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On linearly ordered groups.
By Kenkichi Iwasawa.

(Received Sept. 1,.1947.)

A group G is called a lnearly ordeved group (=1. o. group), when in
G is defined a linea_rv order a> &, preserved under the group multiplication :

a> 6 implies ac> bc and ca>cbd for all ¢ in G.

A .typical example is the additive group R of all real numbers with
respect to the usual orders Subgroups of R are also linearly ordered and
they are, as is well known, characterized among other L o. groups by the
condition that their linear orders are archimedean, that is to say, that for
any positive elements” a, & there is a positive integer », so that it holds

a”> o, "> a.

Everett and Ulam have prox}ed that we can define a linear order in a
free group with two generators, so that it becomes a 1. o. group®. 'In the
following we shall generalize this theorem in the form that any 1. o. group
can be obtained by an order homomorphism from a proper 1. o. free group,
and then study the general character of group- and order-structure of these
groups. Finally we shall add some examples which will illustrate our
theorems.

We prove -frst some lemmas.

Lemma 1. Let G be a l. o. group and P the set of all positive elements
in G. P has then following properties :

i) e§P, and if x=re cither xeP or x7'cP.

ii) xeP and yeP implies xyeP.

i) of xeP, then axa™'eP for all a in G.

Conversely, if a group G contains a subset P, having the properties i), it), i),
we can then introduce a linear ovder in G by defining,

a> b, if ab~'eP. (1)

Proof. The former part is almost obviovs. We have only to note that
iii) follows from axa™> ara™'=¢ for x>¢. We prove the latter part Ac-
cording to i) and éa™'=(ab~")"" it can be seen that one and only one of

the relations
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a=b, a>b, b>a

holds for any «, & in G. The transitivity follows then from ii). More-
over a> ¢ implies (ac) (bc)'=ab 'eP, ie ac>ébc and also from iii) (ca) (cb)!
=c(ab~")c "¢ P, namely ca>cé, which completes the proof. :

Lemma 2. Let G} be a set of l. 0. groups and G the (restricted or
complete) diyect product of Go. Then one can introduce a linear ovder in G
so thar it becomes a . l. o. group.

Froof. We may consider that the groups G, are well-ordered, where
« runs over all transfinite numbers «< £. FElements of G are then given
by their components : ) o

, x?{lu}, %€Go.
Now let P be the set of all such x={x¢}; that
‘x¢=e’jf’ for all «<B and x;>¢, in G,

for some transfinite number B(<&£) We see readily that P satisfies i), ii),
iii) of LLemma 1 and thus we can introduce a. linear order in G".

"We now consider abelian groups and prove ,

Lemma 3. A linear order can e defined in an abelian group A, if and
only if A contains no element of finite order except the unir®. \

Proof. - The condition is necessary ; if #>¢ and +"=e¢ with some in-
teger 2>1, then it would' be x#7'=x""">¢, what is a contradiction. - Now-
let 4 be an abelian group with no element of finite order. We can then
imbed "4 in a direct product G of groups G,, which are isomorphic to the
additive group of all rational numbers. But as the latter is obviously a 1.
0. group, so is G according to Lemma 2. The subgroup 4 af G can be
therefore also linearly ordered, qe.d.

We now return to the general case and study the order homomorphism.
We mean here by an order homomorphism (isomorphism) a homomorphic
(isomorphic) mapping e—a’ between two l.-o. groups G, G’, so that a => &
in G implies @’ =4 in G'. We can then easi.y prove the following two
lemmas. . ’ .
Lemma 4. Let a—d be an order homomorphism between G, G' and
let G'=G/N, where N is a normal subgroup of G. Then

a=>b_=>¢ and aelN imnplies be N (2



On Zz'nmr{y ordeved gyoups. 3

and the set P of positive elements in G wzzszsls of positive elemmls in N and '
the elements whose homomorphic maps in G' are positive. (. orzwmel;u if a
normal subgroup N of a [ o group G has the above property (2), then

elements of auy coset alN (=) of G/N are all positive or all negative.

