included. By the same reason we
may, and shall, assume that D is a circle |z| <1 and z,=1 in proofs of
our theorems 1.1 to 1.3.

Theorem 1.1. Lot D be a Jordan domain, C its boundary, z, a point
on C and f(z) a bounded regular function in D. Then

B(S) c B(I9).

Progf. Transform the circle | = | <’ 1 onto | ¢ | <1 by the transforma-

tion c=_13:_fi_ (J#) <1) and put z,=1+z2, A=(0)) =F(¢) and {=pe*.
Then
Tz 2| x|
+1|=| EE¥ 1< :
£+ 1] ‘ l—z—2z | 7 |1l—z|—|2|

Hence for |1—z|>d and |2 | <1, {+1 tends to O uniformly as x—O0.
Put lim |f (¢)|=m and suppose |f(¢°)|<m+e when | 60| <4, for any
* 0>k0

given positive . Let this arc be transformed into the arc ;E by ¢=((2)
and suppose the length of @227:—5 on taking | x| sufficiently small.
This is possible, because the both end-points of (,/? tend to —1 as x—O.
Put | £ () |=]/(2)| < M and let E be the set of points on ;,\3 where
F (%) exists, and ;,7?, the complementary set of ZB’ with respect to |¢|=1.

Then by Cauchy’s formula and Lebesgue’s theorem

‘ Y — | A = 1 (= i =1 v 4
e l=1# O Siim | 17 (et dp=Tm_L{ |20

>

+I;—m%f (o) | ds@%jElF () | do+ e < mte (27—¢)

9% — 27
Me € :
= O — — ).
+ 5 m+2z( T—¢e + M—112)
Hence
Tim | f(2)| <,
2>l -
that is

Iim | f(z)] < Li_ﬂo | /().
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From this relation it follows easily B(S{?) c B(I2) (7).

Now we divide C into C; and C,.

Lemma 1 (°). Under the same conditions as in theovem 1.1, there exists
a domain G bounded by a part of Cy and a curve L in D terminating at
2y Such that SE=S, ,

Proof. Take a sequence of points 0,02 @,D... ("), Qn—z, on (;, and
a neighbourhood & i1 D at every point P, 0,2 PD Qi.y, such that every

point of the image of V, in the w-plane has a distance <% from S§. Then
the arc 0, 2P2 (0.1 can be covered by a finite number of V., which we

o P ()
denote. by M, ..... N, Put U U M,=G. Then G satisfies the condi-

k=1 v=1
tions required.

Mheorem 1. 2. Under the samie conditions as in lemma 1,
B(SEN CBED),G=1, 2) and B(S) cBUTY).

Progf. Put Iim | f(¢®)|=m and lim (lim |f(2)|)=2M, and assume 7
9->+0 8->+0 :

Z—>et0

<M. For any given positive ¢, there exists 7,>0 such that ¥ is included
in the circle |w | < m+e¢, and M(D in | w | < M+e¢, G being the domain in
lemma 1. Map conformally the domain, bounded by (|, and parts of Z in
lemma 1 and 6,, on the unit circle in the {-plane so that C{? corresponds
to the upper semicircle and z, to ¢=1, and put f(z(¢)) =F(¢) and ¢=pe*.
Then | 7(¢) | <M+e. The boundary values F(¢°%) exist at almost all points
&%, 0 < ¢ < 27, by Fatou’s theorem and | /(¢°?) | <m +e¢ for o < ¢ <, since
V™ is included in |w| < m+4e. Put F() FZ)=G(¢), F and F designat-
ing the conjugate values of ¢ and #. Then for almost all /%, 0 < ¢ < 27,
| G(*)|=|F (%) || F(e**)| < (M+¢) (m+¢) =m,. Similarly as in theorem
1.1 | G (§)| < holds for all ¢ in the unit circle. Especially for each real
value {=¢, |G (2)|=|F(2)|? <m, <M?* holds for sufficiently small e. Applying
theorem 1.1 to the upper semicircular disc, the cluster set of () at =1,
consequently the cluster set on the upper semicircle, which is nothing but
the set S{™), is included in |w| <+4"m; <M. According to the definition of
M, there exists, however, a point of S{* on |7 |=4. This is a contrad-

iction, and we get #>>M. But obviously 7 <X M and so m=2M, i.e. lim

9>+0

z—>ct0)

B(S{®) cB(I) can be shown as usual (7).

| f(¢®) |=1lim (lim |f(2)]). The equivalence of this with the proposition
0> +0



4 ] - Makoto OHTSUKA.

