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COMPACT DOUBLE DIFFERENCES OF COMPOSITION OPERATORS
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Abstract. Choe et al. have recently characterized compact double differences formed
by four composition operators acting on the standard weighted Bergman spaces over the disk of
the complex plane. In this paper, we extend such a result to the ball setting. Our characterization
is obtained under a suitable restriction on inducing maps, which is automatically satisfied in the
case of the disk. We exhibit concrete examples, for the first time even for single composition
operators, which shows that such a restriction is essential in the case of the ball.

1. Introduction. The interplay between the operator theoretic and the function the-
oretic properties of composition operators, acting on classical holomorphic function spaces
such as the Hardy space and the standard weighted Bergman spaces over the disk or the ball,
has been extensively studied over the past several decades; we refer to standard monographs
by Cowen-MacCluer [5] and Shapiro [11] for an overview of various aspects on the theory
of composition operators. As is well known, the several-variable theory of composition oper-
ators is much more subtle than one-variable theory. For example, one-variable composition
operators are always bounded by Littlewood’s Subordination Principle on the aforementioned
function spaces, which is no longer guaranteed in the several-variable case; see [7]. As a con-
sequence, while quite an extensive study on one-variable theory of composition operators has
been established during the past four decades, the several-variable theory has been relatively
less known.

Recently, study on differences, or more generally linear combinations, of composition
operators has been a topic of growing interest; see [3] and references therein. In the setting
of the weighted Bergman spaces over the disk, Moorehouse [9] first characterized compact
differences by means of a natural angular derivative cancellation property; note that bound-
edness is out of question. Moorhouse’s characterization is then extended to several-variable
settings; see [1] and [2]. In a more recent paper [3] Choe et. al. extended Moorehouse’s
characterization to the case of double differences. Our goal in this paper is to extend such a
characterization for compact double differences to the ball.
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For a fixed positive integer n, let B = Bn be the unit ball of the complex n-space Cn. For
α > −1, let dv be the normalized volume measure on B and put

dvα(z) := cα(1 − |z|2)α dv(z)

where the constant cα is chosen so that vα(B) = 1. For 0 < p < ∞, the α-weighted Bergman
space Ap

α(B) is the space of all holomorphic function f on B such that the “norm"

‖ f ‖Ap
α

:=
{∫

B
| f |p dvα

}1/p

is finite. As is well known, the space Ap
α(B) equipped with the norm above is a Banach space

for 1 ≤ p < ∞. On the other hand, it is a complete metric space for 0 < p < 1 with respect to
the translation-invariant metric ( f , g) �→ ‖ f − g‖Ap

α
.

Let S = S(B) be the class of all holomorphic self-maps of B. Each function ϕ ∈ S

induces a composition operator Cϕ defined by

Cϕ f := f ◦ ϕ

for functions f holomorphic on B. Clearly, Cϕ takes the space of all holomorphic functions
into itself. As is mentioned earlier, Cϕ is always bounded on each Ap

α(B) when n = 1, but not
always when n > 1.

We now introduce some notation to be used throughout the paper. We reserve four
inducing maps ϕ1, ϕ2, ϕ3, ϕ3 ∈ S, not necessarily distinct, to form the double difference

T := (Cϕ1 − Cϕ2) − (Cϕ3 − Cϕ4 ) .

Setting

Tij := Cϕi − Cϕ j , i, j = 1,2,3,4 ,

note

T = T12 − T34 = T13 − T24 .(1.1)

Using the pseudohyperbolic distance ρ (see Section 2.2 for the definition) on B, we also put

ρij (z) := ρ
(
ϕi(z), ϕj (z)

)
(1.2)

and

Mij (z) :=
(

1 − |z|
1 − |ϕi(z)|

+
1 − |z|

1 − |ϕj (z)|

)
ρij (z)(1.3)

for each i, j = 1,2,3,4. Finally, we put

M := M12 + M34 and M̃ := M13 + M24

for short. The next theorem is our main result.

THEOREM 1.1. Let α > −1 and 0 < p < ∞. With the notation as above, consider the
following two assertions:

(a) T is compact on Ap
α(B);
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(b) MM̃ ∈ C0(B).
Then the implication (a) =⇒ (b) holds. The implication (b) =⇒ (a) also holds, provided
that each Cϕ j is bounded on Aq

β(B) for some β ∈ (−1, α) and 0 < q < ∞.

We would like to emphasize that the inducing self-maps in Theorem 1.1 are completely
general. So, considering appropriate special cases, one may recover several known results.
For example, the special case ϕ2 = ϕ3 = ϕ4 ≡ 0 reduces to the compactness characterization
for single composition operators as in Corollary 5.1. See Section 5 for more special cases
which might be of independent interest. In addition, we exhibit a concrete example showing
that the additional boundedness assumption for the implication (b) =⇒ (a) is essential; see
Example 5.8. As far as we know, such an example even for single composition operators has
not appeared yet in the literature.

In Section 2 we recall some basic facts to be used in later sections. In Section 3 we prove
the sufficiency part of Theorem 1.1. In Section 4 we prove the necessity part of Theorem 1.1.
In Section 5 we observe some consequences of Theorem 1.1 concerning some special cases.
We also exhibit concrete examples showing that the additional boundedness assumption for
sufficiency cannot be removed.
Constants. In the rest of the paper we use the same letter C to denote various positive constants
which may change at each occurrence. Variables (other than n) indicating the dependency
of constants C will be often specified in the parenthesis. We use the notation X � Y for
nonnegative quantities X and Y to mean X ≤ CY for some inessential constant C > 0.
Similarly, we use the notation X ≈ Y if both X � Y and Y � X hold.

2. Preliminaries. In this section we recall some basic facts which will be used in later
sections.

2.1. Compact Operator. It seems better to clarify the notion of compact operators,
since when 0 < p < 1 the spaces under consideration are not Banach spaces. Let X and Y be
topological vector spaces whose topologies are induced by complete metrics. A continuous
linear operator L : X → Y is said to be compact if the image of every bounded sequence in X
has a convergent subsequence in Y .

We have the following convenient compactness criterion for a linear combination of
composition operators acting on the weighted Bergman spaces.

LEMMA 2.1. Let α > −1 and 0 < p < ∞. Let L be a linear combination of composition
operators and assume that L is bounded on Ap

α(B). Then L is compact on Ap
α(B) if and only

if L fk → 0 in Ap
α(B) for any bounded sequence { fk } in Ap

α(B) such that fk → 0 uniformly on
compact subsets of B.

A proof can be found in [5, Proposition 3.11] for a single composition operator over the
disk and it can be easily modified for a linear combination over the ball.

2.2. Pseudohyperbolic Distance. The pseudohyperbolic distance between z, w ∈ B
is given by

ρ(z, w) := |σz(w)|
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where σz is the involutive automorphism of B that exchange 0 and z. More explicitly, we have

1 − ρ2
(z, w) =

(1 − |z|2)(1 − |w |2)

|1 − 〈z, w〉|2
(2.1)

where 〈z, w〉 denotes the Hermitian inner product of z, w ∈ Cn. This yields an inequality
1 − |z|2

|1 − 〈z, w〉|
≤

√
1 − ρ(z, w)2 for |w | ≤ |z|,(2.2)

which is useful for our purpose. As is well known, each holomorphic self-map F of B is a
ρ-contraction, i.e.,

ρ
(
F(z),F(w)

)
≤ ρ(z, w), z, w ∈ B;(2.3)

see [10, Theorem 8.1.4].
For 0 < r < 1 and z ∈ B, we denote by

Er (z) := {w ∈ B : ρ(z, w) < r}

the pseudo-hyperbolic ball with center z and radius r. Clearly, Er (0) = rB. Using the well-
known automorphism invariance of ρ, we also note Er (z) = σz(rB). Given 0 < r < 1 and
α > −1, we will use the well-known estimates

1 − |z| ≈ 1 − |w | ≈ |1 − 〈z, w〉|, w ∈ Er (z)(2.4)

and

vα[Er (z)] ≈ (1 − |z|)n+1+α;(2.5)

the constants suppressed in these estimates depend only on r and α.
In most of the cases we will work with r = 1/2. So, we put

