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Abstract. In this paper, by using monotonicity formulas for vector bundle-valued
p-forms satisfying the conservation law, we first obtain general L2 global rigidity theorems
for locally conformally flat (LCF) manifolds with constant scalar curvature, under curvature
pinching conditions. Secondly, we prove vanishing results for L2 and some non-L2 harmonic p-
forms on LCF manifolds, by assuming that the underlying manifolds satisfy pointwise or integral
curvature conditions. Moreover, by a theorem of Li-Tam for harmonic functions, we show that
the underlying manifold must have only one end. Finally, we obtain Liouville theorems for
p-harmonic functions on LCF manifolds under pointwise Ricci curvature conditions.

1. Introduction. In the study of Riemannian geometry, locally conformally flat mani-
folds play an important role. Let us recall that an n-dimensional Riemannian manifold (Mn, g)
is said to be locally conformally flat (LCF) if it admits a coordinate covering {Uα, ϕα} such that
the map ϕα : (Uα, gα) → (Sn, g0) is a conformalmap, where g0 is the standard metric on Sn. A
locally conformally flat manifold may be regarded as a higher dimensional generalization of a
Riemann surface. But not every higher dimensional manifold admits a locally conformally flat
structure, and it is an interesting problem to give a good classification of locally conformally
flat manifolds. By assuming various geometric situations, many partial classification results
have been given (see, for examples, [7, 10, 9, 25, 28, 29, 36, 38], etc.).

In the first part, we use the stress-energy tensor to study the rigidity of LCF manifolds. In
[13], the authors presented a unified method to establish monotonicity formulas and vanishing
theorems for vector-bundled valued p-forms satisfying a conservation law, by means of the
stress-energy tensors of various energy functionals in geometry and physics. Later, the authors
in [12] established similar monotonicity formulas by using various exhaustion functions.
As applications, they proved the Ricci flatness of a Kähler manifold with constant scalar
curvature under growth conditions for the Ricci form, and obtained Bernstein type theorems
for submanifolds in Euclidean spaces with parallel mean curvature under growth conditions
on the second fundamental form. In this paper, we attempt to use monotonicity formulas to
study rigidity properties of LCF metric with constant scalar curvature. For these aims, we may
interpret the Riemannian (resp. Ricci) curvature tensor as a 2-form (resp. 1-form) with values
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in the bundle of symmetric endomorphisms of T (M) endowed with its canonical structure of
Riemannian vector bundle. For LCF manifolds with constant scalar curvature, the 1-forms
corresponding to the Ricci curvature tensor and to the traceless Ricci curvature tensor also
satisfy conservation laws. Hence we can establish monotonicity formulas for those one forms,
from which L2 curvature pinching theorems are deduced.

On the other hand, it is an interesting problem in geometry and topology to find sufficient
conditions on a LCF manifold M for the vanishing of harmonic forms. When M is compact,
the Hodge theory states that the space of harmonic p-forms on M is isomorphic to its p-th
de Rham cohomology group. In [4], Bourguignon proved that a compact, 2m-dimensional,
LCF manifold of positive scalar curvature has no non-zero harmonic m-forms, hence its m-th
Betti number βm = 0. Later, Nayatani [24] generalized Bourguignon’s result and proved that
a compact LCF manifold Mn with nonnegative scalar curvature satisfies βp = 0 for d + 1 <

p < n − p − 1, where d = d (M) is the Schoen-Yau invariant of Mn. In [16], Guan, Lin
and Wang obtained a cohomology vanishing theorem on compact LCF manifolds under a
positivity assumption on the Schouten tensor. For the non-compact case, the Hodge theory
is no longer true in general. However, it is known that L2 Hodge theory remains valid for
complete non-compact manifolds. Hence it is important to investigate L2 harmonic forms. In
[26], Pigola, Rigoli and Setti showed a vanishing result for bounded harmonic forms of middle
degree on complete non-compact LCF manifolds, by adding suitable conditions on scalar
curvature and volume growth. In [21], Lin proved some vanishing and finiteness theorems
for L2 harmonic 1-forms on complete non-compact LCF manifolds under integral curvature
pinching conditions.

Since the Riemannian curvatureof a LCF manifold can be expressed by its Ricci curvature
and scalar curvature, we can compute explicitly the Weitzenböck formula for harmonic p-
forms. Based on this formula, together with L2-Sobolev inequality or weighted Poincaré
inequality, we shall establish vanishing results for L2 harmonic p-forms under various Ln/2-
integral curvature or pointwise curvature pinching conditions. In particular, we show that if
the Ricci tensor is sufficiently near zero in the integral sense, then Hp (L2(M)) = {0} for all
0 ≤ p ≤ n, where Hp(L2(M)) denotes the space of all L2 harmonic p-forms on M. Moreover,
according to the nonexistence of nontrivial L2 harmonic 1-forms, we deduce that M has only
one end by Li-Tam’s harmonic functions theory.

Finally we also consider p-harmonic functions on LCF manifolds. When the scalar
curvature of a LCF manifold is negative, it is known that a weighted Poincaré inequality holds.
Hence we can use the results of Chang-Chen-Wei [8] to derive some Liouville theorems for
p-harmonic functions, by assuming pointwise Ricci curvature bounds.

2. Preliminaries. Let (M, g) be a complete manifold of dimension n ≥ 3. Let Rijkl

and Wijkl denote respectively the components of the Riemannian curvature tensor and the
Weyl curvature tensor of (M, g) in local orthonormal frame fields. A fundamental result in
Riemannian geometry is that (see [30])
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Wijkl =Rijkl − 1
n − 2

(Rikδ jl − Rilδ jk + Rjlδik − Rjkδil )(2.1)

+
R

(n − 1)(n − 2)
(δikδ jl − δilδ jk ) ,

where Rik and R denote the Ricci tensor and the scalar curvature respectively. The associated
Schouten tensor A with respect to g is defined by

A :=
1

n − 2

(
Ric − R

2(n − 1)
g

)
.

It is well known that if n = 3, then Wijkl = 0, and (M3, g) is locally conformally flat if and only
if the Schouten tensor is Codazzi, i.e., Aik, j − Aij,k = 0, where the Aij ’s are the components
of the Schouten tensor A. If n ≥ 4, then (Mn, g) is locally conformally flat if and only if the
Weyl tensor vanishes, i.e., Wijkl = 0. The local conformal flatness and the equation (2.1) yield

Rijkl =
1

n − 2
(Rikδ jl − Rilδ jk + Rjlδik − Rjkδil )(2.2)

− R
(n − 1)(n − 2)

(δikδ jl − δilδ jk ) .

Thus, a locally conformally flat manifold has constant sectional curvature if and only if it is
Einstein, that is, Ric = R

n g. As a consequence, by the Hopf classification theorem, space
forms are the only locally conformally flat Einstein manifolds.

If the scalar curvature R of a LCF manifold is constant, by (2.2) and the second Bianchi
identities, we immediately obtain that the Ricci tensor is Codazzi, that is, Rij,k = Rik, j .
Therefore, the traceless Ricci tensor E = Ric − R

n g is Codazzi too.
In order to get vanishing results for L2 harmonic p-forms on LCF manifols, we need the

following L2-Sobolev inequality. It is known that a simply connected, LCF manifold Mn (n ≥
3) has a conformal immersion into Sn, and according to Proposition 2.2 in [29], the Yamabe

constant of Mn satisfies Q(Mn) = Q(Sn) = n(n−2)ω
2
n
n

4 , where ωn is the volume of the unit
sphere in Rn. Therefore the following inequality

(2.3) Q(Sn)

(∫
M

f
2n
n−2 dv

) n−2
n

≤
∫
M
|∇ f |2dv +

n − 2
4(n − 1)

∫
M

R f 2dv

holds for all f ∈ C∞0 (M). If we assume R ≤ 0, then it follows that

(2.4) Q(Sn)

(∫
M

f
2n
n−2 dv

) n−2
n

≤
∫
M

|∇ f |2dv, ∀ f ∈ C∞0 (M) .