Similarly B(S(%) c B(I'?®) and from both relations it follows B(S{
B, - - o

Theorem 1. 3. JIf there cxists a value v such that v € SP—I O and
& R, under the same conditions as’in theorem 1.1, then o=f(z,).

Irvoof. We may suppose that «=0. For sufficiently small 7,>0, 0 € ¥,

and the distance p, fiom O to the set Y? is positive. We may suppose
by taking 7, stitably that at the two end-points of 6, the boundary values
exist. Thea |f(2)|>p,>0 for 5 € 0,. Put Min (p;, p,)=p>0. Since O
e S{P, there is a point 2, in D,, whose image w,=f(z,) lies in | | <p.
Take an inverse element ¢,, and continue it analytically (with algebraic
characters) in-any way along the radius from 7z, to zw=0. Since 0 € D,,
the continuation up to O is impossible: it must end at a point 8 on the
radivs Ozo;. There corresponds a curve Z in D, such that f(s)—p3 when z
approaches to €, oa L. If L oscillates, f(z) reduces to a constant by
Koebe's theorem, so that Z terminates at a.point on C, and 2 is a boun-
dary value at this point. But Y9 has no point in |w | <p and so L
terminates at s,=1 and f(z,) =8. However, if we take anotker element
¢,, corresponding to z, € D, at a point w,=f(z,) ia |w| < p which is near
z0;, but not on Ow,, then fol'ows similarly J(z)=7, r being a point on the
radius Ozo. Accordingly f(s,)=p=r=0. '

The following theorem is an immediate consequence of theorem 1.3.

Theorem 1. 4. Under the same conditions as in theoreme 1.1, cvcry
value bclonging to S —T79 belongs to RSP except at most onc valiue.

3. Formerly we have defined 9, '™ and I?® by considering all
the boundary values on the general Jordan domain D. But we $shall con-
sider hercafter only the case when 2 is the unit circle |z | <1. Let ¢be
any set of points of Lebesgue measure zeroon |z|=1, put C—c=C", C;—e=C,/
and C,—e¢=C, and consider [, I and I'\??. Then a theorem similar
to theorem 1.1 is obtained: we shall call it theorem 1.1’. Furthermore,
using the same method as in theorem 1.2, we can prove B(S{?) C B(S{E")
CHE) (7=1,2) and B(SY) c B(SE) c B(IE”), which we shall call
theorem 1.2’. However, theorems corresponding "to theorems 1.3 and 1.4
must be stated in somewhat different forms. Namely : \ :

Theorem ‘1.3, [f there exists a value o suck that o € SP— [T and
and v € R{D under the same conditions as in theorem 1.1 (with D=unit circil),
thern w=f(5,) or there is a sequence zy, Zoy...,5n—>2y 0f points on |z |=1, suck

