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Abstract. Let M be a connected Stein manifold of dimension N and let D be a
Fock-Bargmann-Hartogs domain in CN . Let Aut(M) and Aut(D) denote the groups of all
biholomorphic automorphisms of M and D, respectively, equipped with the compact-open
topology. Note that Aut(M) cannot have the structure of a Lie group, in general; while it is
known that Aut(D) has the structure of a connected Lie group. In this paper, we show that if
the identity component of Aut(M) is isomorphic to Aut(D) as topological groups, then M is
biholomorphically equivalent to D. As a consequence of this, we obtain a fundamental result
on the topological group structure of Aut(D).

1. Introduction and results. Let M be a connected complex manifold and Aut(M)

the group of all biholomorphic automorphisms of M. Then, equipped with the compact-open
topology, Aut(M) is a topological group acting continuously on M.

In 1907, Poincaré proved in [25] that there exists no biholomorphic mapping from the
unit polydisc Δ2 onto the unit ball B2 in C2 by comparing carefully the topological structures
of the isotropy subgroups of Aut(Δ2) and Aut(B2) at the origin 0 of C2. In view of this, for
a given complex manifold M it is an interesting problem to bring out some complex analytic
nature of M under some topological conditions on M or on Aut(M). In connection with this,
in this paper we would like to study the following characterization problem of a complex
manifold M by its holomorphic automorphism group Aut(M):

QUESTION. Let M and N be connected complex manifolds and assume that their
holomorphic automorphism groups Aut(M) and Aut(N) are isomorphic as topological groups.
Then, is M biholomorphically equivalent to N?

The answer to this question is negative, in general, without any other assumptions on the
manifolds M or N . Indeed, consider the following generalized complex ellipsoid

Ep =

{
(z1, . . . , zn) ∈ C

n ;
n∑
j=1

|zj |
2pj < 1

}

in Cn, where n ≥ 2 and p = (p1, . . . , pn) ∈ Rn with 1 < p1 < · · · < pn. Then it is known
that Aut(Ep) is a Lie group isomorphic to the n-dimensional torus Tn for any p and further
Ep is not biholomorphically equivalent to Eq unless p = q (cf. [23], [13]). However, there
exist several articles solving this question affirmatively in the case where manifolds M or N
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are some special domains in Cn. For instance, Isaev-Kruzhilin [7] proved that a connected
complex manifold M of dimension n is necessarily biholomorphically equivalent to Cn if
Aut(M) is isomorphic to Aut(Cn) as topological groups. And, Kodama-Shimizu [16] obtained
the following: Let k be an integer with 0 ≤ k ≤ n and let M be a connected complex
manifold of dimension n that is holomorphically separable and admits a smooth envelope of
holomorphy. Assume that Aut(M) is isomorphic to Aut(Ck × (C∗)n−k) as topological groups.
Then M is biholomorphically equivalent to Ck × (C∗)n−k . See also [6], [3, 4], [15, 17, 19, 20]
for related results. In view of these results, it would be expected that the answer to the question
above is affirmative if Aut(M) is large enough in some sense. However, it should be mentioned
the following: Even in the special case where M and N are homogeneous domains in Cn,
the answer to our question is not always affirmative. In fact, Miatello [21] proved that, for
irreducible homogeneous bounded domains M and N in Cn, Aut(M) is isomorphic to Aut(N)

as topological groups (and hence as Lie groups) if and only if M is either biholomorphically or
anti-biholomorphically equivalent to N . On the other hand, Mukuno-Nagata [22] constructed
a concrete example of non-hyperbolic (in the sense of Kobayashi [12]) homogeneous domains
M and N in Cn for every n ≥ 5 such that Aut(M) is isomorphic to Aut(N) as topological
groups, while M is not biholomorphically equivalent to N .

In this paper, we study exclusively the Fock-Bargmann-Hartogs domains in CN in con-
nection with the question above and establish a group-theoretic characterization of them. In
order to state our precise results, let us define the Fock-Bargmann-Hartogs domain Dn,m(μ)

according to Yamamori [29] as follows:

Dn,m(μ) =
{
(z, w) ∈ Cn × Cm = CN ; ‖w‖2 < e−μ ‖z ‖

2
}
,

where ‖ · ‖ denotes the Euclidean norm, 0 < μ ∈ R and n,m ∈ N with N = n + m. This
is an unbounded strictly pseudoconvex domain in CN with real analytic boundary. Since the
complex Euclidean space Cn is now imbedded in Dn,m(μ) in the canonical manner, it is not
hyperbolic in the sense of Kobayashi [12]. As we will see in the next section, the holomorphic
automorphism group Aut(Dn,m(μ)) of Dn,m(μ) has the structure of a Lie group that acts
real analytically on Dn,m(μ). However, it should be noted that Aut(Dn,m(μ)) does not act
transitively on Dn,m(μ). After Yamamori [29] gave an explicit formula for the Bergman kernel
of Dn,m(μ) in terms of the polylogarithm functions, the Fock-Bargmann-Hartogs domains
have been studied from various points of view. For example, Kim-Ninh-Yamamori [10]
studied exclusively the structure of Aut(Dn,m(μ)) and succeeded in finding generators of
Aut(Dn,m(μ)). Tu-Wang [28] studied proper holomorphic mappings between equidimensional
Fock-Bargmann-Hartogs domains and obtained rigidity results on them. In a recent paper
[11] by Kim-Yamamori-Zhang, the Fock-Bargmann-Hartogs domains were treated from the
complex-geometric point of view: the comparisions among various invariant metrics were
discussed, and in [14] Kodama obtained a result on the global extendability of a biholomorphic
mapping defined locally near a boundary point of Dn,m(μ). In view of these results, it seems
worthwhile to investigate whether the Fock-Bargmann-Hartogs domains can be characterized
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by their holomorphic automorphism groups. The main purpose of this paper is to clear up this
matter. In fact, we can establish the following:

THEOREM. Let M be a connected Stein manifold of dimension N and let Dn,m(μ) be
a Fock-Bargmann-Hartogs domain in CN with N = n + m. Assume that m ≥ 2 and the
identity component of Aut(M) is isomorphic to Aut(Dn,m(μ)) as topological groups. Then M
is biholomorphically equivalent to Dn,m(μ).

Here it should be remarked that Aut(Dn,m(μ)) has the structure of a connected Lie group
for every Fock-Bargmann-Hartogs domain Dn,m(μ) (cf. [10], [14]). Moreover, the assumption
m ≥ 2 cannot be dropped. Indeed, consider the following Fock-Bargmann-Hartogs domain D
and its subdomain D∗:

D =
{
(z, w) ∈ Cn × C ; |w |2 < e−‖z ‖2 }

and D∗ = D \ ΔD ,

where ΔD = {(z, w) ∈ D ; w = 0} � Cn. Then D∗ as well as D is a pseudoconvex domain in
C
n+1 and Aut(D∗) can be naturally identified with Aut(D). Moreover, D∗ is not biholomor-

phically equivalent to D because D∗ is hyperbolic in the sense of Kobayashi [12] and D is not.
(For these assertions, see [5], [10] and [14].) Therefore we cannot drop the assumption m ≥ 2
in the theorem.

As a consequence of our theorem, we can obtain the following fundamental result on the
topological group structure of Aut(Dn,m(μ)):

COROLLARY. Let Dn1 ,m1 (μ1) and Dn2 ,m2 (μ2) be two Fock-Bargmann-Hartogs domains
in CN1 and CN2 respectively, where Nj = nj + mj for j = 1,2. Then Aut(Dn1 ,m1 (μ1)) is
isomorphic to Aut(Dn2 ,m2 (μ2)) as topological groups if and only if Dn1 ,m1 (μ1) is linearly
equivalent to Dn2 ,m2 (μ2), that is, there exists a non-singular linear mapping L : CN1 → CN2

such that L(Dn1 ,m1 (μ1)) = Dn2 ,m2 (μ2). Moreover, this can only happen when (n1,m1) =

(n2,m2).

This paper is organized as follows. In Section 2, we investigate the structure of holomor-
phic automorphism group Aut(Dn,m(μ)) of a given Fock-Bargmann-Hartogs domain Dn,m(μ).
Especially we study the structure of the set of all complete holomorphic vector fields on
Dn,m(μ) in detail. For later use, we also recall some standardization of compact group actions
on complex manifolds. After these preparations, we prove our theorem and its corollary in
Sections 3 and 4, respectively.

2. Preliminaries. In this section, we first study the structure of the holomorphic
automorphism group of a given Fock-Bargmann-Hartogs domain Dn,m(μ) in CN = Cn ×Cm.
After that, we recall a fact on the standardization of some compact group action on a complex
manifold. Also, a well-known fact on Reinhardt domains in Cn is given. Throughout this
section, we write D = Dn,m(μ) for the sake of simplicity.

First of all, we have the following fundamental result on Aut(D):
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THEOREM A (Kim-Ninh-Yamamori [10; Theorem 10]). The automorphism group
Aut(D) is generated by the following mappings:

ϕA : (z, w) �→ (Az, w) , A ∈ U(n) ;
ϕB : (z, w) �→ (z,Bw), B ∈ U(m) ;

ϕv : (z, w) �→
(
z + v, e−μ 〈z,v 〉−(μ/2) ‖v ‖

2
w
)
, v ∈ Cn .

Hence Aut(D) can be regarded as a closed subgroup of Aut(CN ) leaving the boundary
∂D of D invariant and the Aut(D)-action on D (resp. on ∂D) is just the restriction of that on
C
N to D (resp. to ∂D). In particular, via the standard action of the product group U(n) ×U(m)

on Cn ×Cm = CN , one may regard U(n) ×U(m) as a compact, connected subgroup of Aut(D).
From now on, we shall regard U(n), U(m) and SU(m) as subgroups of U(n) ×U(m) ⊂ Aut(D)

in the canonical manner, where SU(m) stands for the special unitary group of degree m.
Now, put ΔD = {(z, w) ∈ D ; w = 0} � Cn and D∗ = D \ ΔD. Then it is known [14] that

ΔD is just the degeneracy set for the Kobayashi pseudodistance dD of D, and D∗ is hyperbolic
in the sense of Kobayashi [12]. Moreover, Aut(D) can be identified with a closed subgroup of
the Lie group Aut(D∗). This combined with the proof of Theorem A given in [10] yields that
Aut(D) is a connected Lie group of dimR Aut(D) = n2 + m2 + 2n.