On the other hand, if
∫
M
|R| n2 dv < ∞, then we can choose a compact set Ω ⊂ M large enough

such that
(∫

M\Ω
|R| n2 dv

) 2
n

≤ 4ε(n − 1)Q(Sn)
n − 2
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for some ε satisfying 0 < ε < 1. By the Hölder inequality, the term involving the scalar
curvature can be absorbed into the left-hand side of (2.3) to yield

(1 − ε)Q(Sn)

(∫
M\Ω

f
2n
n−2 dv

) n−2
n

≤
∫
M\Ω
|∇ f |2dv, ∀ f ∈ C∞0 (M \ Ω) .

From the work of G. Carron [6] (one can also consult Theorem 3.2 of [27]), the following
L2-Sobolev inequality

(2.5) Cs

(∫
M

f
2n
n−2 dv

) n−2
n

≤
∫
M

|∇ f |2dv, ∀ f ∈ C∞0 (M)

holds for some uniform constant Cs > 0, which implies a uniform lower bound on the volume
of geodesic balls

(2.6) vol(Bx (ρ)) ≥ Cρn, ∀x ∈ M

for some constant C > 0 (see Proposition 2.1 of [1] for the compact case). Therefore, each
end of M has infinite volume.

3. Monotonicity formulas for curvature tensor and vanishing results. Let (Mn, g)
be a Riemannian manifold and ξ : E → M be a smooth Riemannian vector bundle over
(Mn, g) with compatible connection ∇E , i.e. a vector bundle such that each fiber is equipped
with a positive definite inner product 〈 , 〉E . Set Ap (ξ) = Γ (ΛpT ∗M ⊗ E) the space of
smooth p-forms on M with values in the vector bundle ξ : E → M. The exterior covariant
differentiation d∇ : Ap (ξ) → Ap+1(ξ) relative to ∇E is defined by

(d∇ω)(X1, . . . , Xp+1) =
p+1∑
i=1

(−1)i+1(∇Xiω)(X1, . . . , X̂i, . . . , Xp+1) .

The codifferential operator δ∇ : Ap (ξ) → Ap−1(ξ) is characterized as the adjoint of d∇ if M
is compact or ω has a compact support, and is defined by

(δ∇ω)(X1, . . . , Xp−1) = −
n∑
i=1

(∇eiω)(ei, X1, . . . , Xp−1) ,

where {e1, . . . , en} is an orthonormal basis of TxM.
Given two formsω, θ ∈ Ap (ξ), the induced inner product is defined as follows:

〈ω, θ〉 =
n∑

i1,...,ip=1
〈ω(ei1, . . . , eip ), θ(ei1, . . . , eip )〉E .

Here we are omitting the normalizing factor 1
p! . Forω ∈ Ap(ξ), set |ω|2 = 〈ω, ω〉. The energy

functional of ω ∈ Ap(ξ) is defined by E(ω) = 1
2

∫
M
|ω|2dvg. Its stress-energy tensor is

(3.1) Sω (X,Y ) =
|ω|2
2
g(X,Y ) − (ω � ω)(X,Y ) ,
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where ω � ω ∈ Γ (Ap(ξ) ⊗ Ap (ξ)) is a symmetric tensor defined by

(3.2) (ω � ω)(X,Y ) = 〈iXω, iYω〉 .
Here iXω ∈ Ap−1(ξ) denotes the interior multiplication by X ∈ Γ (T M). The divergence of
Sω is given by (cf. [35, 2])

(3.3) (divSω)(X ) = 〈δ∇ω, iXω〉 + 〈iXd∇ω,ω〉 .
Recall that a 2-tensor field T ∈ Γ (T ∗M ⊗ T ∗M) is a Codazzi tensor if T satisfies

(∇ZT )(X,Y ) = (∇YT )(X, Z )

for any vector field X , Y and Z . One may regard T ∈ Γ (T ∗M ⊗ T ∗M) as a 1-form T � with
values in T ∗M as follows

(3.4) T �(X ) = T (·, X ) ,

that is, T � ∈ A1(T ∗M). Note that the covariant derivative of T � is given by
(
(∇XT �)(Y )

)
(e) =

(
∇X (

T �(Y )
) − T �(∇XY )

)
(e)(3.5)

=

(
∇X (

T �(Y )
))

(e) − T (e,∇XY )

=∇X (
T �(Y )(e)

) − T �(Y )(∇Xe) − T (e,∇XY )

=∇X (
T (e,Y )

) − T (∇Xe,Y ) − T (e,∇XY )

=(∇XT )(e,Y )

for any X , Y ∈ Γ (T M) and e ∈ TxM. Therefore T is a Codazzi tensor if and only if

(3.6) (∇XT �)(Y ) = (∇YT �)(X ) .

LEMMA 3.1. The 2-tensor field T is a Codazzi tensor if and only if d∇T � = 0.

PROOF. By the definition of d∇, we have

(d∇T �)(X,Y ) = (∇XT �)(Y ) − (∇YT �)(X ), ∀X,Y ∈ Γ (T M) .

Thus, for any X,Y ∈ Γ (T M), (∇XT �)(Y ) = (∇YT �)(X ) is equivalent to d∇T � = 0. �

REMARK 3.1. There are many well-known examples of Codazzi tensors. These include
any constant scalar multiple of the metric, and more generally any parallel self-adjoint (1, 1)
tensor, such as the second fundamental form of submanifolds with parallel mean curvature
in a space of constant sectional curvature. Furthermore, the Ricci tensor of a Riemannian
manifold M is Codazzi if and only if the curvature tensor of M is harmonic. This is the case,
for example, if M is an Einstein manifold.

Now we compute the codifferentiation of T �. Choose an orthonormal frame field {ei }ni=1
around a point x ∈ M such that (∇ei )x = 0. By (3.5), one gets

(3.7) δ∇T � = −
n∑
i=1

(∇eiT �)(ei) = −
n∑
i=1

(∇eiT )(·, ei ) .
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LEMMA 3.2. Let T be a symmetric Codazzi 2-tensor field. If trT is constant, then
δ∇T � = 0.

PROOF. Note that δ∇T � ∈ Γ (T ∗M). For any vector X ∈ Γ (T M), we get from (3.7) that

(δ∇T �)(X ) = −
n∑
i=1

(∇eiT )(X, ei ) .

Since T is symmetric and Codazzi, it follows that

(δ∇T �)(X ) = −
n∑
i=1

(∇XT )(ei, ei ) = −X (
n∑
i=1

T (ei, ei )) = 0 .

�

Therefore, by (3.4), Lemma 3.1 and Lemma 3.2, we have the following proposition:

PROPOSITION 3.1. Suppose T is a symmetric Codazzi 2-tensor with constant trace.
Then T � satisfies a conservation law, that is, divST � = 0 as defined in (3.3).

For any given vector field X , there corresponds to a dual one form X� such that

X� (Y ) = g(X,Y ), ∀Y ∈ Γ (T M) .

The covariant derivative of X� gives a 2-tensor field ∇X�:

(∇X�)(Y, Z ) = (∇ZX�)(Y ) = g(∇ZX,Y ), ∀Y, Z ∈ Γ (T M) .

If X = ∇ψ is the gradient of some smooth function ψ on M, then X� = dψ and ∇X� =

Hess(ψ). A direct computation yields (cf. [35] or Lemma 2.4 of [13])

(3.8) div(iXSω) = 〈Sω,∇X�〉 + (divSω)(X ), ∀ X ∈ Γ (T M) .

Let D be any bounded domain of M with C1 boundary. By (3.8) and using the divergence
theorem, we immediately have

(3.9)
∫
∂D

Sω (X, ν)dsg =
∫
D

(〈Sω,∇X�〉 + (divSω)(X )
)
dvg ,

where ν is the unit outward normal vector field along ∂D. In particular, if ω satisfies the
conservation law, i.e. divSω = 0, then

(3.10)
∫
∂D

Sω (X, ν)dsg =
∫
D

〈Sω,∇X�〉dvg .