that v=f(z,).
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Proof.  To prove this theorem we have to employ a method different from
that used in the proof of theorem 1.3. We may suppose that «=0, and we
determine 7, and p as in theorem 1.3, provided that the two end-points of
.. do not beloag to the exceptional set ¢. Since 0 € S{?, there is a point
z, in D», such that zo,=f(z,) is in |w | < p and consequently there exists
a domain 4, in D,, in which f(s) takes the values in |z |<p and on
whose boundary |f(¢)|=p in | z|<1. "Heace 4, has no common point
with 6,  and is a simply connected domain because f(z) is regular in |2 |
<1. Now we shall prove that 1//(z) is not bounded in 4,. Map 4, con-
formally on | ¢ | <1 and put f(2(¢))=#(¢). Then by Fatou's theorem
there exist boundary values of both #(¢) and z(¢) at almost all points on
| ¢ |=1. Now, let £ be the set of points on | ¢ |=1 at which both 77(¢)
and z(¢) exist and the relation: | z(¢)|=1 holds, and £’ be the image of
E by z(¢). By Kametani-Ugaheri’s theorem (") mz, £ < m*FE’. Then we
have E’ Ce, because lim f(2z) exists along a curve terminating at every point
of £. Therefore mE'=0 and m,E=0. By Tsuji (**) the set of all points on
|¢|=1 at which boundary values =z (¢) exist and the relation: [2(£)|=1 holds
is measurable. This set consists of Z and a sét of measure zero where
boundary values of /() do not exist, so that & is also measurable and
mlE=0. Consequently both #(¢) and z(¢) existon | ¢ |=1, |2({)| <1 and
hence [ /()| =p holds almost everywhere. If 1//(f) were bounded, we
would have as in lemma 1, 1/|#7(¢)|<1/p. Hence |F(&)|<p and thisis a
contradiction. Therefore 1//(¢) is unbounded and thetre exists a point z,
in 4, such that | f(z,)| <p/2. Let 4, be the component of the image of
| 7w | <p/2 which contains z,. Similarly as in the proof of Iversen’s theorem
(*®) there exists a curve Z in D, along which f(2)—0. However small
7, may be taken, there exists such a curve Z in D,, and the theorem is proved.

Theorem 1.4'. Under the same conditions as in theorem 1.3', S — [%)
is contaired in RLP except at most a set of capacity zero(™).

Progf. Since SP—I7% is an open set by theorem 1.1, it consists of
an at most ‘enumerably infinite number ot connected domains and it suffices
to prove the theorem for a component £ chosen arbitrarily. The intersec-
tion of £ and the complement of R{?”, namely the exceptional set, is a
Borel set. Assume that its capacity is positive. Take a sequence »,> 7,> ...,
7,—0 and let £, be the set of values in £ not belonging to @,n Since £,

CZE,C...and UZ, is the exceptional set, there exists 7, such that £, (7>
n=1 ) : Co . '—



6 ’ Makoto Omnakoto.

n,) is of positive capacity. We may suppose that in Dy, f(z) takes no
value of a closed set £ of positive capacity in £, which is then of positive
distance from the boundary of £. By Frostman’s theorem(®) there exists

a positive mass-distribution p(zw) on £ such that #(w)= f log l
LU'—(U

dp(w) is bounded : #(w)< #, u(w)=4~4 holds on £ except a set of capa-
city zero and #(zw) is harmonic outside £. Let v(w) be the conjugate
function of u(zw) and put g(w)=e“"*"®_ Then |g¢(w)| <¢*. Take 7,
sufficiently small and let the distance between £ and Y be rpositive.
Put A=F () =g (f(¢)) by selecting a branch of g(2w). Then F(z) is a
one-valued bounded regular function in Dy, and | F(c%*)| < ¥, where F(¢)
is the boundary value on €’ and #=max #z(w) for w € ¥, Applying
theorem 1.1’ to F(2) and D, we have 11m | F(z)| <& Since EcC S,

there exists a sequence z;, Z,...,2,—>%, ‘such that f(z,) »>w, € £, where # (w,)
=/4. Therefore |F(z,)|—¢*. Since # <4, this is a contradiction. Hence
the exceptional set of values in £ must be of capacity zero.

Example. Exclude a non-empty closed set £ of capacity zero from a
circle |z | <1; map conformally the remaining domain on a circle D:

5] <1 and let 2, be a singular point of w(g) on C: |z|=1. Then S’
=S is the closed circle || <1 and ['{Q is the sum of £ and the
circumference |z |=1. If we exclude the image of £ from C, which is of
measure zero, I'¢? is |w | =1 for remaining €’ and S{P’— (" is | w | <1
and is included in R{” except a set of capacity zero, which is just
the excluded set Z.