Here we wish to investigate the structure of Aut(D) more closely. For this purpose, let us
first introduce the subgroups ΠD and G′

D of Aut(D) given by
ΠD := the group generated by {ϕv ; v ∈ Cn} and
G′

D := the group generated by {ϕv ; v ∈ Cn} ∪ U(n) .

Let R = {Rθ}θ∈R be the one-parameter subgroup of Aut(D) consisting of all transformations
Rθ : (z, w) �→ (z, eiθw), θ ∈ R. Note that R is the center of the subgroup U(m) of Aut(D) and
ϕv ◦ Rθ = Rθ ◦ ϕv for all v ∈ Cn and all θ ∈ R. Moreover, for any two elements v, v ′ ∈ Cn, we
have

ϕv ◦ ϕv′ (z, w) =
(
z + v + v ′, e−μ 〈z,v+v

′〉−(μ/2) ‖v+v′ ‖2
e(−μIm 〈v′,v 〉)iw

)
= ϕv+v′ ◦ Rθ(z, w) with θ = −μIm〈v ′, v〉 .

Thus, denoting by idD the identity element of Aut(D), we have ϕ0 = idD , ϕ−1
v = ϕ−v and the

commutator [ϕv, ϕv′] := ϕ−1
v ◦ ϕ−1

v′ ◦ ϕv ◦ ϕv′ of ϕv and ϕv′ is given by

[ϕv, ϕv′] = Rθ with θ = −2μIm〈v ′, v〉 .

Hence, the setΠ := {ϕv◦Rθ ; v ∈ Cn, θ ∈ R} becomes a connected closed subgroupof Aut(D)

of dimR Π = 2n + 1 and, in fact, ΠD coincides literally with the group Π . Consider now
the centralizer of SU(m) in Aut(D) and denote it by CAut(D)(SU(m)). Then it is obvious that
CAut(D)(SU(m)) is generated by the set {ϕv ; v ∈ Cn}∪U(n)∪R; so that G′

D = CAut(D)(SU(m))

and Aut(D) = G′
D · SU(m). More precisely, since ϕA ◦ ϕv ◦ ϕ

−1
A = ϕAv for any A ∈ U(n) and

v ∈ Cn, ΠD is a normal subgroup of G′
D and G′

D = ΠD · U(n) with ΠD ∩ U(n) = {idD}.
Obviously G′

D ∩ SU(m) = R ∩ SU(m) is a finite subgroup of Aut(D) of order m. Therefore,
summarizing our results obtained in the above, we have shown the following:
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(2.1) ΠD is a connected closed subgroup of Aut(D) of dimR ΠD = 2n + 1;
(2.2) G′

D = ΠD · U(n), ΠD ∩ U(n) = {idD} and ΠD is a normal subgroup of G′
D;

(2.3) G′
D = CAut(D)(SU(m)), the centralizer of SU(m) in Aut(D);

(2.4) Aut(D) = G′
D · SU(m) and G′

D ∩ SU(m) is a finite group.
Let L(Aut(D)) be the Lie algebra of Aut(D). Then we know that L(Aut(D)) can be

identified with the real Lie algebra g(D) consisting of all complete holomorphic vector fields
on D (cf. [14]). Taking this into account, we would like to fix some basis for g(D) for later
use. First notice that, for any v ∈ Cn, the family {φt }t ∈R of transformations of CN = Cn ×Cm

given by

φt : (z, w) �→
(
z + tv, e−μ 〈z,tv 〉−(μ/2) ‖tv ‖

2
w
)
, t ∈ R ,

gives rise to a one-parameter subgroup of Aut(D) by Theorem A. Thus we have

Xv :=
n∑
j=1

vj
∂

∂zj
− μ〈z, v〉

m∑
s=1

ws
∂

∂ws
∈ g(D) for all v = (v1, . . . , vn) ∈ C

n .

Let u(L) be the linear Lie algebra consisting of all skew Hermitian matrices of degree L and
put su(L) = [u(L),u(L)]. Then u(L) (resp. su(L)) can be identified with the Lie algebra of
U(L) (resp. of SU(L)). With this notation, the following vector fields

XA :=
n∑

j ,k=1
ajk zk

∂

∂zj
and XB :=

m∑
s,t=1

bstwt
∂

∂ws

are contained in g(D) for all A =
(
ajk

)
∈ u(n) and all B = (bst ) ∈ u(m) by Theorem A. In

particular, the vector fields

(2.5)

Izj := izj
∂

∂zj
(1 ≤ j ≤ n) , Iws := iws

∂

∂ws
(1 ≤ s ≤ m) ,

Iz :=
n∑
j=1

Izj , Iw :=
m∑
s=1

Iws and I := Iz + Iw

are all contained in g(D). By the correspondences XA ↔ A, XB ↔ B, we shall often identify
XA = A, XB = B, respectively, in this paper.