E(z) := E1/2(z)

for brevity.
2.3. Test Function. Given α > −1, we have the submean value type inequality

| f (a)|p ≤

C

(1 − |a|2)n+1+α ‖ f ‖p
A
p
α
, a ∈ B ,(2.6)

valid for all f ∈ Ap
α(B) and 0 < p < ∞. Here the constant C depends only on α. So each

point evaluation in B is a bounded linear functional on the Hilbert space A2
α(B). Thus, to each

a ∈ B corresponds a unique reproducing kernel whose explicit formula is actually given by
z → (1 − 〈a, z〉)−(n+1+α). Suitable powers of those kernel functions will be our test functions
in connection with Lemma 2.1. To this end we introduce functions τa on B defined by

τa(z) :=
1

1 − 〈z,a〉
(2.7)

for a ∈ B. When sp > n + 1 + α, we have the optimal norm estimates (see, for example, [12,
Theorem 1.12])

‖τsa ‖
p

A
p
α
≈

1
(1 − |a|2)sp−(n+1+α) , a ∈ B(2.8)
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and thus
τsa

‖τsa ‖Ap
α

→ 0 uniformly on compact subsets of B(2.9)

as |a| → 1.
2.4. Carleson Measure. Let α > −1 and μ be a positive finite Borel measure on B.

For 0 < r < 1 and 0 < p < ∞, it is well known (see [12, Section 2.4]) that

the embedding Ap
α(B) ⊂ Lp

(dμ) is bounded ⇐⇒ sup
z∈B

μ[Er (z)]
vα[Er (z)]

< ∞ .

We say that μ is an α-Carleson measure if either side of the above holds. Note that the notion
of α-Carleson measures is independent of the size of p or r. So, setting

‖μ‖α = sup
z∈B

μ[E(z)]
vα[E(z)]

,

we see that μ is an α-Carleson measure if and only of ‖μ‖α < ∞. Moreover, we have

sup
‖ f ‖

A
p
α
≤1

‖ f ‖p
Lp

(μ)
≈ ‖μ‖α(2.10)

for α-Carleson measures μ on B; the constants suppressed above depend only on α.
The connection between composition operators and Carleson measures comes from the

standard identity (see [6, p. 163])∫
B
(h ◦ ϕ) dμ =

∫
B

h d(μ ◦ ϕ−1
)(2.11)

valid for holomorphic self-maps ϕ of B and Borel functions h ≥ 0 on B. Here, μ ◦ ϕ−1

denotes the pullback measure defined by (μ ◦ ϕ−1
)(E) = μ[ϕ−1

(E)] for Borel sets E ⊂ B. In
particular, one can easily see from (2.11) that Cϕ : Ap

α(B) → Lp
(μ) is bounded if and only if

‖μ ◦ ϕ−1
‖α < ∞.

2.5. Invariant Laplacian. For a function f on B, we define

Δ̃ f (z) := Δ( f ◦ σz)(0) , z ∈ B ,

where Δ is the ordinary Laplacian. This operator Δ̃ is called the invariant Laplacian because
it is automorphism invariant in the sense that

Δ̃( f ◦ σ) = (Δ̃ f ) ◦ σ

for all automorphismsσ of B. Given α > −1 and 0 < p < ∞, we will use the norm equivalence∫
B
(Δ̃| f |2)p/2 dvα ≈

∫
B
| f (z) − f (0)|p dvα(z)(2.12)

for function f holomorphic on B; the constants suppressed here depend only on n and α. We
refer to [12, Section 2.3] for more details.

The next lemma is taken from [2, Lemma 4.4].
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LEMMA 2.2. Let α > −1, 0 < p < ∞ and 0 < r1 < r2 < 1. Then there is a constant
C = C(α, p, r1, r2) > 0 such that

| f (a) − f (b)|p ≤ C
ρ(a, b)p

(1 − |a|2)n+1+α

∫
Er2 (a)

(Δ̃| f |2)p/2 dvα

for all f ∈ H(B) and a, b ∈ B with a ∈ Er1(b).

2.6. Angular Derivative. The well-known notion of the angular derivatives on the
disk has a natural extension to the ball. To state it we first recall some terminology.

Let ζ ∈ ∂B. A continuous function γ : [0,1) → B with limt→1 γ(t) = ζ is said to be a
restricted ζ-curve if

lim
t→1

|γ(t) − 〈γ(t), ζ〉ζ |2

1 − |〈γ(t), ζ〉|2
= 0 and sup

0≤t<1

|ζ − 〈γ(t), ζ〉ζ |
1 − |〈γ(t), ζ〉|

< ∞ .

Note that a ζ-curve contained in the unit disk of the complex line through ζ is restricted if and
only if it approaches to ζ nontangentially. We say that f : B → C has restricted limit at ζ ,
denoted by f (ζ), if

lim
t→1

f (γ(t)) = f (ζ)

for every restricted ζ-curve γ. In this case, we write

R lim
z→ζ

f (z) = f (ζ) .

For a holomorphic self-map ϕ of B, we say that ϕ has finite angular derivative at ζ ,
denoted by Dϕ(ζ), if there exists η ∈ ∂B such that

Dϕ(ζ) = R lim
z→ζ

1 − 〈ϕ(z), η〉
1 − 〈z, ζ〉

.

Note that the above forces ϕ to have restricted limit η at ζ with ϕ(ζ) = η.
By the well-known Julia-Carathéodory Theorem we have

ϕ has finite angular derivative at ζ ⇐⇒ dϕ(ζ) := lim inf
z→ζ

1 − |ϕ(z)|
1 − |z|

< ∞

where the liminf is taken as z → ζ unrestrictedly in B. Moreover, if this is the case, then

Dϕ(ζ) = dϕ(ζ);(2.13)

see [5, Theorem 2.81] or [10, Theorem 8.5.6] for details and further results. Thus, the angular
derivative set

A(ϕ) :=
{
ζ ∈ ∂B : dϕ(ζ) < ∞

}
consists of all boundary points at which ϕ has finite angular derivatives. Moreover, it is known
that

∠ lim
λ→1

1 − |ϕ(λζ)|2

1 − |λ |2
= dϕ(ζ), ζ ∈ A(ϕ)(2.14)

where ∠ lim denotes the nontangential limit; see [2, Lemma 3.1]. Finally, we remark dϕ(ζ) ≥
1−|ϕ(0) |
1+ |ϕ(0) | > 0 by the Schwarz-Pick Lemma (see [10, Theorem 8.1.4]).
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3. Necessity for Compactness. In this section we prove the first part of Theorem 1.1.
Our proof will be completed by applying the compactness of the operator under consideration
to a suitably-chosen collection of test functions. For that purpose we need several auxiliary
lemmas.

Before proceeding, we introduce some auxiliary functions. For a1,a2,a3,a4 ∈ B and a
positive integer m, put

Im(z) = Im(z; a1,a2,a3)(3.1)
: = (1 − |z|2)m



τma1 (z) − τ
m
a2 (z) − τ

m
a3 (z)




and

Jm(z) = Jm(z; a1,a2,a3,a4)(3.2)
: = (1 − |z|2)m



τma1 (z) − τ
m
a2 (z) − τ

m
a3 (z) + τ

m
a4(z)




for z ∈ B; recall that τa denotes the function specified in (2.7). We will need certain lower
estimates for these functions. We begin with the following inequality.

LEMMA 3.1. The inequality





(

1 − |a|2

1 − 〈a1,a〉

)m
−

(
1 − |a|2

1 − 〈a2,a〉

)m



 ≤ m2m+2ρ(a1,a2)

(
1 − |a|
1 − |a1 |

+
1 − |a|
1 − |a2 |

)

holds for a, a1, a2 ∈ B and positive integers m.

PROOF. Fix a,a1,a2 ∈ B and a positive integer m. Put

λ :=
1 − |a|

1 − 〈a1,a〉
and η :=

1 − |a|
1 − 〈a2,a〉

for short. Since |λ | < 1 and |η| < 1, we have





(

1 − |a|2

1 − 〈a1,a〉

)m
−

(
1 − |a|2

1 − 〈a2,a〉

)m



 ≤ 2m |λm − ηm |

= 2m |λ − η|







m∑
j=1

λm−jη j−1







≤ m2m |λ − η| .