Defining positive or negative according 3y, G/ becomes a l. o. group and the
natural mapping a—alV then gives an order homomorplism between G and
Lemma 5. Let G be a group and N a normal subgroup of G. . We
suppose that N and G /N are both linearly erderved, and t/zc order in N s
invariant under the inner transformations of -G, namely

ae N, a = e implies bab™ > ¢ for all be G. N G))

Then, if we take as positive elements of G poSitive elemen's ‘in' N and the
elements belonging positive cosets in G/N, we can define o linear order in G.
The natural mapping G—G/N gives then an order homomorphism.

It is to be noted here particularly that the condition (3) is necessary
in order that G bei:_omes a l- o. group, when &V and G//NV are so. But if
/N is contained in the centre of G, (3) is trivially fulfiled, so that by a
central extension we always obtain a . o. group G. This remark will be
useful soon afterwards.

Now we prove the following

7, /éeorem 1. For a given Zmearly ordered group G there is a linearly
ordered free group F, so that G is the image of an order homomorphic map-
Ding from F to G.

Progf. ‘We take a free group F and a normal subgroup NV of F, so
that G = f’/N By transferring the hnear order in G, we can make F/NV
al. o group Now let /,=F, F,, F,,...... be the descendmcr central chain
of £ and put N,=F, ﬂN The_,e Or1oups are. then all normal in # and
we have

::jV_Z ]\@g[\fg_}_ """ ’ n?:k/vz':e.:
as N&,F,=¢". From , '
[7, Z\/}_]]B)=[F F NN I[F, F | n[F, N1< F,0nN=AN,

Nt/ Ne=(Fooy O V) [(F OV N )= (£ 1OV /(F N (ot D V) Z(FLFm N V) F,
we' see that M-I/N~ .15 contained in the centre of #//V, and has no element

>
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of finite order, because Fy(F;_,NN)/F; is a subgroup of F;.,/F;, which is
‘known to be free abelian®. . We can therefore define a linear order in

-1/ Ny according to Lemma 3. By making use of the remark stated just
~ before the theorem, a linear order can be defined, starting from F/N,=F/N,
step by step to all factor groups F/N;, so that

F/N,— F/N;, | )

gives always an order homomorphism. Now take an element z==¢ in £
According to Ne,NV,=e there is an /V;, which does not contain x. ‘We
then call x positive (or negative), if the coset of x in F/NV; is positive (or
negative) in the sense of above defined linear order in F/N, By the
successive order homomorphism (4), such a.definition is uniquely determined
independently of the choice of /V;, which does not contain x. It is then.
easy to see that F thus becomes a 1. o. group and F— F/N gives an
" order homomorphism.(Lemma 4).

The above theorem shows at the same time that a free group # admits
various linear orders. If we take as G the unit group in. the above proof,
we shall have a particular !inear ‘order in %, perhaps the simplest one.
Positive elements in F are then defined as follows. We first define' an
arbitrary linear order in each central factor group F;_i/F,. For an element
x%};e in Z there is an index # such that # is contained in F;_, but not in
F,. We call then x positive, if x is in a positive coset in /7 /. Now,
when F is thus ordered, we can define a topology in £ taking the subsets
{x; a>x>6} as neighbourhoods (order topology), and # becomes then a
topological group (every l. o. group can be thus considered as a topological
group). It is.note-worthy that this  topology in F just coincides with the
one, which was defined by G. Birkhoff by making use of congruences with
respect to F'9. - | )

Now let G be an arbitrary 1. o. group. We define the absolute |x |
of x in G by .

|xl=x, if xr=e
=z i 2 <e

It is then easily seen that
= ’ ‘

lzl=l2 lxlly =],
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We deno'te by &(x) the set of all y in G, for which we have |[x[">|y]
with some pbsitive integer #. From (5) it follows immediately that G(x)
forms a subgroup of G and if yeG(x) and |z|<|y|, # is also contained in
G(x) On the other hand we call » and y equivalent: x ~ y, when it
holds |x[">|y|, |y =| x| with some integers z, » and define a linear
order in the set of these equivalent classes 4, g,...... by putting

A >. p if x>y for all wed, yep.