Among these vector fields, we have the following bracket relations:

[Xv, Xv′] = (−2μIm〈v, v ′〉)Iw, [Xv, XA] = XAv ,

[Iz, Xv] = −i

(
n∑
j=1

vj
∂

∂zj
+ μ〈z, v〉

m∑
s=1

ws
∂

∂ws

)
= −Xiv ,(2.6)

[Iw, Xv] = [Iz, XA] = [Iw, XA] = [Iz, XB] = [Iw, XB] = 0

for all v, v ′ ∈ Cn and all A ∈ u(n), B ∈ u(m).
Let πD, g′D be the Lie subalgebras of g(D) corresponding to ΠD, G′

D, respectively. Then
it is easily verified that

(2.7)
πD = {Xv ; v ∈ Cn} ⊕ R{Iw} , g′D = πD ⊕ u(n) and [g′D, πD] ⊂ πD ;
g(D) = g′D ⊕ su(m) and [g′D,su(m)] = {0} ,
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where, for a given subset S of g(D), RS denotes the vector subspace of g(D) spanned by S over
R and ⊕ means the direct sum of vector spaces. In particular, we have dimR g′D = n2 + 2n+ 1.

Next we shall recall the following standardization of some compact group actions on
complex manifolds. This will be important for the proof of our theorem.

THEOREM B (Kodama-Shimizu [18; Generalized standardization theorem]). Let M
be a connected complex manifold of dimension n that is holomorphically separable and admits
a smooth envelope of holomorphy and let K be a compact connected Lie group of rank n.
Assume that an injective continuous group homomorphism ρ of K into Aut(M) is given. Then
there exists a biholomorphic mapping F of M onto a Reinhardt domain W in Cn such that

Fρ(K)F−1 = U(n1) × · · · × U(ns) ⊂ Aut(W) , n1 + · · · + ns = n .

We finish this section by a well-known fact on Reinhardt domains:

THEOREM C (cf. [26; Chapter II]). Let f be a holomorphic function on a Reinhardt
domain W in Cn. Then f has a Laurent series representation

f (z) =
∑
ν∈Zn

cν zν , z ∈ W ,

which converges absolutely and uniformly on any compact set in W , where z = (z1, . . . , zn),
ν = (ν1, . . . , νn) and zν = zν1

1 · · · zνnn . Moreover, if W ∩ {z ∈ Cn ; zi = 0} � ∅ for some
1 ≤ i ≤ n, then cν = 0 for νi < 0. In particular, if W is a pseudoconvex Reinhardt domain
in Cn that is invariant under the standard action of U(k) × U(n − k) on Cn and if a point
zo = (z′o, z

′′
o ) ∈ C

k × Cn−k = Cn belongs to W , then

{(z′, z′′o ) ∈ C
n ; ‖z′‖ ≤ ‖z′o ‖} ⊂ W or {(z′o, z

′′) ∈ Cn ; ‖z′′‖ ≤ ‖z′′o ‖} ⊂ W

according to k ≥ 2 or n − k ≥ 2.

3. Proof of Theorem. Let Dn,m(μ) be the Fock-Bargmann-Hartogs domain in CN =

C
n × Cm as in the theorem and write again D = Dn,m(μ) throughout this section.

Let M be a connected Stein manifold of dimension N and assume that there exists a
topological group isomorphismΦ : Aut(D) → Auto(M), the identity component of Aut(M).
Since K := U(n) ×U(m) is a Lie subgroup of Aut(D), we have the natural injective continuous
group homomorphism ι : K → Aut(D). Thus we now obtain an injective continuous group
homomorphismΦ ◦ ι of the compact connected Lie group K of rank N = n + m into Aut(M).
Hence, by Theorem B there exists a biholomorphic mapping F of M into CN such that
W := F(M) is a Reinhardt domain in CN and

F(Φ ◦ ι)(K)F−1 = U(N1) × · · · × U(Ns) ⊂ Aut(W) , N1 + · · · + Ns = N .

Let T N := (U(1))N be the N-dimensional torus and let T (D) (resp. T (W)) be the compact
abelian subgroup of Aut(D) (resp. of Aut(W)) obtained by restricting the usual T N -action on
C
N to D (resp. to W); so that T (D) as well as T (W) may be naturally identified with T N . Then,

thanks to the conjugacy of the maximal tori FΦ(T (D))F−1 and T (W) in U(N1) × · · · ×U(Ns),
we may assume that M is a pseudoconvex Reinhardt domain W in CN and we have an
isomorphism Φ : Aut(D) → Auto(W) between the topological groups Aut(D) and Auto(W)
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such that Φ(K) = U(N1) × · · · × U(Ns) and Φ(T (D)) = T (W). Recall that the commutator
group of U(Nj ) is SU(Nj) and SU(Nj) is a simple Lie group if Nj ≥ 2 and that m ≥ 2 by our
assumption. Then, after a suitable permutation of coordinates, if necessary, we may further
assume that

(3.1) Φ(U(n) × U(m)) = U(n) × U(m) and Φ(SU(m)) = SU(m) ,

where we regard SU(m) as a subgroup of U(n) × U(m) in the canonical manner.
Let Cn,Cm and Cn,m be the centers of U(n),U(m) and U(n) × U(m), respectively, and let

CAuto (W )(SU(m)) be the centralizer of SU(m) in Auto(W). Obviously, both the groups Cn and
Cm are naturally identified with the one-dimensional torus T1, while Cn,m is identified with
the two-dimensional torus T2. And, it follows from (3.1) that

(3.2) Φ(Cn,m) = Cn,m and Φ(CAut(D)(SU(m))) = CAuto (W )(SU(m)) .