Thus, in order to complete the proof, it is sufficient to show




 1
1 − 〈a1,a〉

−

1
1 − 〈a2,a〉





 ≤ 4ρ(a1,a2)

(
1

1 − |a1 |
+

1
1 − |a2 |

)
.(3.3)

To prove this inequality, put a =: rζ where r = |a| and ζ ∈ ∂B. Also, put λj = 〈aj, ζ〉

for j = 1,2. Using the explicit formula (see [10, Section 2.2] or [12, Section 1.2]) for the
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involutive automorphisms of B, we note

ρ(λ1ζ, λ2ζ) =





 λ1 − λ2

1 − λ1λ2





 .
We also note |1 − ξ | ≤ 2|1 − rξ | for complex numbers ξ with |ξ | < 1. Accordingly, we have



 1

1 − rλ1
−

1
1 − rλ2





 = r |λ1 − λ2 |

|1 − rλ1 | |1 − rλ2 |

≤

4|λ1 − λ2 |

|1 − λ1 | |1 − λ2 |

= 4ρ
(
λ1ζ, λ2ζ

)
·

|1 − λ1λ2 |

|1 − λ1 | |1 − λ2 |

≤ 4ρ (a1,a2) ·
|1 − λ1λ2 |

|1 − λ1 | |1 − λ2 |
;

the last inequality holds by (2.3). Now, using the elementary inequality |1−λ1λ2 | ≤ |1−λ1 | +

|1 − λ2 |, we conclude (3.3), as desired. The proof is complete. �

We now prove the following lower estimate for the functions Im.

LEMMA 3.2. Given 0 < ε < 1, there is a collection of positive integers {Nk }
4
k=1 such

that

max
1≤k≤4
1≤ j≤3

INk (aj) ≥
1
2

(3.4)

whenever a1,a2,a3 ∈ Bn satisfy

ε ≤

1 − |ai |
1 − |aj |

≤

1
ε
, i, j = 1,2,3 .(3.5)

In addition, the integers Nk’s can be chosen arbitrarily large.

PROOF. Fix 0 < ε < 1 and suppose that a1,a2,a3 ∈ B satisfy (3.5). For simplicity we
put

rij := ρ(ai,aj) , i, j = 1,2,3

and

d := min{r12, r13} .

Now we fix any positive integer m. We consider the following three cases separately:

(i) m2m+4d ≤ ε;
(ii) m2m+4d > ε and |a1 | ≥ max{|a2 |, |a3 |};
(iii) m2m+4d > ε and |a1 | < max{|a2 |, |a3 |}.
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Case (i) : First, assume d = r12. By Lemma 3.1, we have

Im(a3) ≥ 1 −






(

1 − |a3 |
2

1 − 〈a1,a3〉

)m
−

(
1 − |a3 |

2

1 − 〈a2,a3〉

)m




≥ 1 − m2m+2r12

(
1 − |a3 |

1 − |a1 |
+

1 − |a3 |

1 − |a2 |

)

≥ 1 −

ε

4
·

2
ε

=
1
2
.

Similarly, we obtain Im(a2) ≥ 1/2 if d = r13. So, choosing N1 = m, we obtain

max
2≤ j≤3

IN1(aj ) ≥
1
2
.(3.6)

Case (ii) : Since m2m+4d > ε and |a1 | ≥ max{|a2 |, |a3 |}, we have by (2.2)

1 − |a1 |
2

|1 − 〈aj,a1〉|
≤

√
1 − d2

≤

√
1 −

ε2

m24m+4

for j = 2,3. So, we have

Iν(a1) ≥ 1 −

3∑
j=2

(
1 − |a1 |

2

|1 − 〈aj ,a1〉|

)ν
≥ 1 − 2

(
1 −

ε2

m24m+4

)ν/2

for any ν. Thus, choosing N2 = N2(ε,m) ≥ m so that
(
1 −

ε2

m24m+4

)N2

≤

1
16

,(3.7)

we obtain

IN2(a1) ≥
1
2
.(3.8)

Case (iii) : Without loss of generality, we assume |a2 | ≥ |a3 |. Since r12 ≥ d > ε
m2m+4

and |a2 | > |a1 |, we have by (2.2)

1 − |a2 |
2

|1 − 〈a1,a2〉|
≤

√
1 − r2

12 ≤

√
1 −

ε2

m24m+4 .

For N2 chosen in (3.7) and integers ν ≥ N2, we obtain

Iν(a2) ≥





1 +
(

1 − |a2 |
2

1 − 〈a3,a2〉

)ν 



 −
(

1 − |a2 |
2

|1 − 〈a1,a2〉|

)ν

≥





1 +
(

1 − |a2 |
2

1 − 〈a3,a2〉

)ν 



 −
(
1 −

ε2

m24m+4

)ν/2
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≥

3
4
+ Re

(
1 − |a2 |

2

1 − 〈a3,a2〉

)ν
.

In conjunction with the estimate above, we note that for any complex number λ at least one of
λ, λ2 and λ3 has the nonnegative real part. Consequently, we have

max
2≤k≤4

INk (a2) ≥
3
4
,(3.9)

where N3 = 2N2 and N4 = 3N2.
Now, combining inequalities (3.6), (3.8) and (3.9), we conclude (3.4). In addition,

recalling that m is an arbitrary positive integer and Nk ≥ m for each k, we see that the integers
Nk ’s can be chosen arbitrary large. The proof is complete. �

For the functions Jm, we prove the following lower estimate.

LEMMA 3.3. Given 0 < ε < 1, there is a collection of positive integers {Nk }
6
k=1 such

that

max
1≤k≤6
1≤ j≤4

JNk (aj ) ≥
1
2

(3.10)

whenever a1,a2,a3,a4 ∈ Bn satisfy

min
1≤ j≤3

|aj | ≥
1
2
, ε ≤ min{ρ(a1,a2), ρ(a1,a3)}(3.11)

and

ε ≤

1 − |ai |
1 − |aj |

≤

1
ε
, i, j = 1,2,3 .(3.12)

In addition, the integers Nk’s can be chosen arbitrarily large.

PROOF. Fix 0 < ε < 1 and choose a positive integer m = m(ε) such that

(1 − ε2
)

m
≤

1
16

and
(
1 +

1 − ε

3ε

)
−m

≤

1
6
.(3.13)

Note that m can be chosen arbitrary large. For a1,a2,a3,a4 ∈ B satisfying (3.11) and (3.12),
put

rij := ρ(ai,aj) , i, j = 1,2,3,4

for simplicity.
In case |a1 | ≥ max{|a2 |, |a3 |}, we obtain by (2.2)

1 − |a1 |
2

|1 − 〈aj,a1〉|
≤

√
1 − r2

1j ≤
√

1 − ε2 ,

for j = 2,3. It follows that

Jν(a1) ≥





1 +
(

1 − |a1 |
2

1 − 〈a4,a1〉

)ν 



 −
3∑
j=2

(
1 − |a1 |

2

|1 − 〈aj,a1〉|

)ν

≥





1 +
(

1 − |a1 |
2

1 − 〈a4,a1〉

)ν 



 − 2(1 − ε2
)

ν/2
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≥

1
2
+ Re

(
1 − |a1 |

2

1 − 〈a4,a1〉

)ν

for all integers ν ≥ m. Thus, by the same argument as in the proof of Case (iii) of Lemma 3.2,
we obtain

max
1≤k≤3

JNk (a1) ≥
1
2

(3.14)

where N1 = m,N2 = 2m and N3 = 3m.
We now consider the case when max{|a2 |, |a3 |} > |a1 | for the rest of the proof. By

symmetry we may further assume |a2 | ≥ |a3 | so that |a2 | ≥ max{|a1 |, |a3 |}. Note from (2.2)
and (3.11)

1 − |a2 |
2

|1 − 〈a1,a2〉|
≤

√
1 − r2

12 ≤

√
1 − ε2 .(3.15)

Fixing an integer N4 = N4(ε,m) ≥ m such that(
1 −

ε4

m24m+5

)N4

≤

1
16

,(3.16)

we claim

max
1≤k≤6
1≤ j≤4

JNk (aj ) ≥
1
2

(3.17)

where N5 := 2N4 and N6 := 3N4. This estimate, together with (3.14), completes the proof.
In order to prove (3.17), we consider the following three cases separately:

(i)
1 − |a2 |

1 − |a4 |
>

1
ε

or
1 − |a2 |

1 − |a4 |
< ε;

(ii) min{r24, r34} > ε2
(m2m+5

)

−1;

(iii) ε ≤

1 − |a2 |

1 − |a4 |
≤

1
ε

and min{r24, r34} ≤ ε2
(m2m+5

)

−1.