Let r (x) be the geodesic distance function of x relative to some fixed point x0 and Bx0 (r)
be the geodesic ball centered at x0 with radius r. Denote by λ1(x) ≤ λ2(x) ≤ · · · ≤ λn (x)
the eigenvalues of Hess(r2). Let

(3.11) τ(p) =
1
2

inf
x∈M{λ1(x) + · · · + λn−p (x) − λn−p+1 (x) − · · · − λn(x)}

be a function depending only on the integer p, 1 ≤ p ≤ n.
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PROPOSITION 3.2. Let (M, g) be an n-dimensional complete Riemannian manifold
with a pole and let ξ : E → M be a Riemannian vector bundle on M. If τ(p) > 0 and ω ∈
Ap (ξ) satisfies the conservation law, that is, divSω = 0, then

(3.12)
1
ρσ1

∫
Bx0 (ρ1 )

|ω|2dv ≤ 1
ρσ2

∫
Bx0 (ρ2 )

|ω|2dv

for any 0 < ρ1 ≤ ρ2 and 0 < σ ≤ τ(p).

PROOF. The proof is similar to that of [13]. We will provide the argument here for
completeness of the paper. Take a smooth vector field X = r∇r on M. Obviously, ∂

∂r is
an outward unit normal vector field along ∂Bx0 (r). Take an orthonormal basis {ei }ni=1 which
diagonalizes Hess(r2), then

〈Sω,∇X�〉 =1
2

n∑
i, j=1

Sω (ei, ej )Hess(r2)(ei, ej )(3.13)

=
1
4

n∑
i, j=1
|ω|2Hess(r2)(ei, ej )δij − 1

2

n∑
i, j=1

(ω � ω)(ei, ej )Hess(r2)(ei, ej )

=
|ω|2
4

n∑
i=1

λi − 1
2

n∑
i=1

(ω � ω)(ei, ei )λi .

For the second term, by (3.2), we have
n∑
i=1

(ω � ω)(ei, ei )λi =
n∑

s=1
〈iesω, iesω〉λs

=

p∑
j=1

∑
i1,...,ip

〈ω(ei1, . . . , eip ), ω(ei1, . . . , eip )〉λij

≤
∑

i1,...,ip

〈ω(ei1, . . . , eip ), ω(ei1, . . . , eip )〉
n∑

j=n−p+1
λ j

=|ω|2
n∑

j=n−p+1
λ j ,

where the indices 1 ≤ i1, i2, . . . , in ≤ n are distinct with each other in the following discussion.
Substituting into (3.13), it follows that

〈Sω,∇X�〉 ≥ |ω|
2

4
(λ1 + · · · + λn−p − λn−p+1 − · · · − λn) .(3.14)

By the definition of Sω , we have

Sω (X,
∂

∂r
) =
|ω|2
2
g(X,

∂

∂r
) − (ω � ω)(X,

∂

∂r
)(3.15)

=
1
2

r |ω|2g(
∂

∂r
,
∂

∂r
) − r |i ∂

∂r
ω|2
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≤ r |ω|2
2

on ∂Bx0(r) .

Since divSω = 0, we get from (3.10), (3.14) and (3.15) that
1
2

inf
x∈M (λ1 + · · · + λn−p − λn−p+1 − · · · − λn)

∫
Bx0 (r )

|ω|2dv ≤ r
∫
∂Bx0 (r )

|ω|2ds .

Using co-area formula, we have

τ(p)
∫
Bx0 (r )

|ω|2dv ≤ r
d
dr

∫
Bx0 (r )

|ω|2dv ,

thus
d
dr

∫
Bx0 (r )

|ω|2dv∫
Bx0 (r )

|ω|2dv
≥ σ

r

for any σ ≤ τ(p). Integrating the above formula on [ρ1, ρ2] yields
1
ρσ1

∫
Bx0 (ρ1 )

|ω|2dv ≤ 1
ρσ2

∫
Bx0 (ρ2 )

|ω|2dv .

�

In the following, we shall use Proposition 3.2 to deduce monotonicity formulas and
vanishing results for the curvature tensor of LCF manifolds. For this purpose, we collect the
following Lemmas.

LEMMA 3.3 ([15, 13, 17]). Let (M, g) be a complete Riemannianmanifold with a pole
x0 and let r be the distance function relative to x0. Denote by Kr the radial curvature of M.

(i) If − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0, 0 ≤ B < 2ε, then

1 − B
2ε

r
[g − dr ⊗ dr] ≤ Hess(r) ≤ e

A
2ε

r
[g − dr ⊗ dr] .

(ii) If − a
1+r2 ≤ Kr ≤ b

1+r2 with a ≥ 0, b ∈ [0, 1/4], then

1 +
√

1 − 4b
2r

[g − dr ⊗ dr] ≤ Hess(r) ≤ 1 +
√

1 + 4a
2r

[g − dr ⊗ dr] .

(iii) If −α2 ≤ Kr ≤ −β2 with α > 0, β > 0, then

β coth(βr)[g − dr ⊗ dr] ≤ Hess(r) ≤ α coth(αr)[g − dr ⊗ dr] .

Using Lemma 3.3, by a direct calculation we have the following result.

LEMMA 3.4. Let Mn be a complete manifold of dimension n with a pole x0. Assume
that the radial curvature of M satisfies one of the following conditions:

(i) − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0, 0 ≤ B < 2ε and (n− p− 1)(1− B
2ε ) −

(p − 1)eA/2ε −max{ B2ε , eA/2ε − 1} > 0;
(ii) − a

1+r2 ≤ Kr ≤ b
1+r2 with a ≥ 0, b ∈ [0, 1/4] and 1 + n−p−1

2 (1 +
√

1 − 4b) − p
2 (1 +√

1 + 4a) > 0;
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(iii) −α2 ≤ Kr ≤ −β2 with α > 0, β > 0 and (n − p − 1) β − pα ≥ 0. Then

τ(p) ≥ σ(p) ,

where

σ(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(n − p − 1)(1 − B
2ε ) − (p − 1)e

A
2ε −max{ B2ε , e

A
2ε − 1} if Kr satisfies (i),

n−p−1
2 (1 +

√
1 − 4b) − p−1

2 (1 +
√

1 + 4a)−
max{ 1−

√
1−4b
2 ,

√
1+4a−1

2 } if Kr satisfies (ii),
n − p − pα

β if Kr satisfies (iii).

PROOF. It is known that Hess(r2) is given by

Hess(r2) = 2dr ⊗ dr + 2rHess(r) .

Hence λi = 2 for some 1 ≤ i ≤ n.
When Kr satisfies (i), we divide the discussion into two cases. If λi = 2 for some 1 ≤

i ≤ n − p, by Lemma 3.3 we get
1
2

(
λ1(x) + · · · + λn−p (x) − λn−p+1(x) − · · · − λn (x)

)
(3.16)

≥1 + (n − p − 1)
(
1 − B

2ε

)
− pe

A
2ε

=(n − p − 1)
(
1 − B

2ε

)
− (p − 1)e

A
2ε − (e

A
2ε − 1) .

If λi = 2 for some i > n − p, we have
1
2

(
λ1(x) + · · · + λn−p (x) − λn−p+1(x) − · · · − λn (x)

)
(3.17)

≥(n − p)
(
1 − B

2ε

)
− 1 − (p − 1)e

A
2ε

=(n − p − 1)
(
1 − B

2ε

)
− (p − 1)e

A
2ε − B

2ε
.

Combining (3.16) and (3.17) gives

τ(p) ≥ (n − p − 1)
(
1 − B

2ε

)
− (p − 1)e

A
2ε −max

{ B
2ε
, e

A
2ε − 1

}
.

When Kr satisfies (ii), the proof is similar to the case (i).
When Kr satisfies (iii), using βr coth(βr) > 1 and coth(αr )

coth(βr ) < 1 for 0 < β < α, we get

τ(p) =
1
2

inf
x∈M{λ1 (x) + · · · + λn−p (x) − λn−p+1(x) − · · · − λn (x)}

≥1 + (n − p − 1) βr coth(βr) − pαr coth(αr)

=1 + βr coth(βr)

[
(n − p − 1) − p

αr coth(αr)
βr coth(βr)

]
≥1 + (n − p − 1) − p

α

β
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=n − p − p
α

β
,

provided that (n − p − 1) β − pα ≥ 0. �

Let (Mn, g) be a Riemannian manifold of dimension n, and let V → M be the vector
bundle of skew-symmetric endomorphisms of T M endowed with its canonical Riemannian
structure. Then the curvature tensor Rm can be seen as a V -valued 2-form and thus the second
Bianchi identity can be equivalently expressed as d∇Rm = 0. Actually, using moving frame
method, we may compute

(d∇Rij )klm =Rijlm,k − Rijkm,l + Rijkl,m

=Rijlm,k + Rijmk,l + Rijkl,m = 0 .