From the definition it follows immediately that the unit of G forms a class
with only one element. We denote by L the set of all equivalent classes,
which are differdnt from this unit class.

It is clear that G(x)=G( y) if and only if x ~y and we may there-
fore write

G(x)=G,, if xel.

Now lét G,* be the composite of all groups G, with p <2 (if 1 is
the first ele.ent in 7, we take the unit group as G,*). We can prove
easily that if G,=G(x), G,* is the set of all elements in 'G,, which are
not equivalent to x» and consequently that G,* is normal in G,. Moréover
as G and G,* satisfy (3) in Lemma 5, we can induce the linear order of
G into G,/G,*. But this order in G,/G,* is archimedean, for all elements
in G,, not contained in G,*, are mutually equivalent. There is ac001d1nglv
‘an order isomorphism 75 between G,/ G\* and a subgroup R, of the Orroup
of all real numbers R.

Next t-ke an element x and’ consider the inner automorphi m 7, of G
by x. If Ga=G(9), then ¥G 2 '=G(xyx~")=G,,, so that 1 — ¥ gives a
one-to-one arder preserving correspondence in L. As G,* is transformed
into .G»* by the same automorphism, 7, induces an order isomorphism
between G,/G,\* and G,,/Gy*, which we denote by 7,-,. 7ul, /5! then _
gives an order isomorphism between R, and R&,, so that

=11, ll;’(¢)¥rw, w, for reR,, r"el\’,\,,

with some positive real number 7, , > 0.
We have thus obtained the followmcr :
Theorem 2. For any linearly ordered gronp G, theve is a linearly ordeved
set L={A4, py...... } and a corvesponding seguence of subgroups {G, ; dL} of
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G, which have Jollowing properties : :
1) Gy> G, if P> p (GA={=1} if A is the first element in L) ;
2) for-any x in G, there s an element X in L, such that x is contained
in Gy, but not in G, for all p <2; .
- 3) et Gy* be the composite of all G, with p < A (Gl =e¢, if A is the
Sirst element in L). G* is then nor mal in G, and there is an zsomozfpﬁum
I, botween G,)Gy* and a subgroup R, of the group of all real numbers R ;
4) if-we denpote by I, the inner automorplisn of G Gy the element z,
cack Gy goes to some other Gy under I, A — X then gives an order pre- -
seyving one-to-one covvespondence in L. G * is transformed consequently to
Gu* and I, induces an isomoxphisin I, , oGetween G,/ G,¥ aud "G /G
Further the isomorplism Iyl, JI' becween Ry and Ry is given é,y
V=Dl A (r)=r,\r, Jor ﬂ‘R)u 7'€R,
where v, A IS a cevtain positive number ; - .
5) et xeGy, x§ Gy for p <A (¢f 2). x is then positive if and only if
the coset of x in G,JG\¥-is mapped by I into a positive number in Rj.
For a given linearly ordered group G, such L and G, are uniquely dezer-
mined by the velations 1)y—g) (up to an isomorplismt) .
Conversety if G is a group and there exists a sequence ‘of subgroups G
of G, corvesponding to a linearly ordered set L, and satisfying above condi-
tions I)—yq) and if we define positive elements by 5), then G . becones a
linearly ovdered group. '
As L and the corresponding K, are uniquely determmed for a given
1. o. group, we may classify the set of all 1. o. groups by grouping to-
gether those groups into a class, which have the same Z and &, in the
sense of above theorem. We note here some remarks on this classification.
First there is no restriction upon L and R,. Namely, if a hnearly ordered
set L and corresponding subgroups &, of R are arbitrarily given, there is
always a l. o group G, to which'Z and R belong in the above sense: to
obtain such G, we have only to construct the:restricted direct product of
all R, (JeL) and take as G, the restricted direct product of all &, ¢ <4
We have thus _proved in the same time that every such class contains an
“abelian group. '
- Next let us suppose that L is sucha lmearly ordered set that it admits
,no . order preserving one-to-one correspondence except the identity. This
is particularly the case, when L is well-ordered or has an order inverse

L}
\
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to a well-ordered set. Then we have from 4) in Therem 2 that each G,
must be normal in G and that » — /=7, ;-7 '(r,\,z > 0) gives én automor-
phism of R, G is thus a solvable group in a generalized sense™. 1If.
further. R, admits no automorphism of that type except the identity,
G,/Gy* is contained in the centre of G/G,*. For example if Z is well-
ordered ’(or has an order inverse to it) and all R, are the group of rational
‘integers (namely free cyclic groups), every group of type {L, R,} is
nilpotent in a generalized sense™. I may be possible to determine in this
manner the group-theoretical qtructule' of 1. o. crroups of various types /
more explicitely. Here we do not enter in this problem'™.