Case (i): First, assume 1−|a2 |
1−|a4 |

> 1
ε . Since |a2 | ≥ max{|a1 |, |a3 |}, we have

|1 − 〈aj ,a4〉|

1 − |a4 |
≥

1 − |aj | |a4 |

1 − |a4 |
≥

1 − |a2 | |a4 |

1 − |a4 |

for j = 1,2,3. Meanwhile, since |a2 | ≥
1
2 by (3.11), we have 1 − |a4 | < ε(1 − |a2 |) <

1
2 and

thus |a4 | >
1
2 . So, we obtain

1 − |a2 | |a4 |

1 − |a4 |2
= 1 +

|a4 |

1 + |a4 |

(
1 − |a2 |

1 − |a4 |
− 1

)
> 1 +

1 − ε

3ε
(3.18)

and thus

JN1 (a4) = Jm(a4)

≥ 1 −

3∑
j=1

(
1 − |a4 |

2

|1 − 〈aj ,a4〉|

)m

≥ 1 − 3
(
1 +

1 − ε

3ε

)
−m
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≥

1
2

;

the last inequality holds by (3.13).
Now, we consider the case 1−|a2 |

1−|a4 |
< ε. In this case, exchanging the roles of a2 and a4 in

(3.18), we have

1 − |a4 | |a2 |

1 − |a2 |2
> 1 +

1 − ε

3ε
.

This, together with (3.13) and (3.15), yields

Jν(a2) ≥





1 +
(

1 − |a2 |
2

1 − 〈a3,a2〉

)ν 



 −
(

1 − |a2 |
2

|1 − 〈a1,a2〉|

)ν
−

(
1 − |a2 |

2

|1 − 〈a4,a2〉|

)ν

≥





1 +
(

1 − |a2 |
2

1 − 〈a3,a2〉

)ν 



 − (1 − ε2
)

ν/2
−

(
1 +

1 − ε

3ε

)
−ν

≥

7
12
+ Re

(
1 − |a2 |

2

1 − 〈a3,a2〉

)ν

for all integers ν ≥ m. We thus conclude

max
1≤k≤3

JNk (a2) ≥
1
2

as in the proof of (3.14). This completes the proof of (3.17) for Case (i).
Case (ii): We first consider the case of |a2 | > |a4 |. Since m2m+5r24 > ε2, we have by

(2.2)

1 − |a2 |
2

|1 − 〈a4,a2〉|
≤

√
1 − r2

24 ≤

√
1 −

ε4

m24m+5 .

Thus we have by (3.15) and (3.16)

Jν(a2) ≥





1 +
(

1 − |a2 |
2

1 − 〈a3,a2〉

)ν 



 −
(

1 − |a2 |
2

|1 − 〈a1,a2〉|

)ν
−

(
1 − |a2 |

2

|1 − 〈a4,a2〉|

)ν

≥





1 +
(

1 − |a2 |
2

1 − 〈a3,a2〉

)ν 



 − (1 − ε2
)

ν/2
−

(
1 −

ε4

m24m+5

)ν/2

≥

1
2
+ Re

(
1 − |a2 |

2

1 − 〈a3,a2〉

)ν
,

for all ν ≥ N4. We thus conclude

max
4≤k≤6

JNk (a2) ≥
1
2

as in the proof of (3.14).
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We now consider the case |a2 | ≤ |a4 |. This time we have by (2.2)

1 − |a4 |
2

|1 − 〈aj,a4〉|
≤

√
1 − r2

j4 ≤

√
1 −

ε4

m24m+5

for j = 2,3. Thus, repeating a similar argument, we have

Jν(a4) ≥
1
2
+ Re

(
1 − |a4 |

2

1 − 〈a1,a4〉

)ν
, ν ≥ N4

and thus conclude

max
4≤k≤6

JNk (a4) ≥
1
2
.

This completes the proof of (3.17) for Case (ii).
Case (iii): First, we consider the case r24 ≤ r34. Since 1−|a2 |

1−|a4 |
< 1

ε and m2m+2r24 ≤

ε2

8 ,
we have by Lemma 3.1 and (3.12)






(

1 − |a1 |
2

1 − 〈a2,a1〉

)m
−

(
1 − |a1 |

2

1 − 〈a4,a1〉

)m



 ≤ m2m+2r24

(
1 − |a1 |

1 − |a2 |
+

1 − |a1 |

1 − |a4 |

)

≤

ε2

8

(
1 − |a1 |

1 − |a2 |
+

1 − |a1 |

1 − |a2 |
·

1 − |a2 |

1 − |a4 |

)

<
ε2

8

(
1
ε
+

1
ε2

)

≤

1
4
.

Note that the same estimate holds with a3 in place of a1. Also, recall |a2 | ≥ max{|a1 |, |a3 |}.
Accordingly, we may assume |a1 | ≥ |a3 | so that

1 − |a1 |
2

|1 − 〈a3,a1〉|
≤

√
1 − r2

13 ≤

√
1 − ε2(3.19)

by (2.2) and (3.11). It follows that

JN1 (a1) = Jm(a1)

≥ 1 −

(
1 − |a1 |

2

|1 − 〈a3,a1〉|

)m
−






(

1 − |a1 |
2

1 − 〈a2,a1〉

)m
−

(
1 − |a1 |

2

1 − 〈a4,a1〉

)m




≥

3
4
− (1 − ε2

)

m/2

≥

1
2

;

the last inequality holds by (3.13).
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Next, we consider the case r34 ≤ r24. In this case a similar argument using Lemma 3.1
yields 





(
1 − |a2 |

2

1 − 〈a3,a2〉

)m
−

(
1 − |a2 |

2

1 − 〈a4,a2〉

)m



 ≤ 1
4
.

Thus, using (3.15) in place of (3.19), we obtain

JN1 (a2) = Jm(a2) ≥
1
2
.

This completes the proof of (3.17) for Case (iii). The proof is complete. �

Having Lemmas 3.2 and 3.3, we now proceed to the proof of the first part of in Theorem
1.1, which can be restated as follows.

PROPOSITION 3.4. With the notation as in Theorem 1.1, assume that T is compact on
Ap
α(B). Then MM̃ ∈ C0(B).

PROOF. We assume MM̃ � C0(B) and complete the proof by deriving a contradiction
to the compactness of T .

Since MM̃ � C0(B), there is a sequence {zk} ∈ B with |zk | → 1 and

inf
k

M(zk)M̃(zk) > 0(3.20)

as k → ∞. For simplicity we introduce some temporary notation associated with this sequence.
Put

ajk := ϕj (zk) and Q jk :=
1 − |zk |
1 − |ajk |

for each j and k. By the Schwarz-Pick Lemma, we have

sup
k

Q jk ≤

1 + |ϕj (0)|
1 − |ϕj (0)|

(3.21)

for each j. Thus, after passing to a subsequence of {zk} if necessary, we may assume that the
sequence {Q jk}k converges for each j. So, we note

V := { j : lim
k→∞

Q jk > 0} � ∅

by (3.20). Thus, for each j ∈ V , we have 1 − |zk | ≈ 1 − |ajk | for all k and thus |ajk | → 1 as
k → ∞. Finally, put

rijk := ρij (zk) = ρ(aik,ajk)

for each i, j and k. With these notations, we have

Mij (zk) = (Qik +Q jk)rijk

for each i, j and k. Here, ρij and Mij are the functions specified in (1.2) and (1.3).
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Now, we introduce our test function. Let Λ be the set of all positive integers greater than
n+1+α

p . Given j ∈ V and m ∈ Λ, let

f j ,m
k

(z) :=
(1 − |ajk |

2
)

m−

n+1+α
p

(1 − 〈z,ajk〉)
m

, z ∈ B

for positive integers k. For fixed j and m, note from (2.8) and (2.9) that { f j ,m
k

}k is bounded
in Ap

α(B) and that f j ,m
k

→ 0 uniformly on compact subsets of B as k → ∞. So, we have

lim
k→∞

‖T f j ,m
k

‖A
p
α
= 0

by Lemma 2.1. This, together with (2.6), yields

‖T f j ,m
k

‖A
p
α
� |T f j ,m

k
(zk)|(1 − |zk |

2
)

n+1+α
p

≈ |T f j ,m
k

(zk)|(1 − |ajk |
2
)

n+1+α
p

= Jm(ajk)

where Jm = Jm( · ; a1k,a2k,a3k,a4k) is the function introduced in (3.2). Accordingly, we have

lim
k→∞

Jm(ajk) = 0 .