LEMMA 3.5. Let (Mn, g), n ≥ 3, be a LCF Riemannian manifold with constant scalar
curvature. Then the curvature tensor Rm is a harmonicV -valued 2-form and thus Rm satisfies
a conservation law, that is, divSRm = 0 as defined in (3.3).

PROOF. We only need to prove that d∇Rm = 0 and δ∇Rm = 0. We have already pointed
out that the first property is just the second Bianchi identity. In terms of the condition that M
is a LCF manifold with constant scalar curvature, we find that

(δ∇Rm)jkl = Rijkl,i =∇iRijkl

= − ∇kRijli − ∇lRijik

=∇kRjl − ∇lRjk = 0 .

�

REMARK 3.2. It is well known that (see [11])

δ∇W =
n − 3
n − 2

d∇
(
Ric − R

2(n − 1)
g

)

for any Riemannian manifold (M, g), n ≥ 3. By the relation (2.1), the Weyl curvature tensor
W of an Einstein manifold is also a harmonic V -valued 2-form. Thus, W also satisfies a
conservation law.

For the Ricci tensor Ric, we can consider Ric to be a 1-form Ric� with values in the
tangent vector bundle at every point x ∈ M, that is, for every X ∈ TxM, Ric�(X ) satisfies

〈Ric�(X ),Y 〉 = Ric(X,Y ), ∀Y ∈ TxM .

E� satisfies 〈E�(X ),Y 〉 = E(X,Y ), ∀Y ∈ TxM, where E is the traceless Ricci tensor given
by E = Ric − R

n g. Thus if M is a conformally flat Riemannian manifold with constant scalar
curvature, then by Proposition 3.1, Ric� and E� satisfy conservation laws, that is, divSRic� =

0 and divSE� = 0 as defined in (3.3). Let | Ric | be the norm of Ricci tensor Ric and |E | be
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the norm of the traceless Ricci tensor E given by | Ric | = (
n∑

i, j=1
R2
ij )

1
2 and |E | =

( n∑
i, j=1

(Rij −
R
n δij )

2
) 1

2 respectively. Summarizing the previous discussions, we have the following results.

THEOREM 3.1. Let (Mn, g) be a complete, locally conformally flat Riemannian mani-
fold with a pole. Assume that M has constant scalar curvature and the radial curvature of M
satisfies the conditions of Lemma 3.4. Then for any 0 < ρ1 ≤ ρ2,

1
ρσ(2)

1

∫
Bx0 (ρ1 )

|Rm |2dv ≤ 1
ρσ(2)

2

∫
Bx0 (ρ2 )

|Rm |2dv ,

and
1

ρσ(1)
1

∫
Bx0 (ρ1 )

|Ric|2dv ≤ 1
ρσ(1)

2

∫
Bx0 (ρ2 )

|Ric|2dv ,

and
1

ρσ(1)
1

∫
Bx0 (ρ1 )

|E |2dv ≤ 1
ρσ(1)

2

∫
Bx0 (ρ2 )

|E |2dv ,

where σ(p), p = 1, 2, satisfies

σ(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(n − p − 1)(1 − B
2ε ) − (p − 1)e

A
2ε −max{ B2ε , e

A
2ε − 1} if Kr satisfies (i),

n−p−1
2 (1 +

√
1 − 4b) − p−1

2 (1 +
√

1 + 4a)−
max{ 1−

√
1−4b
2 ,

√
1+4a−1

2 } if Kr satisfies (ii),
n − p − pα

β if Kr satisfies (iii).

Letting p = 1 in Theorem 3.1, we have the following corollaries.

COROLLARY 3.1. Let Mn, n ≥ 3, be a complete, locally conformally flat Riemannian
manifold with a pole x0 and zero scalar curvature. Assume the Ricci curvature of M satisfies
one of the following conditions:

(i) − n−2
2

A
(1+r2 )1+ε ≤ Ric ≤ n−2

2
B

(1+r2 )1+ε with ε > 0, A ≥ 0, 0 ≤ B < 2ε and σ(1) = (n −
2)(1 − B

2ε ) −max{ B2ε , eA/2ε − 1} > 0;
(ii) − n−2

2
a

1+r2 ≤ Ric ≤ n−2
2

b
1+r2 with a ≥ 0, b ∈ [0, 1/4] and σ(1) = n−2

2 (1+
√

1 − 4b) −
max{ 1−

√
1−4b
2 ,

√
1+4a−1

2 } > 0 .
Assume further that ∫

Bx0 (ρ)
|Ric|2dvg = o(ρσ(1) ) as ρ→ +∞ .

Then M is flat.

PROOF. By the relation (2.2), the radial curvature of M satisfies (i), (ii) of Lemma 3.4.
Hence Theorem 3.1 and the growth condition of |Ric|2 implies that (M, g) is Ricci-flat.
Therefore, it follows immediately from (2.2) that Rm = 0. �
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COROLLARY 3.2. Let Mn, n ≥ 3, be a complete, locally conformally flat Riemannian
manifold with constant scalar curvature R. Assume M has a pole x0 and its radial curvature
satisfies −α2 ≤ K ≤ −β2 with α > 0, β > 0 and (n − 2) β − α ≥ 0. If∫

Bx0 (ρ)
|E |2dvg = o(ρn−1− α

β ) as ρ→ +∞ ,

then M is of constant curvature R
n(n−1) .

4. Vanishing theorems for L2 harmonic p-forms on LCF manifolds. Let (Mn, g)
be a complete, locally conformally flat Riemannian manifold, and let � be the Hodge Laplace-
Beltrami operator of Mn acting on the space of differential p-forms. The Weitzenböck formula
([34]) gives

(4.1) � = ∇�∇ − Rp ,

where∇�∇ is the Bochner Laplacian andRp is an endomorphism depending upon the curvature
tensor of Mn. Using an orthonormal basis {θ1, . . . , θn } dual to {e1, . . . , en}, the curvature term
Rp can be expressed as

〈Rp (θ), θ〉 = 〈
n∑

j,k=1
θk ∧ iej R(ek, ej )θ, θ〉

for any p-form θ. Letω be any harmonic p-form, which may be expressed in a local coordinate
system as

ω = αi1 · · ·ip dxi1 ∧ · · · ∧ dxip .

By (4.1), we deduce that

1
2
�|ω|2 =|∇ω|2 + 〈

n∑
j,k=1

θk ∧ iej R(ek, ej )ω,ω〉(4.2)

=|∇ω|2 + pF (ω) ,(4.3)

where

F (ω) = Rijα
ii2 · · ·ipα j

i2 · · ·ip −
p − 1

2
Rijklα

iji3 · · ·ipαkl
i3 · · ·ip .

Here, repeated indices are contracted and summed. Substituting (2.2) into the above equality,
we obtain

1
2
�|ω|2 =|∇ω|2 + p

[ n − 2p
n − 2

Rijα
ii2 · · ·ipα j

i2 · · ·ip +
(p − 1)

(n − 1)(n − 2)
R|ω|2

]
(4.4)

=|∇ω|2 + p
[ n − 2p

n − 2
(
Rij − R

n
δij

)
αii2 · · ·ipα j

i2 · · ·ip +
n − p

n(n − 1)
R|ω|2

]
.(4.5)

Using the method of Lagrange multipliers, one has the following lemma.
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LEMMA 4.1 ([31]). Let (aij )n×n be a real symmetric matrix with
n∑
i=1

aii = 0, then

n∑
i, j=1

aij xix j ≥ −
√

n − 1
n

( n∑
i, j=1

a2
ij

) 1
2

n∑
i=1

x2
i

where xi ∈ R.
By Lemma 4.1, it follows from (4.5) that

|ω|�|ω| ≥ |∇ω|2 − |∇|ω| |2 − p|n − 2p|
n − 2

√
n − 1

n
|E | |ω|2 + p(n − p)

n(n − 1)
R|ω|2 ,(4.6)

where |E | is the norm of the traceless Ricci tensor E. When the underlying manifold M is
compact or the harmonic formω is squared integrable, thenω is closed and coclosed (cf. [37]).
According to [5], we have the refined Kato’s inequality

(4.7) |∇ω|2 − |∇|ω| |2 ≥ Kp |∇|ω| |2 ,
where

Kp =
⎧⎪⎨⎪⎩

1
n−p if 1 ≤ p ≤ n/2 ,
1
p if n/2 ≤ p ≤ n − 1 .