4. Now we remove the restriction of boundedness of f(z). If S{&°
is not the whole plane, it is easily reduced by a linear transformation to
the case where f(¢) is bounded. If S{? is the whole plane, theorem 1.1
is trivial. If both S and S¢® are the whole planes, theorem 1.2 is
trivial, but if S{*, for example, is not the whole plane although S{? is,
lemma 1 and hence the relation: B(S{{) CcB(IYY) holds good still.
When f(z) is of class « near z,, theorems 1.3 and 1.3’ hold and are proved in
fact by generalized Koebe’s theorem (**) and by the following theorem,
to which we shall give a simple proof.

Mheorem| (Cartwright) (**). Let f(2) be meromorplic in a circle | z | <1.
If f(2) is of class a near z,, then boundary wvalues of f(z2) exist at points
which are dense on |z|=1 near =z,.

Proof. 1t is sufficient to prove that in any neighbourhood on |z [=1
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of z,, there exists a point at which a boundary value exists. Suppose that
/() omits three values «, 8, y in D,. If S{? is not the whole plane, we
can prove the theorem by reducing to the case where f(s) is bounded.
Hence we may suppose « € S{2 and there exists a sequence z;, 2y,..., 5>
2, such that w,=f(z,)—a. Continue the inverse element ¢, from v, toward
« along 7,z Since f(2)3a in D,, the continuation up to « is impossible
and must stop at a point on zv,«. The g-image L, does not oscillate by
generalized Koebe’s theorem. Therefore each Z, terminates at a point on
C, or 0,. But if there exists an infinite number of Z, terminating on 6,
f(2)—a on these curves which accumulate on C or Cf and f(z) reduces
to a constant « by generalized Koebe’s theorem. Hence every Z,(7z = 7,)
terminates at some point on €, and the theorem is proved, because we
can take » arbitrarily small and any point near z, instead of z,.

In the proof of theorem 1.3(*®), we take a curve Z in D, whose
two end-points terminate at two points on C and C® respectively
where boundary values exist, instead of 4,.

For theorem 1.3/(*), it may happen that there exists no such point
belonging to C’. But to prove the theorem for « we take instead of 8, a
curve whose two end-points on C and C® have boundary values different
from «. The existence of such points is shown as in the proof of Cart-
wright's theorem. Next we shall consider theroems 1.4 and 1.4’. Theorem
1.4(*®) is deduced directly from theorem 1.3(*) and it can be stated in
the following form. o

Theorem 1.47. Lot f(2) be meromorplic in a Jordan domain. Ten
SO CRY holds except at most two values. Especially if f(2) omits
Just fwo values near z,, RSP contains all values except thesc two values,

In theorem 1.4’(*®) we may suppose that £ is a bounded closed set
and boundary values exist almost everywhere near z, because f(z) is
of bounded type near z, on account of the assumption that Az) omits
values of positive capacity (*). Therefore the theorem is proved similarly

.

as before. , ,

5. Seidel(®) has proved that if f(2) is regular in |z | <1, |f(s)| <1
and | /(%) |=1 on an arc A4 almost everywhere, then an inner point of 4
is a regular point of f(z) or S{? at anygaggular point z, € 4 is a closed
circular disc |7 | < 1, by the same metH®ds in the proof of Schwarz’s
. theorem. We shall call such function a function of class U’. From
this and theorem 1.3’ we have
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Theorem (Scidel) ). Let f(2) be a function of class U' and be not
vegular on A. If f()*xa (|a| <) in|z|<1,f(2) kas boundary value o at
any singular point or at points on A accumulating on this singular point.

From theorem 1.4’ we have

(Extension of Seidel's theorem) (*). Let f(2) be afunction of
class U' and not vegular on A. Then R at any singular point contains
cvery wvalue except at most values of capacity zero.

From theorem 1.4" the next theorem is easily proved.

(Carcwright) (). Let f(2) be meromorplic in |z | <1 and
w, € [P, If cach I'\?, for &' € C, has no value in d: 0<|w—1w,| <y
Jor some w, then f(2)=w, or Ry’ contains d': 0 <|w—w,| <y for somez .