Note that this holds for each j ∈ V and m ∈ Λ. As a consequence we obtain

lim
k→∞

[ ∑
m∈ΛF

∑
j∈V

Jm(ajk)

]
= 0(3.22)

for any finite set ΛF ⊂ Λ. On the other hand, we will prove below that this is not possible by
(3.20), which is a contradiction.

Note from (3.21) that both M and M̃ are bounded above on B. We also note from (3.20)
that M and M̃ both bounded below along the sequence {zk } by some positive number, say 2c.
So, we have

max{M12(zk),M34(zk)} ≥ c and max{M13(zk),M24(zk)} ≥ c

for each k. Thus, for each k, at least one of the following four cases holds:

(a) min{M12(zk),M13(zk)} ≥ c;
(b) min{M12(zk),M24(zk)} ≥ c;
(c) min{M34(zk),M13(zk)} ≥ c;
(d) min{M34(zk),M24(zk)} ≥ c.
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First, consider Case (a). Restating Case (a) more explicitly, we have

(Q1k +Q2k)r12k ≥ c and (Q1k +Q3k)r13k ≥ c(3.23)

for each k. This, together with (3.21), yields δ > 0 such that

min{r12k, r13k} ≥ δ(3.24)

for each k. Note that the sequence {Q jk }k is bounded below by some positive number for each
j ∈ V . Thus we may further assume

min
j∈V

Q jk > δ

for each k. This, together with (3.21), yields

δ <
1 − |zk |
1 − |ajk |

≤ s := max
1≤i≤4

1 + |ϕi(0)|
1 − |ϕi(0)|

so that

ε ≤

1 − |aik |
1 − |ajk |

≤

1
ε

where ε :=
δ

s
< 1(3.25)

for i, j ∈ V and for each k. We also have by (3.24)

ε ≤ min{r12k, r13k}(3.26)

for each k.

We now split the proof according to the number �V of the elements of the set V :
Subcase (a1): Assume �V = 4 so that V = {1,2,3,4}. For j ∈ V , note |ajk | ≥

1
2 for

k sufficiently large, because |ajk | → 1 as k → ∞. Having (3.25) and (3.26), we may apply
Lemma 3.3 to find a finite set Λ1 ⊂ Λ, independent of ajk’s, such that

max
m∈Λ1
j∈V

Jm(ajk) ≥
1
2

for k sufficiently large.
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Subcase (a2): Assume �V = 3. We provide details for V = {1,2,3}; other cases can be
treated in a similar way. Note

1 − |ajk |
2

|1 − 〈a4k,ajk〉|
≤

2
δ

1 − |zk |
|1 − 〈a4k,ajk〉|

≤

2
δ

Q4k → 0 , j ∈ V

as k → ∞. This yields

Jm(ajk) ≥ Im(ajk) −

(
2Q4k

δ

)m
≥ Im(ajk) −

1
4
, j ∈ V, m ∈ Λ

for k sufficiently large. Accordingly, having (3.25), we may apply Lemma 3.2 to find a finite
set Λ2 ⊂ Λ, independent of ajk’s, such that

max
m∈Λ2
j∈V

Im(ajk) ≥
1
2

where Im = Im( · ; a1k,a2k,a3k) is the function introduced in (3.2). This in turn yields

max
m∈Λ2
j∈V

Jm(ajk) ≥
1
4

for k sufficiently large.

Subcase (a3): Assume �V = 2. In this case we claim that there is some m1 ∈ Λ such that

max
m∈Λ3
j∈V

Jm(ajk) ≥
1
4

where Λ3 := {m1,2m1,3m1}(3.27)

for k sufficiently large. We provide below details for the cases V = {1,2} and V = {1,4};
other cases can be treated in a similar way. In conjunction with this we note from (3.23) that
V � {2,4} and V � {3,4}.

First, consider the case V = {1,2}. In this case we may assume (after passing to a
subsequence if necessary) |a1k | ≥ |a2k | by symmetry so that

1 − |a1k |
2

|1 − 〈a1k,a2k〉|
≤

√
1 − r2

12k ≤

√
1 − δ2

by (2.2) and (3.24). Now, since Q3k +Q4k → 0 as k → ∞, we have as in the proof of Subcase
(a2)

Jm(a1k) ≥ 1 −

(
1 − |a1k |

2

|1 − 〈a1k,a2k〉|

)m
−

1
4
, m ∈ Λ

≥

3
4
− (1 − δ2

)

m/2

for k sufficiently large. Accordingly, choosing m1 ∈ Λ sufficiently large so that (1− δ2
)

m1
≤

1
4 ,

we conclude (3.27).
We now consider the case V = {1,4}. Since Q2k + Q3k → 0 as k → ∞, we obtain as in

the proof of Subcase (a2)

Jm(a1k) ≥





1 +
(

1 − |a1k |
2

1 − 〈a4k,a1k〉

)m



 − 1
4
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≥

3
4
+ Re

(
1 − |a1k |

2

1 − 〈a4k,a1k〉

)m
, m ∈ Λ

for k sufficiently large. We thus conclude (3.27) as in the proof of (3.14).
Subcase (a4): Assume �V = 1. We provide details for V = {1}; other cases can be treated

in a similar way. Since Q2k +Q3k +Q4k → 0 as k → ∞, we have as in the proof of Subcase
(a2)

Jm(a1k) ≥
1
4
, m ∈ Λ

for k sufficiently large. Thus, fixing any m3 ∈ Λ, we conclude

max
m∈Λ4
j∈V

Jm(ajk) ≥
1
4

where Λ4 := {m3}

for k sufficiently large.
Now, putting

Λa :=
4⋃

=1

Λ


where Λ
’s are the finite sets obtained in Subcases (a1)–(a4), we conclude for Case (a)

max
m∈Λa
j∈V

Jm(ajk) ≥
1
4

for k sufficiently large.
So far we have constructed a finite set Λa ⊂ Λ that corresponds to Case (a). One may

repeat similar arguments to find finite sets Λb, Λc and Λd that correspond to Case (b), Case
(c) and Case (d), respectively. Finally, setting

ΛF0 := Λa ∪ Λb ∪ Λc ∪ Λc,

we obtain

max
m∈ΛF0
j∈V

Jm(ajk) ≥
1
4

for k sufficiently large, which is a contradiction to (3.22). The proof is complete. �

4. Sufficiency for Compactness. In this section we prove the second part of Theorem
1.1. We first recall a sufficient condition for boundedness of a composition operator on Ap

α(B).
The next lemma is taken from [4, Theorem 3.3].

LEMMA 4.1. Let β > −1 and 0 < q < ∞. Let ϕ ∈ S. If Cϕ is bounded on Aq
β(B), then

Cϕ is bounded on Ap
α(B) for any α ≥ β and 0 < p < ∞.

Given α > −1 and a bounded nonnegative Borel function W on B, put

dWα := Wdvα .
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Associated with this measure is the weighted pullback measure d(Wα ◦ ϕ−1
) defined by

(Wα ◦ ϕ−1
)(E) := Wα[ϕ

−1
(E)]

for Borel subsets E of B.
In the setting of the disk the next lemma is implicit in the proof of [9, Lemma 1]. The

proof below is included for completeness.