Therefore, the relation (4.6) reduces to

(4.8) |ω|�|ω| ≥ Kp |∇|ω| |2 − p|n − 2p|
n − 2

√
n − 1

n
|E | |ω|2 + p(n − p)

n(n − 1)
R|ω|2 .

Now, using the inequality (4.6) to compact locally conformally flat Riemannian manifold,
we have the following theorem, generalizing Corollary 8.8 of [4], for the case R(x) > 0 for
every x ∈ M and p = m = n

2 .

THEOREM 4.1. Let (Mn, g), n ≥ 3, be a compact locally conformally flat Riemannian
manifold satisfying

(4.9) R(x) ≥
√

n − 1
n

n(n − 1) |n − 2p|
(n − p)(n − 2)

|E |(x)

for every x ∈ M, 1 ≤ p ≤ n. Assume that (4.9) is strict at some point. Then the Betti number
βp (M) = 0. In particular, if M is a 2m-dimensional compact LCF Riemannian manifold with
nonnegative scalar curvature R ≥ 0, and R > 0 holds at some point, then βm(M) = 0.

PROOF. For any given harmonic p-form ω, we have via (4.6) and the hypothesis (4.9)
on the scalar curvature R,

1
2
�|ω|2 ≥ |∇ω|2 +

[ p(n − p)
n(n − 1)

R − p|n − 2p|
n − 2

√
n − 1

n
|E |

]
|ω|2 ≥ 0 .(4.10)

By the compactness of M and the maximum principle, |ω| = const. Substituting this into
(4.10) and using the hypothesis on R again, we have ω = 0. Therefore, by Hodge’s Theorem,
βp (M) = 0. �
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REMARK 4.1. It is well known that a compact orientable conformally flat Riemannian
manifold with positive Ricci curvature must satisfy βp (M) = 0 for all 1 ≤ p ≤ n−1 (see [14]).

THEOREM 4.2. Let (Mn, g), n ≥ 3, be a complete non-compact, simply connected,
locally conformally flat Riemannian manifold. For any 0 ≤ p ≤ n, there exists a positive
constant Cp such that if

(4.11)
(∫

M

|Ric| n2 dv

) 2
n

< Cp ,

then every closed and coclosed p-form ω on M with lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv = 0 vanishes

identically. In particular, Hp(L2(M)) = {0}.
PROOF. Let ω be a closed and coclosed p-form on M with lim inf

r→∞
1
r2

∫
Bx0 (r )

|ω|2dv =

0. When 1 ≤ p ≤ n − 1, by (4.4) and using the fact that R2 ≤ n|Ric|2, we have

1
2
�|ω|2 ≥ |∇ω|2 − p|n − 2p|

n − 2
|Ric| |ω|2 − p(p − 1)

√
n

(n − 1)(n − 2)
|Ric| |ω|2 .

Combining this with (4.7), we deduce that

|ω|�|ω| + p
n − 2

(
|n − 2p| + (p − 1)

√
n

n − 1

)
|Ric| |ω|2 ≥ Kp |∇|ω| |2 .(4.12)

Fix a point x0 ∈ M and let ρ(x) be the geodesic distance on M from x0 to x. Let us choose
η ∈ C∞0 (M) satisfying

η(x) =
⎧⎪⎨⎪⎩

1 if ρ(x) ≤ r ,

0 if 2r < ρ(x)

and

(4.13) |∇η |(x) ≤ 2
r

if r < ρ(x) ≤ 2r

for r > 0. Multiplying (4.12) by η2 and integrating by parts over M, we obtain

0 ≤
∫
M

(η2 |ω|�|ω| − Kpη
2 |∇|ω| |2 )dv(4.14)

+
p

n − 2

(
|n − 2p| + (p − 1)

√
n

n − 1

) ∫
M

|Ric|η2 |ω|2dv

= − 2
∫
M

η |ω|〈∇η,∇|ω|〉dv − (1 + Kp )
∫
M

η2 |∇|ω| |2dv

+
p

n − 2

(
|n − 2p| + (p − 1)

√
n

n − 1

) ∫
M

|Ric|η2 |ω|2dv .

By the hypothesis (4.11), we have∫
M

|R| n2 dv ≤ nn/4
∫
M

|Ric| n2 dv < ∞ ,
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which implies that the L2-Sobolev inequality (2.5) holds for some constant Cs > 0. Hence it
follows from (2.5) and the Hölder inequality that

∫
M

|Ric|η2 |ω|2dv ≤ ��
∫

supp(η)
|Ric| n2 dv
�

2
n (∫

M

(η |ω|) 2n
n−2 dv

) n−2
n

(4.15)

≤R(η)
∫
M

|∇(η |ω|) |2dv

=R(η)
∫
M

(η2 |∇|ω| |2 + |ω|2 |∇η |2)dv

+ 2R(η)
∫
M

η |ω|〈∇η,∇|ω|〉dv ,

where R(η) = 1
Cs

(∫
supp(η)

|Ric| n2 dv
) 2

n

. Substituting (4.15) into (4.14) yields

0 ≤(2A − 2)
∫
M

η |ω|〈∇η,∇|ω|〉dv − (1 + Kp − A)
∫
M

η2 |∇|ω| |2dv + A
∫
M

|ω|2 |∇η |2dv

≤(−1 − Kp + A + |A − 1|ε)
∫
M

η2 |∇|ω| |2dv +

(
A +
|A − 1|
ε

) ∫
M

|ω|2 |∇η |2dv

for all ε > 0, where

A =
p

n − 2

(
|n − 2p| + (p − 1)

√
n

n − 1

)
R(η) .

Now let us choose the integral bound Cp in (4.11) satisfying

Cp =
n − 2

p

(
|n − 2p| + (p − 1)

√
n

n − 1

)−1
(1 + Kp )Cs .

Then we can take sufficiently small ε > 0 such that 1 + Kp − A − |A − 1|ε > 0. Therefore,

(1 + Kp − A − |A − 1|ε)
∫
Bx0 (r )

|∇|ω| |2dv ≤(1 + Kp − A − |A − 1|ε)
∫
M

η2 |∇|ω| |2dv

≤
(
A +
|A − 1|
ε

) ∫
M

|ω|2 |∇η |2dv

≤
(
A +
|A − 1|
ε

)
4
r2

∫
Bx0 (2r )

|ω|2dv .

Letting r → ∞, we have ∇|ω| = 0 on M, i.e., |ω| is constant. Since lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv =

0 and the volume growth (2.6) implies vol(Bx0 (r ))

r2 ≥ Crn−2 → ∞ as r → ∞, we conclude that
ω = 0.

When p = 0, let f be a harmonic function with lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv = 0. According

to [33], f is constant. Since vol(Bx0 (r ))

r2 ≥ Crn−2, we have f = 0. When p = n, we consider
∗ω, where ∗ is the Hodge Star. Then ∗ω is a harmonic function with |ω| = | ∗ ω|. By the
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previous result, ∗ω = 0 and so is ω = 0. It follows that Hp(L2(M)) = {0} for all 0 ≤ p ≤ n.
This completes the proof. �

REMARK 4.2. Since the constant Cs in the Sobolev inequality (2.5) can not be explicitly
computed, we can’t also give the explicit value of Cp in (4.11).