II. On Hossjer’s theorems.

1. We add to SV all the possible bounded domains limited by Sif‘),
which we will call holes of S{¥, and denote the continuum by £,. Similarly
we get £,. G. Héssjer proved (™)

1 (Hossjer). Under the same conditions as in theorcm 1.2, £,
and 8, have et least one common point and S C2,0L,ud jfwlds, where
d denotes the set of bounded domains limited by £2,U £,.

This theorem is a consequence of the theorem that for any com-
ponent J; of the complementary set of S{& with respect to zv-plane either
4, S or 4,;nSP=¢ holds(*), and this latter theorem is easily proved
from B(SP) c B(S)(*).

Corollary. FEuvery value of ng) wlich belongs to some hole of Sﬁfl) but
1ot to 2y, or to some lwle of Siocz) but not to 2., or to d, belongs to ]\’,(z:’) wwithout
exception.

Proof. 1f one such value « does not belong to R, then by theorem
1.3 there exists a curve L in D terminating at z, such that the cluster set
on L consists of one value « and this value does not belong to £, or not
to £, ¢or not to both). Applying Héssjer’s theorem to the domain lying
between L and C, or (,, a contradiction is obtained. ,

Moreover 4 is unnecessary in theorem I; we have namely S C £,
uf, or SPnd=¢(*). To ve this assertion, the following lemma is
useful. &

Lemma 2 (Gross)(®). Under th: same conditions as in lemma 1, theve
exists a curve L, in D terminatug at =, such that S{EV= SV, '
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Proof. Consider the domain G in lemma 1. Let @, a,,... be a sequence
of points which are dense in S{. Put D1.NG=G,. Since «a, € SL&,
n ]

there exists a point O, € G, such that Qnan<~l« for each 7. By connecting
7

Q1 Os,... and removing the superfluous parts we.gain -Z,.
Remark. Since we may suppose that two domains G for €, and C,
are disjoint, we can take Z, and Z, disjoint in D.

Theorem 2.1. Under the same conditions as in theoremn 1.2
T SPcLul,.

- Proof. Without loss of generality we may suppose that D is a circle

| z | <1, g,=1 and f(2) is regular o1 |z |=1 except at z, since Z; and Z,
may be taken instead of C; and (;, by lemma 2. Assume that there exists
a hole 4, which is included in S¢”, wheunce in R by the corollary. In
it we take a point w,, which is not an image of a double point of /() (*) .,
We cover £, and £, by bounded simply connected domains @, and @, with
boundaries [ and [ of analytic closed curves, having v;, as their outer
point. Connect zv,, with infinity outside @, by an analytic curve Z which
passes no branch point. Because of the analyticity of I, and /7, the number
of holes of @,U @,, each of which is contained in some hole of 2,U £,, is
finite and we denote these holes by 0;(/=1,2,...,p). According to the de-
finition of &, and @,, w,, belongs to some hole d,. We enumerate ¢, such
that Z meets 0,,0,,...,0,, and only those, in this order coming from infinity ;
so in particular o € 8, and wy, € 4,. And we assume 9,,N .S =g but J,,,,
C S, Then 6,.,CRY by corollary. If it is shown that this is impossible,
we have 6,nS@=4¢ by induction, hence w, € S’ which is a contradiction.
We take a point zo, which is the first intersection of Z with §,,,; counting
from infinity, and denote by Z, the part of Z between <, and the point
w,, which Z meets for the first time counting from v, toward infinity.
Then Z,C @,. Connect zo, with infinity by a curve L,, lying outside @, except
w,, and which divides d,,,, into two domains and passes no branch point.
Let us turn to the z-plane. For sufficiently small »,>0, D, ,N6,=4,
M@, Mcd, Since w, € R, there exists a point z, in D, such

that f(z,) =w, Let /™ and /® be the curves through =z, corresponding
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to L, and Z, respectively and put 4P +/,®=/. ;¥ and [/, terminate at
points on the boundary of D,, and the end-points of /® and /® are not
on C, and C, respectively except for z, because the boundary values at
that end-points are outside @, and @, respectively and M C @, and M (%
Cc @,. Moreover each end-point is different from =z, because according to
Hossjer’s theorem applied to the domain lying between /% and C, or /,®
and C, it is impossible that the cluster set on /;® or /®, which consists
of that boundary value only, is outside ¥, or £2,.