Accordingly, putting G′
W = CAuto (W )(SU(m)) for simplicity, we obtain by (2.4) that

(3.3) Auto(W) = G′
W · SU(m) and G′

W ∩ SU(m) is a finite group .

Now, the connected topological group Auto(W) can be turned into a Lie group by trans-
fering the Lie group structure from Aut(D) by means of the topological group isomorphism
Φ : Aut(D) → Auto(W). Since the Lie group Auto(W) endowed with the compact-open
topology acts continuously on W by biholomorphic transformations, the action is real analytic
with respect to the Lie group structure induced from Aut(D) (cf. [1]). Thus Auto(W) is now
a Lie transformation group of W by biholomorphic transformations; accordingly, the Lie al-
gebra of Auto(W) can be identified with the real Lie algebra g(W) consisting of all complete
holomorphic vector fields on W (cf. [24; p. 103, Theorem VII]). Therefore we obtain the Lie
algebra isomorphism

(3.4) ϕ : g(D) → g(W) induced by Φ : Aut(D) → Auto(W) .

Let g′W be the Lie subalgebra of g(W) corresponding to the Lie subgroup G′
W of Auto(W).

Then, by (3.2) and (3.3), we have

(3.5) ϕ(g′D) = g
′
W , g(W) = g′W ⊕ su(m) and [g′W ,su(m)] = {0}.

Let cn, cm and cn,m be the Lie algebras of Cn,Cm and Cn,m, respectively. Then cn = R{Iz}, cm =
R{Iw} and cn,m = R{Iz, Iw}. Moreover, ϕ(cn,m) = cn,m by (3.2) and the restriction ϕ|cn ,m :
cn,m → cn,m gives a Lie algebra isomorphism. Hence there exists an element (aαβ)1≤α,β≤2 ∈

GL(2;Z) such that

ϕ(Iz) = a11Iz + a21Iw and ϕ(Iw) = a12Iz + a22Iw .

In particular, there exist some elements (A,B) and (a, b) of Z2 \ {0} such that

(3.6) ϕ(I) = AIz + BIw and ϕ(aIz + bIw) = I .

Before proceeding, we here investigate the structure of g(W) more closely. Let us denote
by p1 : CN → Cn, p2 : CN → Cm the projections given by

p1 : (z, w) �→ z , p2 : (z, w) �→ w for (z, w) ∈ Cn × Cm = CN
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and put W1 = p1(W), W2 = p2(W), respectively. Then, since W is a pseudoconvex Reinhardt
domain in CN invariant under the standard U(n) × U(m)-action on Cn × Cm = CN and since
m ≥ 2, it follows from Theorem C that
(3.7) W1 is a domain in Cn invariant under the standard U(n)-action on Cn and W2 is an open
ball Bm(r2) in Cm with radius 0 < r2 ≤ +∞ and center 0; and
(3.8) W ⊂ W1 × W2.
Notice that W1 = {z ∈ Cn; (z,0) ∈ W} by Theorem C; accordingly, W1 can be regarded as a
complex submanifold of W . And, if W1 contains the origin 0 of Cn (for instance, in the case
where n ≥ 2), W1 is also an open ball Bn(r1) in Cn with radius 0 < r1 ≤ +∞ and center 0.
With this notation, we first prove the following:

LEMMA 1. The group G′
W consists of all elements f in Auto(W) having the form

(3.9) f (z, w) = (g(z), λ(z)w) for (z, w) ∈ W

with respect to the coordinate system (z, w) in Cn × Cm = CN , where g ∈ Aut(W1) and λ is a
nowhere vanishing holomorphic function on W1.

PROOF. Clearly the mapping f written in the form (3.9) belongs to G′
W . Conversely,

take an arbitrary element f ∈ G′
W and express f = (g, h) with respect to the coordinate system

(z, w) in Cn × Cm = CN . Then, by the commutativity f ◦ B = B ◦ f for all B ∈ SU(m) ⊂

Auto(W), one has

(3.10) g(z,Bw) = g(z, w) , h(z,Bw) = B · h(z, w) for all (z, w) ∈ W, B ∈ SU(m) .

Take an arbitrary point (zo, wo) ∈ W with wo � 0 and let Swo := SU(m) ·wo be the SU(m)-orbit
passing through wo. Then Swo is a real analytic hypersurface in Cm and g(zo, w) = g(zo, wo)

for all w ∈ Swo by (3.10). Hence, g does not depend on the variables w (cf. [2; p. 142]);
accordingly, g has the form g(z, w) = g(z) on W and g induces a holomorphic automorphism
of W1. Moreover, we assert that h can be written in the form

(3.11) h(z, w) = λ(z)w for (z, w) ∈ W ,

where λ is a nowhere vanishing holomorphic function on W1. Indeed, this can be verified as
follows. For a given point z ∈ W1, we set W(z) = {w ∈ Cm ; (z, w) ∈ W}. By Theorem C this
is an open ball in Cm with center 0. Now take a point zo ∈ W1 arbitrarily and define a mapping
L : W(zo) → Cm by setting L(w) = h(zo, w) for w ∈ W(zo). Then L induces a biholomorphic
mapping L : W(zo) → W(g(zo)) satisfying the condition

(3.12) L(Bw) = B · L(w) for every B ∈ SU(m)

by (3.10). Thus L(w) = 0 if and only if w = 0. For an arbitrarily given point wo ∈ W(zo)
with wo � 0, we put ro = ‖wo‖, Ro = ‖L(wo)‖ and consider a biholomorphic mapping
L̂ : W(zo) → Cm from the open ball W(zo) into Cm defined by

L̂(w) = (ro/Ro)L(w) for w ∈ W(zo) .