THEOREM 4.3. Let (Mn, g), n ≥ 3, be a complete non-compact, simply connected,
locally conformally flat Riemannian manifold with R ≥ 0. Assume that

(4.16)
( ∫

M

|E | n2 dv
) 2
n < C(p) ,

where C(p) = (n−2)
√
n

p |n−2p |√n−1
min

{
1 + Kp,

4p(n−p)
n(n−2)

}
Q(Sn) for every 1 ≤ p ≤ n − 1 but p � n

2 .

Then every closed and coclosed p-form ω on M with lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv = 0 vanishes

identically. In particular, Hp(L2(M)) = {0} for 1 ≤ p ≤ n − 1 but p � n
2 .

PROOF. Let ω be a closed and coclosed p-form on M with lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv =

0. Let η ∈ C∞0 (M) be a smooth function on M with compact support. Multiplying (4.8) by
η2 and integrating over M, we obtain

∫
M

η2 |ω|�|ω|dv ≥Kp

∫
M

η2 |∇|ω| |2dv − p|n − 2p|
n − 2

√
n − 1

n

∫
M

|E |η2 |ω|2dv(4.17)

+
p(n − p)
n(n − 1)

∫
M

Rη2 |ω|2dv .

Integrating by parts and using the Cauchy-Schwarz inequality gives∫
M
η2 |ω|�|ω|dv = − 2

∫
M
η |ω|〈∇η,∇|ω|〉dv −

∫
M
η2 |∇|ω| |2dv

≤(b − 1)
∫
M

η2 |∇|ω| |2dv +
1
b

∫
M

|ω|2 |∇η |2dv

for all b > 0. Substituting the above inequality into (4.17) yields

(1 + Kp − b)
∫
M

η2 |∇|ω| |2dv ≤ 1
b

∫
M

|ω|2 |∇η |2dv +
p|n − 2p|

n − 2

√
n − 1

n

∫
M

|E |η2 |ω|2dv

(4.18)

− p(n − p)
n(n − 1)

∫
M

Rη2 |ω|2dv .

On the other hand, using (2.3) together with the Hölder and Cauchy-Schwarz inequalities, we
have
∫
M
|E |η2 |ω|2dv ≤ ��

∫
supp(η)

|E | n2 dv
�
2
n (∫

M
(η |ω|) 2n

n−2 dv

) n−2
n

≤ 1
Q(Sn)

��
∫

supp(η)
|E | n2 dv
�

2
n ∫

M

[
|∇(η |ω|) |2 + n − 2

4(n − 1)
Rη2 |ω|2

]
dv
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=T (η)
∫
M

[
η2 |∇|ω| |2 + |ω|2 |∇η |2 + n − 2

4(n − 1)
Rη2 |ω|2

]
dv

+ 2T (η)
∫
M

η |ω|〈∇η,∇|ω|〉dv

≤T (η)
∫
M

[
(1 + γ)η2 |∇|ω| |2 + (

1 +
1
γ

) |ω|2 |∇η |2 + n − 2
4(n − 1)

Rη2 |ω|2
]
dv

for all γ > 0, where supp(η) is the support of η on M, and T (η) = 1
Q(Sn ) (

∫
supp(η)

|E | n2 dv )
2
n .

Substituting the above inequality into (4.18), we conclude that

B
∫
M

η2 |∇|ω| |2dv ≤ C
∫
M

|ω|2 |∇η |2dv + D
∫
M

Rη2 |ω|2dv ,(4.19)

where

B =1 + Kp − b − p|n − 2p|
n − 2

√
n − 1

n
T (η)(1+ γ) ,

C =
1
b
+

p|n − 2p|
n − 2

√
n − 1

n
T (η)

(
1 +

1
γ

)
,

D =
p|n − 2p|
4(n − 1)

√
n − 1

n
T (η) − p(n − p)

n(n − 1)
.

It follows from the hypothesis (4.16) that for 1 ≤ p ≤ n − 1 but p � n
2 ,

T (η) =
1

Q(Sn)

( ∫
supp(η)

|E | n2 dv
) 2

n <
n − 2

p|n − 2p|
√

n
n − 1

min
{
1 + Kp,

4p(n − p)
n(n − 2)

}
,

which implies that D < 0 and 1+ Kp − p |n−2p |
n−2

√
n−1
n T (η) > 0. Hence we can choose γ and b

small enough such that

B = 1 + Kp − b − p|n − 2p|
n − 2

√
n − 1

n
T (η)(1 + γ) > 0 .

Let η be the cut-off function defined by (4.13). Substituting η into (4.19) and noting the
hypothesis R ≥ 0, we have

B
∫
Bx0 (r )

|∇|ω| |2dv ≤B
∫
M

η2 |∇|ω| |2dv

≤ 4C

r2

∫
Bx0 (2r )

|ω|2dv + D
∫
Bx0 (r )

R|ω|2dv .

Letting r → ∞, and noting lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv = 0, we conclude that

∇|ω| = 0 and R|ω| = 0

on M . Hence, |ω| = const. If |ω| is not identically zero, then R = 0, which implies that the
L2-Sobolev inequality (2.4) holds, and vol(Bx0 (r ))

r2 ≥ Crn−2 → ∞ as r → ∞. This would
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contradict lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv = 0. Therefore, ω = 0. It follows that Hp(L2(M)) = {0}
for 1 ≤ p ≤ n − 1 but p � n

2 . This completes the proof. �

For the middle degree case, we deduce the following vanishing theorem without assump-
tions on E.

THEOREM 4.4. Let (Mn, g), n = 2m > 3, be a complete non-compact, simply con-
nected, locally conformally flat Riemannian manifold with R ≥ 0. Then every closed and
coclosed m-form ω on M with lim inf

r→∞
1
r2

∫
Bx0 (r )

|ω|2dv = 0 vanishes identically. In particu-

lar, Hm(L2(M)) = {0}.
PROOF. Taking p = m = n

2 in (4.8), we have

(4.20) |ω|�|ω| ≥ 1
m
|∇|ω| |2 + m

2(2m − 1)
R|ω|2 .

Let η be the cut-off function defined by (4.13). Multiplying (4.20) by η2 and integrating by
parts over M, we obtain

m + 1
m

∫
M

|∇|ω| |2η2dv +
m

2(2m − 1)

∫
M

R|ω|2η2dv

≤ 1
2

∫
M
�|ω|2η2dv

= −2
∫
M

〈|ω|∇η, η∇|ω|〉dv

≤ m
∫
M

|ω|2 |∇η |2dv +
1
m

∫
M

|∇|ω| |2η2dv ,

which implies that∫
Bx0 (r )

|∇|ω| |2dv +
m

2(2m − 1)

∫
Bx0 (r )

R|ω|2dv ≤m
∫
M

|ω|2 |∇η |2dv

≤ 4m

r2

∫
Bx0 (2r )

|ω|2dv .

Having established this fact, the rest of the proof is completely analogous to that of Theorem 4.3.
�

REMARK 4.3. Pigola, Rigoli and Setti [26] proved a vanishing theorem for bounded
harmonic m-forms on a 2m-dimensional complete LCF manifold by putting some assumptions
on the scalar curvature and volume growth.

Combining Theorems 4.3 and 4.4, we immediately have

COROLLARY 4.1. Let (Mn, g), n ≥ 3, be a complete non-compact, simply connected,
locally conformally flat Riemannianmanifoldwith R ≥ 0. Then there exists a positive constant
C such that if ∫

M

|E | n2 dv < C ,
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then every closed and coclosed p-form ω on M with lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv = 0 vanishes

identically for every 1 ≤ p ≤ n − 1. In particular, Hp(L2(M)) = {0}.
THEOREM 4.5. Let (Mn, g) be a complete non-compact, simply connected, locally

conformally flat Riemannian manifold of dimension n = 2m > 3. Then there exists C > 0 such
that if ∫

M

|R|mdv < C ,

then every closed and coclosed m-form ω on M with lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv = 0 vanishes

identically. In particular, Hm(L2(M)) = {0}.
PROOF. It follows from (4.20) that

|ω|�|ω| + m
2(2m − 1)

|R| |ω|2 ≥ 1
m
|∇|ω| |2 .