Therefore /, is a cross-cut of D,, and hence D,, is divided into two
domains by it, only one of which has s, on its boundary and will be denoted
by G&,. Since w, € Rgg’),Athere is a point z, in G, such that f(z,) =1,.

Similarly we get ,©, 7,”, /, and G,. There exists a sequence g,(¥=
1,2,...) of points such that z,—1 as v—co and f(z,)=1w,, and we get /,®,
.?, 7, and G,(v=12...) such that /, and /,,;, have no common point in
D- and G,,,CcG,. Since f(z) is regular on C except at z, /, and G,
converge to z, as ¥—co and there exists a number v, such that end-points
of ,®, 7,?, for v >v, terminate on C7’, C% except at z, respectively. We
take a point v, in &,,.; but not on Z, Since w, ¢ R? by corollary, there
exists a domain G,, which is enclosed by /,,, 4,.1 (»;=¥,) and parts of
C®, C? and which contains_a point 2’ such that f(z') =w,.- Denote the
part of the boundary of G, composed of /P, /{?, and a part of C{’ by %,
and the part composed of / S‘;), 4%, and a part of C 3 by k.

By the principle of argument the number of zero points of f(z) —w;

in G,
1

2n

Now it is possible by using L, to connect ww; with infinity by a curve

Sk”kg d arg (f(z)—7w;)>0.

having no common point with the image of Z, which is a closed curve on
L,u @, therefore

.L d arg (f(z)—1wv;) =0.
Since w, € §,,, there holds =, € ®,, and hence

TR ——

furthermore

| aarg (An)—w) =0,



On the Cluster Sets of Analytic Functions in a Jordan Domain. 11

.because we can connect 7, with infinity with a curve having no common
point with the set Z,uU @,. ‘
Consequently

jkz d arg (f(z/) —v,) =0.

But by using L, it is also possible to connect 7z, with zv, by a curve
without having common point with Z,U @,, on which the image of 4, lies.
Accordingly

Lz d arg (f(2) —w,)=0.

whence

jk1+k'z d arg <f(2') "‘w:s) =0.

This is a contradiction and the theorem is proved.

Remark. We denote holes of S{IV and S{ by {wf"} and {w{?} respec-
sively and call also the complements of £, and &£, holes. Then for each
of {w{®} and {w{®}, we can decide whether it belongs to S’ or not in
the following sense. When it belongs to S{2’, it does to R{” with one possible

exception. When «{P for example, does not, then {w(”— (S +>Vw(®)}

NS =¢, where 2’ means the summation for »$® which belongs to S{.
And the one possible exception cannot lie in the hole, be it of S or S{&,
which does not belong to S{”. These facts, which contain theorem 2.1,
are shown by the same method as the one used in this theorem.

2. 1In the same paper G. Hossjer proved

. (Hossfer). Under the same conditions as in theorem I and
under the lypothesis that f(z) is continuous on D+ C except at =, there exists

a Jordan curve L en D+ C ternunating at z, suck that
SPc nl,=2.

But his proof seems to be imperfect in some point(*) and unless theorem
2.1 is proved, we can say only S’ CLuUd when 4 exists. We state the
theorem in the following form.

Theorem 2.2. Under the same conditions as in theorem 1.2, there exists
a Jordan curve L in D terminating at z, siuch that
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S Q.

To prove this theorem the following lemma is to be mentioned.

Lemma 3. LZLet D be a jordan domain, z, be on its boundary, £2;(=1,
2,...) be the scquence of crvoss-cuts in D, disjoint of cack otlr, not terminating
at z, and not accumlating in D (%Y. D being divided by Q; into two domains,
let D; be the one whick has z, on tts boindary (m/Z let the area of each D>

>0 (®). Then D,= nD is a domain.