LEMMA 4.2. Let α > β > −1 and 0 < p,q < ∞. Put γ := min{α − β,1}. Let ϕ ∈ S

and assume that Cϕ is bounded on Aq
β(B). Let ε > 0 and W : B → [0,1] be a Borel function.

If

sup
z∈B

[
W(z)

1 − |z|
1 − |ϕ(z)|

]
≤ ε ,(4.1)

then there is a constant C = C(α, β) > 0 such that∫
B
| f ◦ ϕ|pW dvα ≤ Cεγ‖ f ‖p

A
p
α

for functions f ∈ Ap
α(B).

PROOF. Assume (4.1). Since β1 := α − γ ≥ β, we note ‖vβ1 ◦ ϕ
−1
‖β1 < ∞ by Lemma

4.1 and (2.10). Also, note W1−γ
≤ 1, because γ ≤ 1. We thus have for z ∈ B

(Wα ◦ ϕ−1
)[E(z)] =

∫
ϕ−1

[E(z)]
W(w) dvα(w)

≈

∫
ϕ−1

[E(z)]
W(w)1−γ

[
W(w)(1 − |w |2)

]γ
dvβ1(w)

≤ εγ
∫
ϕ−1

[E(z)]
(1 − |ϕ(w)|)γ dvβ1(w)

≈ εγ(1 − |z|)γvβ1[ϕ
−1
(E(z))] ;

the last estimate holds by (2.4). This, together with (2.5), yields

Wα ◦ ϕ−1
[E(z)]

vα[E(z)]
� εγ

(vβ1 ◦ ϕ
−1
)[E(z)]

vβ1[E(z)]
;

the constant suppressed here depends only on n, α and β. It follows that

‖Wα ◦ ϕ−1
‖α ≤ Cεγ‖vβ1 ◦ ϕ

−1
‖β1

for some constant C = C(α, β) > 0. We therefore conclude the lemma by (2.10) and (2.11).
The proof is complete. �

The following lemma is a key step in the proof of sufficiency part.

LEMMA 4.3. Let α > β > −1 and 0 < p,q < ∞. Let ϕ,ψ ∈ S and assume that Cϕ,Cψ
are bounded on Aq

β(B). Let K ⊂ B be a Borel set. If

sup
z∈K

[(
1 − |z|

1 − |ϕ(z)|
+

1 − |z|
1 − |ψ(z)|

)
ρ
(
ϕ(z), ψ(z)

)]
≤ ε ,(4.2)



628 B. CHOE, H. KOO AND J. YANG

then there exists a constant h(ε) = h(ε, p, α, β, ϕ,ψ) > 0 such that

lim
ε→0

h(ε) = 0

and ∫
K
| f ◦ ϕ − f ◦ ψ |p dvα ≤ h(ε)‖ f ‖p

A
p
α

for functions f ∈ Ap
α(B).

PROOF. Assume (4.2) and let f ∈ Ap
α(B). For a number δ = δ(ε) ∈ (0, 1

3 ) to be fixed
later, we decompose the integral under consideration into two parts as∫

K
| f ◦ ϕ − f ◦ ψ |p dvα =

∫
Kδ

+

∫
K′

δ

(4.3)

where

Kδ := {z ∈ K : ρ(ϕ(z), ψ(z)) < δ} and K ′

δ := K \ Kδ .

First, we estimate the first term in the right-hand side of (4.3). Applying Lemma 2.2 (with
r1 =

1
3 and r2 =

1
2 ) and then Fubini’s Theorem, we obtain∫

Kδ

�
∫

B

δp

(1 − |ϕ(z)|2)n+1+α

[∫
E(ϕ(z))

(
Δ̃| f |2(w)

)p/2 dvα(w)

]
dvα(z)

= δp
∫

B

(
Δ̃| f |2(w)

)p/2 [∫
ϕ−1

[E(w)]

dvα(z)

(1 − |ϕ(z)|2)n+1+α

]
dvα(w) ;

recall E(·) = E1/2(·). Meanwhile, noting that ρ
(
ϕ(z), w

)
< 1

2 for z ∈ ϕ−1
[E(w)], we obtain by

(2.4) and (2.5)∫
ϕ−1

[E(w)]

dvα(z)

(1 − |ϕ(z)|2)n+1+α ≈

(vα ◦ ϕ−1
)[E(w)]

vα[E(w)]
≤ ‖vα ◦ ϕ−1

‖α

for all w ∈ B. In addition, since Cϕ is bounded on Ap
α(B) by Lemma 4.1, we note ‖vα◦ϕ−1

‖α <

∞ by (2.10) and (2.11). Combining these observations and then using (2.12), we obtain∫
Kδ

� δp
∫

B
| f (w) − f (0)|p dvα(w) � δp ‖ f ‖p

A
p
α
.(4.4)

Next, we estimate the second term in the right-hand side of (4.3). Note δχK′

δ
≤ ρ(ϕ,ψ), where

χK′

δ
denotes the characteristic function of K ′

δ . By (4.2), we have

χK′

δ
(z)

(
1 − |z|

1 − |ϕ(z)|
+

1 − |z|
1 − |ψ(z)|

)
≤

ε

δ

for all z ∈ B. It follows from Lemma 4.2 that∫
K′

δ

�
∫

B
(| f ◦ ϕ|p + | f ◦ ψ |p)χK′

δ
dvα �

( ε
δ

)γ
‖ f ‖p

A
p
α

(4.5)

where γ := min{α − β,1}.
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Now, we deduce from (4.5) and (4.4)

∫
K
| f ◦ ϕ − f ◦ ψ |p dvα �

[ (ε
δ

)γ
+ δp

]
‖ f ‖p

A
p
α
, f ∈ Ap

α(B) .

One may keep track of the constant suppressed above to see that it is independent of f , ε and
δ. Consequently, a suitable choice of δ, say δ =

√

ε

1+3
√

ε
, completes the proof. �

Now, we are ready to prove the second part of Theorem 1.1.

PROPOSITION 4.4. With the notation as in Theorem 1.1, assume MM̃ ∈ C0(B). Then
T is compact on Ap

α(B), provided that each Cϕ j is bounded on Aq
β(B) for some β ∈ (−1, α) and

0 < q < ∞.

PROOF. Assume that each Cϕ j is bounded on Aq
β(B) for some β ∈ (−1, α) and 0 < q <

∞. Consider an arbitrary sequence { fk } in Ap
α(B) such that ‖ fk ‖Ap

α
≤ 1 and fk → 0 uniformly

on compact subsets of B. We claim

T fk → 0 in Ap
α(B) .(4.6)

Note that, with this claim granted, the asserted compactness of T follows from Lemma 2.1.
We now proceed to the proof of (4.6). Let ε > 0. Since MM̃ ∈ C0(B) by assumption,

there is some r ∈ (0,1) such that

M(z)M̃(z) ≤ ε2

for z with |z| ≥ r. Thus, setting

Uε := {z ∈ B : M(z) ≤ ε} and Ũε := {z ∈ B : M̃(z) ≤ ε} ,

we note

B \ rB ⊂ Uε ∪ Ũε .

According to this observation, we obtain

∫
B
|T fk |

p dvα ≤

∫
rB
+

∫
Uε

+

∫
Ũε

=: I1k + I2k + Ĩ2k(4.7)

for each k.
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Note fk → 0 uniformly on the set ∪4
j=1ϕj (rB) which is relatively compact in B. So, for

the integral over rB in (4.7), we conclude

I1k → 0(4.8)

as k → ∞. Meanwhile, note

M(z) = M12(z) + M34(z) ≤ ε

for z ∈ Uε. So, for the integral over Uε in (4.7), we see by Lemma 4.3 that there is a constant
h(ε) > 0 satisfying h(ε) → 0 as ε → 0 and

I2k �
∫
Uε

|T12 fk |
p dvα +

∫
Uε

|T34 fk |
p dvα ≤ h(ε)

for all k. It follows that

lim sup
k→∞

I2k � h(ε).(4.9)

Recalling T = T13 − T24 from (1.1), one may repeat the same argument to conclude

lim sup
k→∞

Ĩ2k � h̃(ε)(4.10)

for some constant h̃(ε) > 0 such that h̃(ε) → 0 as ε → 0. One may check that the constants
suppressed in (4.9) and (4.10) are independent of k and ε. Thus, combining the observations
in (4.8), (4.9) and (4.10), we obtain

lim sup
k→∞

∫
B
|T fk |

p
≤ C[h(ε) + h̃(ε)]

for some constant C > 0 independent of ε. Finally, taking the limit ε → 0, we conclude (4.6),
as required. The proof is complete. �

5. Remarks. Note that Theorem 1.1 can be applied even when some of the operators
Cϕ j ’s coincide or already compact. So, in this section we consider three special cases to
recover or derive some consequences which might be of independent interest.