By an analogue argument of Theorem 4.3, we prove that |ω| = const. Using also (2.5) we
immediately complete the proof. �

Let us recall that a Riemannian manifold M is said to have nonnegative isotropic curvature
if

R1313 + R1414 + R2323 + R2424 − 2R1234 ≥ 0

for every orthonormal 4-frame {e1, e2, e3, e4}. From [22], we know that if M is conformally
flat and has nonnegative isotropic curvature, then F (ω) ≥ 0 for any 2 ≤ p ≤ [ n2 ]. Thus, it
follows from the relations (4.3) and (4.7) that

|ω|�|ω| ≥ 1
n − p

|∇|ω| |2 .

Therefore, using the previous argument and the duality generated by the star operator ∗, we
have the following result.

THEOREM 4.6. Let (Mn, g), n ≥ 4, be a complete locally conformally flat manifold
with nonnegative isotropic curvature. Then for 2 ≤ p ≤ n − 2 , (i) if lim inf

r→∞
vol(Bx0 (r ))

r2 > 0 ,

then every closed and coclosed p-form ω on M with lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv = 0 vanishes

identically; (ii) if M has infinite volume then Hp (L2(M)) = {0} .
For a LCF Riemannian manifold, a direct computation from (2.2) gives

(4.21) Rijkl = 0

if i, j, k, l are different indexes, and

Rijij =
1

n − 2

(
Ricii + Ric j j − R

n − 1

)
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for all distinct i, j. Thus if

Ric ≥ R
2(n − 1),

then Rijij ≥ 0, which combining with (4.21) implies that M has nonnegative isotropic curva-
ture. Applying Theorem 4.6, we have the following corollary.

COROLLARY 4.2. Let (Mn, g), n ≥ 4, be a complete non-compact locally conformally
flat Riemannian manifold. Assume that

Ric(x) ≥ 1
2(n − 1)

R(x)

for all x ∈ M. Then Hp (L2(M)) = {0} for all 2 ≤ p ≤ n − 2.

PROOF. According to the previous discussion, M is of nonnegative Ricci curvature.
Since M is complete non-compact, we conclude from [37] that M has infinite volume. Hence
the conclusion follows immediately from Theorem 4.6 (ii). �

For an oriented four-manifold M4 the bundle of two-forms splits Λ2 = Λ2
+ ⊕ Λ2− into the

+1-eigenspace of the Hodge ∗-operator (self-dual two-forms) and −1-eigenspace (anti-self-
dual two-forms). This allows us to conclude that the Weyl tensor W is an endomorphism
of Λ2 = Λ2

+ ⊕ Λ2− such that W = W+ ⊕ W−. An oriented four-manifold M4 is said to be
half-conformally flat if either W+ = 0 or W− = 0 (see [3, Chapter 13, Section C] for a nice
overview on half conformallyflat manifolds). Without loss of generality, we assume that W+ =
0.

By the property of W−, for any k, l = 1, 2, 3, 4, we have

W−12kl = −W−34kl, W−13kl = −W−42kl, W−14kl = −W−23kl .

Combining with the first Bianchi identity, we compute

W−1313 +W−1414 +W−2323 +W−2424 − 2W−1234

= −W−4213 −W−2314 −W−1423 −W−3124 − 2W−1234

= −2W−1342 − 2W−1423 − 2W−1234

= 0 .

Hence, the assumption W+ = 0 and the relation (2.1) imply that

R1313 + R1414 + R2323 + R2424 − 2R1234 =
1
3

R .(4.22)

THEOREM 4.7. Let (M4, g) be a complete, half-conformally flat Riemannian manifold
with R ≥ 0 and with infinite volume. Then H2(L2(M)) = {0}.
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PROOF. By (4.22), the condition R ≥ 0 implies that M has nonnegative isotropic
curvature. From the proof of Theorem 2.1 in [23], we have 〈Rp (θ), θ〉 ≥ 0 for any p-form θ.
Thus, for any harmonic p-form ω, the relations (4.2) and (4.7) give

|ω|�|ω| ≥ 1
n − p

|∇|ω| |2 .

Therefore, an analogous argument as Theorem 4.6 completes the proof. �

We say that M supports a weighted Poincaré inequality
(
Pρ

)
, if there exists a positive

function ρ(x) a.e. on M such that
(
Pρ

) ∫
M

ρ (x) f 2 (x) dv ≤
∫
M

|∇ f (x) |2 dv, ∀ f ∈ W1.2
0 (M) .

If Mn is a simply connected locally conformal flat manifold with R ≤ 0, then (2.3) implies
that M supports a weighted Poincaré inequality

(4.23)
∫
M

(
|∇φ|2 − n − 2

4(n − 1)
|R|φ2

)
dv ≥ 0, ∀φ ∈ C∞0 (M) ,

which is equivalent to the nonnegative eigenvalue of the Schrödinger operator � − n−2
4(n−1) |R|.

Thus under a lower bound condition of Ricci curvature, we can deduce the following vanishing
theorem.

THEOREM 4.8. Let (Mn, g), n ≥ 4, be a complete, simply connected, locally con-
formally flat manifold with R ≤ 0. Suppose the Ricci curvature of M satisfies the lower
bound

(4.24) Ric(x) ≥ (n − 2)2 − 4p(p − 1)
4p(n − 1)(n − 2p)

R(x)

for 1 ≤ p < [ n2 ] at every x ∈ M. Then every closed and coclosed p-form ω on M with
lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv = 0 vanishes identically. In particular, Hp(L2(M)) = {0}.
PROOF. Let ω be a closed and coclosed p-form on M with lim inf

r→∞
1
r2

∫
Bx0 (r )

|ω|2dv =

0. Substituting (4.24) into (4.4), and using (4.7), we have

|ω|�|ω| ≥ 1
n − p

|∇|ω| |2 + p(n − 2p)
n − 2

(n − 2)2 − 4p(p − 1)
4p(n − 1)(n − 2p)

R|ω|2(4.25)

+
p(p − 1)

(n − 1)(n − 2)
R|ω|2

≥ 1
n − p

|∇|ω| |2 + n − 2
4(n − 1)

R|ω|2 .

Let η be the cut-off function defined by (4.13). Choosing φ = η |ω| in (4.23), using (4.25) and
integrating by parts, we compute

0 ≤
∫
M

(
|∇(η |ω|) |2 − n − 2

4(n − 1)
|R|η2 |ω|2

)
dv
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=

∫
M

(
− η |ω|�(η |ω|) − n − 2

4(n − 1)
|R|η2 |ω|2

)
dv

= −
∫
M

η |ω|( |ω|�η + η�|ω| + 2〈∇η,∇|ω|〉)dv − n − 2
4(n − 1)

∫
M

|R|η2 |ω|2dv

= −
∫
M

[
η2 |ω|�|ω| + n − 2

4(n − 1)
|R| |ω|2

]
dv − 2

∫
M

η |ω|〈∇η,∇|ω|〉dv

−
∫
M
|ω|2η�ηdv

≤ − 1
n − p

∫
M

η2 |∇|ω| |2dv +
∫
M

|ω|2 |∇η |2dv

≤ − 1
n − p

∫
Bx0 (r )

|∇|ω| |2dv +
4
r2

∫
Bx0 (2r )

|ω|2dv .

Letting r → ∞ and using lim inf
r→∞

1
r2

∫
Bx0 (r )

|ω|2dv = 0, we infer

∇|ω| = 0 .

Hence |ω| is constant. Since vol(Bx0 (r ))

r2 ≥ Crn−2 → ∞ as r → ∞ by the assumption R ≤ 0,
we conclude that ω = 0. �

5. Topology of LCF Riemannian manifolds. According to the vanishing theorem in
Section 4, we can study the topology at infinity of LCF manifolds.

THEOREM 5.1. Let (Mn, g), n ≥ 3, be a complete, simply connected, locally confor-
mally flat Riemannian manifold. Then there exists a constant C > 0 such that if

(5.1)
∫
M

|Ric| n2 dv < C ,

then M has only one end.