Proof. Take an drb1trary sequence of domains (‘n(ﬂ—l,d, .), such

that G”CG”H——)D. If there is a sequence of domains Dil(;z—],d,...) such
that 0; NG,=¢, then the area of D, —0. Consequently there exists a
number ‘720 such that for each 7 > #,, G,,ﬂDﬁWﬁ (7=1,2,...). Since ouly a
finite number of cross-cuts Q,, O,...,0; has common points with &, and

p
for other cross-cuts Q,;, D;5G,, so D,NnG, =(NDy) NG, is a non-empty
j=1

open.set(®). Since Dy,=D,N (L?_lG,,,) =_§1 (Dy,NnG), D, is a non-empty open
set and consists of components of domains.

Assuming that there are at least two components of D, connect a
point 2, in one component /A, with a point 2, in other component A, by
a polygonal curve in D. Let 2, be the point at which the curve has a
point in common with the boundary of A, finally counting from z, and Q,,
be the cross-cut on which z; lies. Since the one side of @, belongs to
[, the curve does not enter into /7; across (, after £; and hence sz, can
not belong to D, because the another side of Q,, does not belong to D,
This contradicts the definition of D,. Therefore D, is a domain.

Proof of theoremn 2.2. Without loss of generality, we may suppose that
D is a circle |z | <1, z,=1 and f(¢) is regular on C except at z, by
lemma 2. We saall first consider the case where one of £,, £, does not
contain the other. Approximate £, and £, by two sequences of simply
connected domains @, @ (n=1,2,...) respectively so that &% > 2, @O
5d@, (i=1,2) and the boundary I'® of @Y (=1, 2) is an analytic
curve and passes no branch point. , S

For fixed 7, there exists a positive number 7, such that Efﬁ,nc @Dy
PP by theorem 2.1 and W‘JU @® (i=1, 2). Then there is no point of
D, which corresponds to the point on /7Y outside @& or on I'? outside
(D,‘,’), because these points are not in @U@,
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Consider the domains in 0, in which f(z) takes the values belonging
to @ and let DY’ be a component which is in contact with CS:". The
values, which f(z) takes on C? except at z, belong to &P, and hence
some part of D, near CtD, is "contained in D .

Next we shall investigate the boundary cu1ves of DY’ inside D
These curves are images of an analytic /\°, and hence consist of at most
an enumerably infinite number of cross-cuts having no common point with
each other, not accumulating in D, and not terminating “on C??, including
%,. For if a cross-cut terminates. at z,, the cluster set on that curve con-
sists of one point. on [I'". and £, @, and they are disjoint, but it is
impossible by Héssjer’s theorem. - And further D’ is a simply connected
domain. '

Considering @, we.get another domain D with the same character.
The boundary curves of both domains inside D,,.n are cross-cuts not accumula-
ting in D, , not terminating at z, and free from each other, because the
common point corresponds to the point of intersection of /7YY and I, and
this is outside @n by selecting 7, sufficiently small. Considering that apy
cross-cut is the boundary curve of non-empty D or IDP, the further as-
sumption of lemma 3 is satisfied and the intersection D"=DNDY is a
domain. "

For each 2 we get domains D, DY and D" such that DF), C DP
(¢=12) and hence D**'C D" holds. If we take 7,—0, then D"—sz, Let
z, be a point in 0", connect g, with z,,, in D" by a polygonal curve,
combine them and make it a simple curve by removing the superfluous
parts from it. Then it is easily seen that S{C L. |

Now in the case where the one contains the other, for instance £, C i,
we get L by lemma 2.

Remark. When £ consists of many ‘continuums, S;f’ belongs to a
component of £ since S{.is a continuum, and there is no more such a
curve on which the cluster set belongs to the other component of £, because
of Hossjer’s theorem. o

Mathematical Institute, Nagoya University.
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Notes. -

(1) We use + for sums of disjoint sets.

(2) D, denotes the closure of D, : ditto concerning M. (&) ¥, (£) etc.