It then follows from (3.12) that L̂ gives rise to a holomorphic automorphism, say again L̂,
of the open ball Bm(ro) in Cm with L̂(0) = 0. Consequently, L̂ has to be the restriction of
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some unitary transformation of Cm to Bm(ro), so that there exists an element U ∈ U(m) such
that L(w) = (Ro/ro)Uw on W(zo). Then the relation (3.12) tells us that U is a scalar matrix
(depending only on zo). Therefore we obtain the assertion (3.11); completing the proof of
Lemma 1. �

Now we consider the mapping ρ : G′
W → Aut(W1) that sends an element f ∈ G′

W written
in the form (3.9) into the element g ∈ Aut(W1). Then it is obvious that
(3.13) ρ : G′

W → Aut(W1) is a continuous group homomorphism.
Moreover, let Y be a complete holomorphic vector field on W contained in g′W . It then follows
from Lemma 1 that Y can be expressed as

(3.14) Y =
n∑
j=1

fj (z)
∂

∂zj
+ λ(z)

m∑
s=1

ws
∂

∂ws
,

where fj (1 ≤ j ≤ n) and λ are holomorphic functions on W1. Let X(W1) be the Lie algebra
consisting of all differentiable vector fields on W1 and consider the mapping ρ∗ : g′W → X(W1)

that sends an element Y ∈ g′W written in the form (3.14) into
∑n

j=1 fj (z)∂/∂zj. Then Lemma
1 tells us that
(3.15) ρ∗(Y ) is a complete holomorphic vector field on W1 for every Y ∈ g′W .
Let g(W1) be the set of all complete holomorphic vector fields on W1. Then it should be
remarked that ρ (resp. ρ∗) is nothing but the restriction mapping

G′
W � f �→ f |W1 ∈ Aut(W1) (resp. g′W � Y �→ Y |W1 ∈ g(W1))

under the natural identification W1 = {(z, w) ∈ W ; w = 0}.

LEMMA 2. The Reinhardt domain W contains the origin 0 of CN .

PROOF. If n ≥ 2, this assertion is an immediate consequence of Theorem C. So let us
consider the case where n = 1. In this case, it is well-known that Aut(W1) has the structure
of a Lie group of dimRAut(W1) ≤ 4 and the Lie algebra of Aut(W1) is canonically identified
with the Lie algebra g(W1) of all complete holomorphic vector fields on W1. Moreover, being
a circular domain in C, W1 may be one of the following:

B1(r), C, B1(r) \ {0}, C∗, {z ∈ C ; r < |z| < R} or {z ∈ C ; r < |z| < +∞} ,

where r and R are some positive real numbers. Hence, in order to complete the proof of
Lemma 2, it suffices to show that dimRAut(W1) ≥ 3 because this inequality can only happen
when W1 = B1(r) or W1 = C. For this purpose, we need the following:

SUBLEMMA. Let D be the Fock-Bargmann-Hartogs domain in C × Cm = CN and
ϕ : g(D) → g(W) the Lie algebra isomorphism appearing in (3.4). Then, for any element

Xv = v
∂

∂z
− μv̄z

m∑
s=1

ws
∂

∂ws
with v ∈ C∗ ,

ϕ(Xv) has the form

(3.16) ϕ(Xv) = g(z)
∂

∂z
+ λ(z)

m∑
s=1

ws
∂

∂ws
,

where g, λ are holomorphic functions on W1 and g is not identically zero on W1.
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PROOF. Since Xv ∈ g′D , it follows from (3.14) that ϕ(Xv) can be expressed as in (3.16)
except for the assertion g is not identically zero on W1. Assuming that g(z) ≡ 0 on W1 or
equivalently ϕ(Xv) has the form ϕ(Xv) = λ(z)

∑m
s=1 ws∂/∂ws on W , we wish to derive a

contradiction. For this, consider the vector field I = Iz + Iw ∈ g(D) defined in (2.5). Then by
(2.6) we have

[Xv, [I, Xv]] = −2μ|v |2Iw; and so ϕ([Xv, [I, Xv]]) = −2μ|v |2ϕ(Iw) � 0 .

On the other hand, writing ϕ(I) = AIz + BIw as in (3.6), we have

[ϕ(I), ϕ(Xv)] = Az
∂λ(z)
∂z

Iw; and so ϕ([Xv, [I, Xv]]) = [ϕ(Xv), [ϕ(I), ϕ(Xv)]] = 0 .