When ϕ2 = ϕ3 = ϕ4 ≡ 0, note

MM̃ = M2
12 .

In conjunction with this, we also note ρ12 = ρ
(
ϕ1(z),0

)
= |ϕ1(z)| so that

(5.1) M12(z) =

[
1 − |z|

1 − |ϕ1(z)|
+ (1 − |z|)

]
|ϕ1(z)|

=
1 − |z|

1 − |ϕ1(z)|
− (1 − |z|)(1 − |ϕ1(z)|).

We thus recover the following characterization due to Zhu [13, Theorem 11].

COROLLARY 5.1. Let α > −1 and 0 < p < ∞. Let ϕ ∈ S and assume that Cϕ is
bounded on Aq

β(B) for some β ∈ (−1, α) and 0 < q < ∞. Then Cϕ is compact on Ap
α(B) if and
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only if

lim
|z |→1

1 − |z|
1 − |ϕ(z)|

= 0 .

Meanwhile, when ϕ1 = ϕ4 and ϕ2 = ϕ3, note

MM̃ = 4M2
12 .

Thus we recover the following result (see [2, Theorem 4.7]), which is a ball version of
Moorhouse’s characterization for compact differences over the disk.

COROLLARY 5.2. Let α > −1 and 0 < p < ∞. Let ϕ,ψ ∈ S and assume that Cϕ and
Cψ are both bounded on Aq

β(B) for some β ∈ (−1, α) and 0 < q < ∞. Then Cϕ−Cψ is compact
on Ap

α(B) if and only if

lim
|z |→1

(
1 − |z|

1 − |ϕ(z)|
+

1 − |z|
1 − |ψ(z)|

)
ρ
(
ϕ(z), ψ(z)

)
= 0 .

Also, consider the case ϕ1 = ϕ4. In this case we have

MM̃ = (M12 + M13)
2 .

Thus, as a consequence of Corollary 5.2, we obtain following result.

COROLLARY 5.3. Let α > −1 and 0 < p < ∞. For j = 1,2,3 let ϕj ∈ S and assume
that Cϕ j is bounded on Aq

β(B) for some β ∈ (−1, α) and 0 < q < ∞. Then the following two
assertions are equivalent:

(a) 2Cϕ1 − Cϕ2 − Cϕ3 is compact on Ap
α(B);

(b) Cϕ1 − Cϕ2 and Cϕ1 − Cϕ3 are both compact on Ap
α(B).

Finally, we consider the case when one of the operators is already compact. Recall that
A(ϕ) denotes the angular derivative set of ϕ ∈ S.

COROLLARY 5.4. Let α > −1 and 0 < p < ∞. For j = 1,2,3 let ϕj ∈ S and assume
that Cϕ j is bounded on Aq

β(B) for some β ∈ (−1, α) and 0 < q < ∞. Then the following three
assertions are equivalent:

(a) Cϕ1 − Cϕ2 − Cϕ3 is compact on Ap
α(B);

(b) lim
|z |→1

[
M12(z) +

1 − |z|
1 − |ϕ3(z)|

] [
M13(z) +

1 − |z|
1 − |ϕ2(z)|

]
= 0;

(c) A(ϕ1) = A(ϕ2) ∪ A(ϕ3) and A(ϕ2) ∩ A(ϕ3) = ∅. Moreover,

lim
z→ζ

M1j (z) = 0 , ζ ∈ A(ϕj )(5.2)

for j = 2,3.

PROOF. As in (5.1), we have

Mj4(z) =
1 − |z|

1 − |ϕj (z)|
− (1 − |z|)(1 − |ϕj (z)|)

for j = 2,3. Thus the condition MM̃ ∈ C0(B) reduces to Assertion (b). So, (a) and (b) are
equivalent by Theorem 1.1. While the equivalence of (a) and (c) is contained in [2, Theorem
5.4], we include below another proof by establishing the equivalence of (b) and (c).
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Assume that (c) holds. Since A(ϕ1) is the disjoint union of A(ϕ2) and A(ϕ3), we have

either
1 − |z|

1 − |ϕ2(z)|
→ 0 or

1 − |z|
1 − |ϕ3(z)|

→ 0 as z → ζ

for each ζ ∈ A(ϕ1). Thus we have by (5.2)

lim
z→ζ

[
M12(z) +

1 − |z|
1 − |ϕ3(z)|

] [
M13(z) +

1 − |z|
1 − |ϕ2(z)|

]
= 0(5.3)

for any ζ ∈ A(ϕ1). Note

1 − |z|
1 − |ϕ2(z)|

→ 0 and
1 − |z|

1 − |ϕ3(z)|
→ 0 as z → ζ

for ζ ∈ ∂B \ A(ϕ1). Thus, (5.3) remains valid for ζ ∈ ∂B \ A(ϕ1) by (5.2). So, (b) holds, as
asserted.

Conversely, assume that (b) holds. Since (b) implies

lim
z→ζ

1 − |z|
1 − |ϕ2(z)|

·

1 − |z|
1 − |ϕ3(z)|

= 0 , ζ ∈ ∂B ,

we note A(ϕ2) ∩ A(ϕ3) = ∅ by the Julia-Carathéodory Theorem. Next, assume ζ ∈ A(ϕ2) but
ζ � A(ϕ1). We then have by (2.1)

1 − ρ2
12(λζ)

4
≤

1 − |ϕ2(λζ)|

1 − |ϕ1(λζ)|
=

1 − |ϕ2(λζ)|

1 − |λζ |
·

1 − |λζ |

1 − |ϕ1(λζ)|

for λ ∈ B1. So we have by (2.13) and (2.14)

∠ lim
λ→1

ρ12(λζ) = 1

and thus

∠ lim
λ→1

(
M12(λζ) ·

1 − |λ |

1 − |ϕ2(λζ)|

)
=

1
d2
ϕ2(ζ)

> 0 ,

which contradicts to (b). We thus conclude A(ϕ2) \ A(ϕ1) = ∅, i.e., A(ϕ2) ⊂ A(ϕ1). Similarly,
we have A(ϕ3) ⊂ A(ϕ1). On the other hand, if ζ ∈ A(ϕ1) but ζ � A(ϕ2) ∪ A(ϕ3), then a similar
argument yields

∠ lim
λ→1

M12(λζ)M13(λζ) =
1

d2
ϕ1(ζ)

> 0 ,

which again contradicts to (b). Accordingly, we conclude A(ϕ1) = A(ϕ2) ∪ A(ϕ3).
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We now show (5.2). By symmetry it is enough to consider the case j = 2 only. In order
to derive a contradiction, suppose that (5.2) fails for some ζ ∈ A(ϕ2). We then have

inf
k

M12(zk) > 0(5.4)

for some sequence {zk} ⊂ B converging to ζ . This implies

inf
k
ρ12(zk) > 0 .(5.5)

Since

lim
k→∞

M12(zk)

(
M13(zk) +

1 − |zk |
1 − |ϕ2(zk)|

)
= 0

by (b), we also have by (5.4)

lim
k→∞

M13(zk) = 0(5.6)

and

lim
k→∞

1 − |zk |
1 − |ϕ2(zk)|

= 0 .(5.7)

It follows from (5.4), (5.5) and (5.7) that

inf
k

1 − |zk |
1 − |ϕ1(zk)|

> 0 ,(5.8)

which, together with (5.6), in turn yields

lim
k→∞

ρ13(zk) = 0 .