PROOF. By the hypothesis, it follows from Theorem 4.2 that H1(L2(M)) = {0}. The
assumption (5.1) implies that the following Sobolev inequality

Cs
( ∫

M

| f | 2n
n−2 dv

) n−2
n ≤

∫
M

|∇ f |2dv, ∀ f ∈ C∞0 (M)

holds for some Cs > 0. Hence M has infinite volume. According to Corollary 4 of [19], each
end of M is non-parabolic. By the important result in [18], the number of non-parabolic ends
of M is at most the dimension of the space of harmonic functions with finite Dirichlet integral.
Observe that if f is a harmonic function with finite Dirichlet integral then its exterior df is an
L2 harmonic 1-form. Therefore, M has only one end. �

Considering the case of p = 1 in Theorem 4.3, using an analogous method as above, we
have
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THEOREM 5.2. Let (Mn, g), n ≥ 3, be a complete non-compact, simply connected,
locally conformally flat Riemannian manifold with R ≥ 0. Assume that

(5.2)
( ∫

M

|E | n2 dv
) 2
n < C(n) ,

where C(n) =
√

n
n−1 min

{
n

n−1,
4(n−1)
n(n−2)

}
Q(Sn), then M has only one non-parabolic end.

REMARK 5.1. In [21], H.Z. Lin proved a one-end theorem for LCF manifolds by
assuming that R ≤ 0 and (

∫
M
|E |ndv )

2
n < C(n) for some explicit constant C(n) > 0.

From Theorem 4.8 and the Sobolev inequality (2.4), we have the following one end
theorem under pointwise condition.

THEOREM 5.3. Let (Mn, g), n ≥ 4, be a complete, simply connected, locally confor-
mally flat Riemannian manifold with R ≤ 0. Suppose that

(5.3) Ric(x) ≥ n − 2
4(n − 1)

R(x)

for all x ∈ M. Then M has only one end.

PROOF. Suppose contrary, there were at least two ends, then by the method in [27,
p.681-683], there would exist a nonconstant bounded harmonic function f with finite energy
on M. Hence df would be a nonconstant L2 harmonic 1-form on M. That is, H1(L2(M)) �
{0}, contradicting Theorem 4.8 in which p = 1. �

REMARK 5.2. In [20], Li-Wang proved that for a complete, simply connected, LCF
manifold Mn (n ≥ 4) with R ≤ 0, if the Ricci curvature Ric ≥ 1

4 R and the scalar curvature
satisfies some decay condition, then either M has only one end, or M = R × N with a warped
product metric for some compact manifold N .

6. Liouville theorems of p-harmonic functions on LCF manifolds with negative
scalar curvature. We recall a real-valued C3 function u on a Riemannian M is said to be
strongly p-harmonic if u is a (strong) solution of the p-Laplace equation

(6.1) Δpu := div
(
|∇u|p−2∇u

)
= 0

for p > 1. A function u ∈ W1,p
loc

(M) is said to be weakly p-harmonic if∫
M

|∇u|p−2 〈∇u,∇φ〉 dv = 0, ∀φ ∈ C∞0 (M) .

It is well known that the p-Laplace equation (6.1) arises as the Euler-Lagrange equation of the
p-energy functional Ep (u) =

∫
M
|∇u|p dv . To study the topology of the Riemannian manifold

with respect to the p-harmonic theory, let us recall the following definition (see also [8, 27]):

DEFINITION 6.1. An end E of the Riemannian manifold M is said to be p-hyperbolic
if for every compact set K ⊂ Ē,

capp (K, E) := inf
∫
E

|∇ f |p > 0 ,
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where the infimum is taken with respect to all f ∈ C∞0 (Ē) such that f ≥ 1 on K .

In [8], Chang, Chen and Wei introduce and study an approximate solution of the p-
Laplace equation, and a linearlization Lε of a perturbed p-Laplace operator. They prove a
Liouville type theorem for weakly p-harmonic functions with finite p-energy on a complete
noncompact manifold M which supports a weighted Poincaré inequality (Pρ) and satisfies a
curvature assumption. This nonexistence result, when combined with an existence theorem,
implies that such an M has at most one p-hyperbolic end. More precisely, the following is
proved:

THEOREM A ([8]). Let M be a complete non-compact Riemannian n-manifold, n ≥
2, supporting a weighted Poincaré inequality (Pρ) with Ricci curvature

(6.2) Ric(x) ≥ −τρ(x)

for all x ∈ M, where τ is a constant such that

(6.3) τ < 4(p−1+κ)
p2 ,

in which p > 1 , and

(6.4) κ =
⎧⎪⎪⎨⎪⎪⎩

max
{

1
n−1,min

{ (p−1)2

n , 1
}}

if p > 2 ,
(p−1)2

n−1 if 1 < p ≤ 2 .

Then every weakly p-harmonic function u with finite p-energy Ep (u) is constant. Moreover,
M has at most one p-hyperbolic end.

Moreover, a Liouville type theorem for strongly p-harmonic functions with finite q-energy
on Riemannian manifolds is obtained:

THEOREM B ([8]). Let M be a complete non-compact Riemannian n-manifold, n ≥
2, satisfying

(
Pρ

)
, with Ricci curvature

(6.5) Ric(x) ≥ −τρ(x)

for all x ∈ M, where τ is a constant such that

(6.6) τ <
4(q−1+κ+b)

q2 ,

in which

(6.7) κ = min
{ (p−1)2

n−1 , 1
}
and b = min{0, (p − 2)(q − p)}, where p > 1.

Let u ∈ C3 (M) be a strongly p-harmonic function with finite q-energy Eq (u) .
(I ) Then u is constant under each one of the following conditions:
(1) p = 2 and q > n−2

n−1,
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(2) p = 4, q > max {1, 1 − κ − b} ,
(3) p > 2, p � 4, and either

max
{
1, p − 1 − κ

p−1

}
< q ≤ min

{
2, p − (p−4)2

n

4(p−2)

}

or

max {2, 1 − κ − b} < q.

(I I ) u does not exist for 1 < p < 2 and q > 2.

We recall from Section 4, if M is a locally conformal flat manifold with scalar curvature
R < 0 , a.e., then M supports a weighted Poincaré inequality (4.23) or (Pρ) in which ρ =

− n−2
4(n−1) R . Applying Theorems A and B, we have

THEOREM 6.1. Let (Mn, g), n ≥ 3, be a complete non-compact, simply connected,
locally conformal flat Riemannian manifold with scalar curvature R < 0 , a.e. and Ricci
curvature satisfying

(6.8) Ric(x) ≥ aR(x)

for all x ∈ M, where a is a constant such that

(6.9) a < (n−2)(p−1+κ)
(n−1)p2 ,

in which p > 1 , and κ is as in (6.4) . Then every weakly p-harmonic function u with finite
p-energy Ep (u) is constant. Moreover, M has at most one p-hyperbolic end.

PROOF. Since M supports a weighted Poincaré inequality (4.23) or
(
Pρ

)
in which ρ =

− n−2
4(n−1) R , the inequalities (6.8) and (6.9) are equivalent to the inequalities (6.2) and (6.3)

respectively. Indeed, Ric ≥ −τρ = n−2
4(n−1) τR = aR , (6.2) ⇐⇒ (6.8) , in which a = n−2

4(n−1) τ ,

and

(6.3) τ <
4(p − 1 + κ)

p2 ⇐⇒ (6.9) a <
n − 2

4(n − 1)
· 4(p − 1 + κ)

p2 .

Now the assertion follows immediately from Theorem A. �

THEOREM 6.2. Let (Mn, g), n ≥ 3, be a complete non-compact, simply connected,
locally conformal flat Riemannian manifold with scalar curvature R < 0 , a.e. and Ricci
curvature satisfying

(6.10) Ric(x) ≥ aR(x)

for all x ∈ M, where a is a constant such that

(6.11) a < n−2
n−1 · q−1+κ+b

q2 ,

in which p > 1 , and κ is as in (6.7) .
Let u ∈ C3 (M) be a strongly p-harmonic function with finite q-energy Eq (u) .

Then the conclusions (I ) and (I I ) as in Theorem B hold.
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PROOF. Arguing as before, the inequalities (6.10) and (6.11) are equivalent to the
inequalities (6.5) and (6.6) respectively, and the assertion follows immediately from Theorem
B. �
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