This is a contradiction; thereby g(z) � 0 at some point z ∈ W1. �

Let us return to the proof of Lemma 2. Consider the complete holomorphic vector fields

X1 =
∂

∂z
− μz

m∑
s=1

ws
∂

∂ws
, Xi = i

(
∂

∂z
+ μz

m∑
s=1

ws
∂

∂ws

)

on D and write

ϕ(X1) = g1(z)
∂

∂z
+ λ1(z)

m∑
s=1

ws
∂

∂ws
, ϕ(Xi) = g2(z)

∂

∂z
+ λ2(z)

m∑
s=1

ws
∂

∂ws

as in (3.16). Then {ρ∗(ϕ(X1)), ρ∗(ϕ(Xi)), ρ∗(Iz)} = {g1(z)∂/∂z, g2(z)∂/∂z, Iz} is linearly
independent in g(W1); and hence, dimR g(W1) ≥ 3. Indeed, assume that

a1ρ∗(ϕ(X1)) + a2ρ∗(ϕ(Xi)) + a3ρ∗(I
z) = 0 for some (a1,a2,a3) ∈ R

3 \ {0} .

Then, by putting
v = a2 − ia1 , ϕ(I) = AIz + BIw , ϕ(a′Iz + b′Iw) = Iz ,

X̂ = a1X1 + a2Xi + a3(a
′Iz + b′Iw) and λ(z) = a1λ1(z) + a2λ2(z) ,

where (A,B), (a′, b′) are some elements of Z2 \ {0}, it can be seen that

[I, X̂] = v
∂

∂z
− μv̄z

m∑
s=1

ws
∂

∂ws
= Xv ; while ϕ(X̂) = λ(z)

m∑
s=1

ws
∂

∂ws

and ϕ(Xv) = [ϕ(I), ϕ(X̂)] = iAz
∂λ(z)
∂z

m∑
s=1

ws
∂

∂ws
with v ∈ C∗ .

This contradicts the sublemma above. Therefore we conclude that dimR Aut(W1) ≥ 3 and W
contains the origin 0 of CN ; completing the proof of Lemma 2. �

Writing the coordinate system (z, w) in Cn × Cm = CN as

ζ = (ζ1, . . . , ζN ) = (z1, . . . , zn, w1, . . . , wm) = (z, w)

for a while, we put

Pν =

{
N∑
k=1

pk(ζ)
∂

∂ζk
; all pk’s are homogeneous polynomials in ζ of degree ν

}
,
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the space of all homogeneous polynomial vector fields of degree ν. Clearly one has

(3.17) [Pν,Pμ] ⊂ Pν+μ−1 and [I,Yν] = i(ν − 1)Yν for Yν ∈ Pν ,

where I = Iz + Iw =
∑N

k=1 iζk∂/∂ζk ∈ P1.
Let Y =

∑N
k=1 fk (ζ)∂/∂ζk be an arbitrary element of g(W). Then, being a holomorphic

function on the pseudoconvex Reinhardt domain W in CN containing the origin 0, every
component function fk can now be expanded uniquely as

fk (ζ) =
∞∑
ν=0

pkν (ζ) , ζ ∈ W ,

which converges absolutely and uniformly on compact subsets of W , where pkν is a homoge-
neous polynomial in ζ of degree ν. ThusY can be expressed as a convergent seriesY =

∑∞
ν=0 Yν

with Yν =
∑N

k=1 pkν (ζ)∂/∂ζk ∈ Pν . Notice that the complex Lie algebra g spanned by g(W) is
finite-dimensional and contains the vector field d :=

∑N
k=1 ζk∂/∂ζk = −iI . Then, with exactly

the same argument as in the proof of [9; Theorem 1], one can show the following:

LEMMA 3. Every element Y in g(W) can be written in the form

Y =
νo∑
ν=0

Yν with Yν ∈ Pν, 0 ≤ ν ≤ νo ,

where νo is a positive integer depending only on g(W).

More precisely, we would like to show the following:

LEMMA 4. Every element Y in g(W) can be written in the form

Y = Y0 + Y1 + Y2 with Yν ∈ Pν , 0 ≤ ν ≤ 2 .

PROOF. Notice that

g(W) = R{ϕ(Xv), ϕ(XA), ϕ(XB) ; v ∈ Cn, A ∈ u(n),B ∈ u(m)}

and ϕ(XA), ϕ(XB) are polynomial vector fields of degree one by (3.1), where Xv, XA and XB

are complete holomorphic vector fields on D defined in the preceding section. Thus it suffices
to show the lemma for every element ϕ(Xv). To this end, we first verify the following assertion:
(3.18) Let v ∈ Cn and assume that ϕ(Xv) has the form

ϕ(Xv) = Y3 + · · · + Yνo with Yν ∈ Pν, 3 ≤ ν ≤ νo ,

where νo is the integer appearing in Lemma 3. Then we have v = 0 and Yν = 0 for all
3 ≤ ν ≤ νo.
Indeed, assume to the contrary that v � 0. Let ν′ be the least integer ≥ 3 such that Yν′ � 0
in the expression of Y in (3.18). We now verify the assertion (3.18) only in the case where
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ν′ = 3, since the verification in the general case is almost identical. Let

(3.19) ϕ(aIz + bIw) = I as in (3.6) and put Î = aIz + bIw .

Then, by direct computations, we obtain that

[Î, Xv] = −aXiv , [Î, [Î, Xv]] = −a2Xv and [I,Yν] = i(ν − 1)Yν

for every ν; and hence

−a2(Y3 + · · · + Yνo ) = ϕ([Î, [Î, Xv]]) = −
{
22Y3 + · · · + (νo − 1)2Yνo

}
.