In particular, by (2.4), we have 1 − |ϕ1(zk)| ≈ 1 − |ϕ3(zk)| for all k and thus obtain by (5.8)

lim sup
k→∞

1 − |zk |
1 − |ϕ3(zk)|

> 0 .

Consequently, we conclude ζ ∈ A(ϕ3), which contradicts to the fact that A(ϕ2) and A(ϕ3) are
disjoint. The proof is complete. �

We now turn to the construction of explicit examples showing that the additional bound-
edness assumption in Theorem 1.1(b) cannot be removed. For simplicity we take n = 2 for the
rest of the paper. We introduce some notation. For the rest of the paper we use the notation

h(z) := z1 +
z2
2
2

for z = (z1, z2) ∈ B2. Given 0 < ε < 1, we put

ψε(z) :=
(
1 −

(
1 − h(z)

2

)ε
,0
)
.

Since h(B2) ⊂ B1, we have ψε ∈ S(B2).
Put

e := (1,0) .
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Since |Arg(1 − 〈ψε(z), e〉)| ≤ επ
2 , we also note that 〈ψε(z), e〉 is contained in a nontangential

region with vertex at 1. So, there is a constant c = c(ε) > 1 such that

|1 − 〈ψε(z), e〉| < c(1 − |〈ψε(z), e〉|)(5.9)

for all z ∈ B2. Finally, we put

Sδ(ζ) := {z ∈ B2 : |1 − 〈z, ζ〉| < δ}

for 0 < δ < 1 and ζ ∈ ∂B2.
We need some preliminary lemmas. First, we observe that each function ψε does not

have any finite angular derivatives.

LEMMA 5.5. Let 0 < ε < 1. Then

lim
|z |→1

1 − |z|
1 − |ψε(z)|

= 0 .

PROOF. By the Julia-Carathéodory Theorem it suffice to prove that ψε does not have
any finite angular derivatives. Noting ψ−1

ε (∂B2) = {e}, we consider a restricted e-curve γ in
B2 given by

γ(t) =

(
t,

1 − t
2

)
, 0 ≤ t < 1 .

Note that ψε(e) = e and
1 − 〈ψε(γ(t)), e〉

1 − 〈γ(t), e〉
=

1
1 − t

[
1 − h(γ(t))

2

]ε

=
1

1 − t

(
1 − t

2

)ε (3 + t
4

)ε

→∞

as t → 1. This shows that ψε does not have angular derivative at e. So, we see that ψε does
not have any finite angular derivatives, as asserted. The proof is complete. �

Next, we investigate the relation of weight parameters α and β for which an operator of
the form

L :=
N∑
j=1

ajCϕ j where ϕj := λjψε(5.10)

is bounded from Ap
α(B2) into Ap

β(B2). Here, N is a positive integer, λ1, . . . , λN are distinct
unimodular complex numbers and a1, . . . ,aN are nonzero complex numbers. To this end we
recall the following optimal estimate which is implicit in the proof of [8, Proposition 4.4].

LEMMA 5.6. Let α > −1. Then there is a constant C = C(α) > 0 such that

C−1
≤

(vα ◦ h−1
)

[
S̃δ(1)

]
δ3+α−1/4 ≤ C

for 0 < δ < 1 where S̃δ(1) = {λ ∈ B1 : |1 − λ | < δ}.
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LEMMA 5.7. Let α, β > −1 and 0 < p < ∞. Let 0 < ε < 1 and L be an operator as in
(5.10). Then L : Ap

α(B2) → Ap
β(B2) is bounded if and only if β + 3 ≥ ε(α + 3) + 1

4 .

PROOF. We first establish the optimal estimate

sup
ζ ∈∂B2

(vβ ◦ ψ
−1
ε )[Sδ(ζ)]

vα[Sδ(ζ)]
≈ δ(3+β−1/4)/ε−3−α(5.11)

for 0 < δ < 1. In conjunction with this estimate, we recall the well-known estimate

vα[Sδ(ζ)] ≈ δ3+α , 0 < δ < 1(5.12)

uniformly in ζ ∈ ∂B2; see, for example, [5, Exercise 2.2.8].
Let ζ ∈ ∂B2. To avoid triviality assume ψ−1

ε [Sδ(ζ)] � ∅ and let z ∈ ψ−1
ε [Sδ(ζ)]. Since

|〈ψε(z), ζ〉| ≤ |ψε(z)| = |〈ψε(z), e〉| ,

we note from (5.9)

|1 − 〈ψε(z), e〉| ≤ c |1 − 〈ψε(z), ζ〉| < cδ .

In other words, we have

ψ−1
ε [Sδ(ζ)] ⊂ ψ−1

ε [Scδ(e)] ,

which allows us to focus on the case ζ = e. Note

Sδ(e) = {z ∈ B2 : |1 − z1 | < δ}

and thus

ψ−1
ε [Sδ(e)] = {z ∈ B2 : |1 − h(z)| < 2δ1/ε

} = h−1 [S̃2δ1/ε (1)
]
.

We thus have by Lemma 5.6

(vβ ◦ ψ
−1
ε )[Sδ(e)] ≈ δ(3+β−1/4)/ε

for 0 < δ < 1. By this and (5.12) we conclude (5.11), as required.
We now proceed to the proof of the lemma. Note by (5.11) and the well-known Carleson

Measure Criteria (see, for example, [7, Proposition 3.1]) that

Cϕ j : Ap
α(B2) → Ap

β(B2) is bounded ⇐⇒ β + 3 ≥ ε(α + 3) +
1
4

(5.13)

for each j. So, the lemma holds for N = 1. Also, this implies the sufficiency part of the lemma.
We now prove the necessity part of the lemma for the case N ≥ 2. So, suppose that

L : Ap
α(B2) → Ap

β(B2) is bounded. We may assume λ1 = 1 so that ϕ1 = ψε . We employ test
functions fδ given by

fδ (z) :=
δ1/p

[1 − (1 − δ)z1](α+4)/p , z = (z1, z2) ∈ B2

for 0 < δ < 1. Note ‖ fδ ‖Ap
α
≈ 1 for all δ by (2.8). It follows that

1 � ‖L fδ ‖
p

A
p
β
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� |a1 |
p

∫
B2

| fδ ◦ ϕ1 |
p dvβ −

N∑
j=2

|aj |
p

∫
B2

| fδ ◦ ϕj |
p dvβ

=: I − I I .

To estimate the first integral of the above, we note

|1 − (1 − δ)z1 | ≤ 2δ, z ∈ Sδ(e)

and thus | fδ |p � δ−(α+3) on Sδ(e). Accordingly, we obtain

I = |a1 |
p

∫
B2

| fδ |
p d(vβ ◦ ψ

−1
ε )

≥ |a1 |
p

∫
Sδ (e)

| fδ |
p d(vβ ◦ ψ

−1
ε )

�
(vβ ◦ ψ

−1
ε )[Sδ(e)]
δα+3

≈ δ(3+β−1/4)/ε−3−α ;

the last estimate holds by (5.11). Meanwhile, since

( fδ ◦ ϕj )(e) = fδ(λje) = O(δ1/p
)

for each j � 1, we have

I I = O(δ)

for 0 < δ < 1. Combining these observations, we obtain

δ(3+β−1/4)/ε−3−α = O(1),

which yields β + 3 ≥ ε(α + 3) + 1
4 , as required. This completes the proof. �

We now close the paper with the following example in connection with Theorem 1.1 and
its corollaries in this section.

EXAMPLE 5.8. Let α > −1 and 1 −

1
4(α+3) < ε < 1. Let L be an operator as in (5.10).

Then

lim
|z |→1

1 − |z|
1 − |ϕj (z)|

= 0(5.14)

for each j, but L is not bounded on Ap
α(B) for any 0 < p < ∞.

PROOF. Clearly, (5.14) holds by Lemma 5.5. Meanwhile, since α + 3 < ε(α + 3) + 1
4 ,

we see from Lemma 5.7 that L is not bounded on Ap
α(B) for any 0 < p < ∞. �
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