(8) We will call this a function of class a.

(4) Cf. W. Gross: Zum Verhalten der konformen Abbildung am Rande. Math. Zeit. 3
(1919).

(8) An example will be shown at the end of n°3.

(6) F. Iversen: Sur quelques propriétés des fonctions monogénes au voisinage d’un point
singulier. Ofv. af Finska Vet-Soc. Forh. 58 (1916).

W. Seidel: On the cluster values of analytic functicns Trans. Amer. Math. Soc. 34 (1932).

(7) J. L. Doob: On a theorem of Gross and Iversen. Ann. of Math. 33 (1932).

" K. Noshiro: On the singularities of analytic functions. Jap. Jour. Math. 17 (1940).

(8) Cf. S. Ishikawa: On the cluster sets of analytic functions. Nippon Sugaku-Butsurigaku
Kaishi. 13 (1939) (in Japanese).

(9) W. Gross: Zum Verhalten analytischer Funktionen in der Umgebung singulirer
Stellen. Math. Zeit. 2 (1918).

(10) QO,D Q. represents that Q, is nearer to z, than Q.

(11) S. Kametani and T. Ugaheri: A remark on Kawakami’s extension of Léwner’s lemma.
Proc. Imp. Acad. Tokyo. 18 (1942). )

+ (12) M. Tsuji: On an extension of Ldwner’s theorem. Proc. Imp. Acad. Tokyo. 18 (1942).

(13) F. Iversen: Recherches sur les fonctions inverses des fonctions méromorphes. Theése
de Helsingfors. 1914.

K. Noshiro: loc. cit. (7).

(14) Capacity means logarithmic capacity.

(15) O. Frostman: Potentiel d’équilibre et capacité des ensembles avec quelques applica-
tions a la théorie des fonctions. Meddel. Lunds Univ. Mat. Sem. 3 (1935).

(16) We denote Koebe’s theorem for a function of class a by generalized Koebe's theorem.
Cf. W. Gross : Uber die Singularititen analytischer Funktionen. Mh. Math. u. Physik. 29 (1918).

(17) M. L. Cartwright: On the behaviour of analytic functions in the neighbourhood of its
essential singularities. Math. Ann. 112 (1936).
® (18) Here, theorems for a function of class a are considered.

(19) Cf. R. Nevanlinna: Eindeutige analytische Funktionen. Berlin. 1936.

(20) W. Seidel: On the distribution of values of bounded analytic function. Trans. Amer.
Math. 36 (1934).

(21) G. Héssjer: Bemerkung iiber einen Satz von E. Lindeldf. Fysiogr. Sillsk. Lunds.
Forh. 6 (1937). G. Hossjer assumed the continuity of #£(2) on the closed Jordan domain
except for z, but here it is unnecessary.

(22) ¢ represents an empty set.

(23) K. Noshiro: loc. cit. (7).

(24) W. Gross has obtained already some similar results. But our results are different from
his in several points. W. Gross : loc. cit. (9).

(25) We will call it briefly the branch point (in the w-plane).

(26) Giving two sequences of pdints {2, } and {zx /} which converge to z on C; and C,
respectively and proving that any curve in 0 connecting two points 2, and z,” meets at least
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one of given domains in D, he concluded the existence of a domain having 2z on its boundary
among these domains. But it seems hasty to conclude so.

(27) That is, there runs only a finite numbzr of curves near any point in D.

(28) Area means the inner extent in Jordan’s sense.

(29) Since Qi (=1, 2,......, ) don't pass 2y, some neighbourhood of 2, in 2 is included
in OD&J Connect zy with a point z, in Gp by a curve in 0. If this curve does not meet Q3
(/= a5 1 2,.eeivey £9)y &1 will belong to (]D,J, otherwise there will exist a cross-cut Qo wInCh the
curve intersects at the first time countmg from 2. Since one side of Qg belongs to QD,J and
some part of Qi, lies in Gy , it is possnble to enter into G, staying inside ﬂDzj- A_ccordmg]y

j=1
(n D,J)n Gn is a non empty open set.
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