We give finally some examples of 1. o. groups of various types.

Example 1. Let GP be the restricted direct product of denumerable

number of free cyclic groups (3, C,...... and let G, be the direct product
of Gy, Cy ...... , Cu. By theorem 2 we can define a linear order in G™.
Z is then of type w=1, 2,3, ...... and R, are the group of all rational

integers /. . ,

Example 2. Again, let G® be the (completé or restricted) direct
product of ¢, G, ...... Now take as G, the direct product of C,, C,,y,
e L is here-of type w*=......, 3, 2, 1 and R, are again 7. The linear
order considered here coincides with the one stated in the proof 6f Lemma
2. , | .

Example 3. Let G® be generated by three elements @, 6, ¢ with
relations " - '

ab=ba, cac'=a, cbcT'=ab.

An element in G can be written uniquely in the ;normal form a*6¥c*(x, p, 2
=0, +1, +2, ......). If we put Gl—{(z}, G.={a, b}, Gy={a, 6, ¢}, GP
becomes a . o. group. Here L={1, 2, 3}, Ri=Ry=R,=/. G® may be
perhaps one of the simplest non-abelian 1. o. group. R
Example 4. As a generaluatlon of G® let us consider G(“ {2, ay, as,

...... } with relations
:mi:azw, aaj a;a,;, for ]j—f[z{zl A4 = Qg 105

Putting G,={z, a, ...... » @,-1} we have a non-abelian 1. o. -group G of
the same type with G. : ' ‘
Lxample 5. A free group I with a finite number of generators has
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the same type with G®, if we define the order by making use of Z,. . -
. Example 6. Let G® be the set of all linear functions A(x)=ax+4,
where @ > 0, — o0 <b<eo. Defining the group composition 2=fx g by
¢(»)=/(¢(x)) and the order f >g by the value of these functions for suffi- -
ciently large #, G® becomes a 1. o. group. Here Gi={flx)=x+6; —e
Ko<}, Go=G9, L={1, 2} and R,=R,=R. Moreover we have

7y 1=a, for f(x)=ax+0,

whereas 7, ,=1 for all /i v .
Example 7. Take the additive group G® of all such real functions
f(x) which are defined onh the interval [0, 1] and are represented in the
-y plane by a broken line through the origin (0, 0). We define f(x)
> g(x), if there is such a (0 < « < 1), so that f(x)=g(x) for 0 < xr < « and
Sfla+e)>glu+e) for sufﬁciently small e>0. Putting .

Gr=1/(2); f(H)=0 for 0 <+ <12}, 0<2 <1,

we see that Z coincides with the mtelval (0, 1] and Ry,=R for all A.
Example 8. Let G® be the subset of all those functions considered in

Example 7, which are moreover monotone increasing (in the  strict sense)

and go through the point (1, 1). We define the group composition Z=fXxg

by 4(x)=fg(x)). By the same order as in Example 7, G® becomes a

non-abelian 1. o. group. Here G, is given by )

Gr={f(x); flei=x for 0 < v < 1—2}, 0'<a <1,

and again Z=(0, 1]. R=R, for all 4. But in this case no G, except, G
=G® is normal in G®. In fact we have

' fGAf—] = Gf()\)-

On the other hand 7, » are here all 1. If we want to obtain an example
in which 7, , is not constant,"we have only to extend' the group G by
G®, putting ' '

‘ T 1=f(g7(¥)), for feGP, geG®. .

Mathematical Institute,
Revised February 17, 1948. . Tokyo University.
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