Since Y3 � 0, this implies that a2 = 22 � 0 and ϕ(Xν) = Y3; accordingly

ϕ([Xv, [Î, Xv]]) = [ϕ(Xv), [I, ϕ(Xv)]] = [Y3,2iY3] = 0 .

On the other hand, since

[Xv, [Î, Xv]] = [Xv,−aXiv] = −2aμ‖v‖2Iw

by (2.6), we have

(3.20) ϕ([Xv, [Î, Xv]]) = −2aμ‖v‖2ϕ(Iw) � 0 ,

a contradiction. Therefore we conclude that v = 0; proving the assertion (3.18).
Now take an arbitrary element ϕ(Xv) and write

ϕ(Xv) =

νo∑
ν=0

Yν with Yν ∈ Pν, 0 ≤ ν ≤ νo ,

according to Lemma 3. By routine computations, we then have

ϕ
(
− a(1 − a2)Xiv

)
= ϕ

(
[Î, Xv + [Î, [Î, Xv]]]

)
= 2i(1 − 22)Y3 + · · · + (νo − 1)i

{
1 − (νo − 1)2

}
Yνo .

Consequently, −a(1 − a2)iv = 0 and Y3 = · · · = Yνo = 0 by (3.18). Therefore we have shown
that ϕ(Xv) = Y0 + Y1 + Y2; completing the proof of Lemma 4. �

Let T0W (resp. T0W1) be the holomorphic tangent space to W (resp. to W1) at 0,
where 0 ∈ W1 ⊂ W is the origin of CN . As usual, by making use of the standard basis
{(∂/∂ζ1)0, . . . , (∂/∂ζN)0} for T0W , one may identify T0W = CN = Cn × Cm and T0W1 = C

n.
With this notation, we can prove the following:

LEMMA 5. The vector field ϕ(Xv) can be written in the form

ϕ(Xv) = Y v
0 + Y v

2 for every v ∈ Cn ,

where

(1) Y v
ν ∈ Pν, ν = 0,2; and

(2) Y v
0 = 0 if and only if Y v

2 = 0.
In particular, we have {ϕ(Xv)0 ; v ∈ Cn} = T0W1, where ϕ(Xv)0 denotes the value of the vector
field ϕ(Xv) at 0.
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PROOF. By Lemma 4 we know that every ϕ(Xv) can be written in the form
ϕ(Xv) = Y v

0 + Y v
1 + Y v

2 with Y v
ν ∈ Pν, ν = 0,1,2 .

Assume here that Y v
1 � 0 for some v ∈ Cn. Then
ϕ
(
(1 − a2)Xv

)
= ϕ

(
Xv + [Î, [Î, Xv]]

)
= Y v

1 � 0 ; and

− a(1 − a2)ϕ (Xiv) = ϕ
(
[Î, (1 − a2)Xv]

)
= [I,Y v

1 ] = 0 ,
where Î is the vector field on D appearing in (3.19). Thus a = 0 and ϕ(bIw) = I . Since
[Iw,g(D)] = {0}, this implies that [I,g(W)] = {0}. Note that I is the complete holomorphic
vector field on W induced by the one-parameter subgroup {Rθ}θ∈R of Aut(W) given by
Rθ : (z, w) �→ (eiθ z, eiθw), θ ∈ R. It then follows that f ◦ Rθ = Rθ ◦ f for all f ∈ Auto(W)

and all θ ∈ R. In particular, for any f ∈ G′
W written in the form (3.9), we have

(3.21) g(eiθ z) = eiθg(z), λ(eiθ z)eiθw = eiθλ(z)w for all (z, w) ∈ W, θ ∈ R.

Therefore, by the standard argument using the power series expansions of holomorphic func-
tions on the Reinhardt domain W1, it can be shown that g is a linear automorphism of W1 and
λ is a constant function on W1. Together with (3.3), this tells us that every f ∈ Auto(W) is a
linear automorphism of W , that is, f can be expressed in the form

f (z, w) = (Az,Bw) for (z, w) ∈ W ,

where A and B are suitable non-singular matrices. Thus [cn,m,g(W)] = {0} or equivalently
[cn,m,g(D)] = {0} by (3.2). However, since Iz ∈ cn,m and [Iz, Xv] = −Xiv � 0, this is
impossible. Therefore, Y v

1 = 0 and ϕ(Xv) = Y v
0 + Y v

2 for every v ∈ Cn, as desired.
To prove (2), assume that Y v

0 = 0 and Y v
2 � 0. Then v � 0 and

−2aμ‖v‖2ϕ(Iw) = ϕ([Xv, [Î, Xv]]) = [Y v
2 , iY

v
2 ] = 0 .

However, this is absurd because a � 0 as we proved in the preceding paragraph. Therefore
Y v

2 = 0 if Y v
0 = 0. A similar argument shows that Y v

0 = 0 if Y v
2 = 0, as desired.

Finally, take an arbitrary element ϕ(Xv) = Y v
0 + Y v

2 . Then, owing to (3.14), Y v
0 can be

expressed as Y v
0 =

∑n
k=1 α

v
k
∂/∂zk with αv

k
∈ C (1 ≤ k ≤ n). Hence

(3.22) ϕ(Xv)0 =
(
Y v

0
)
0 =

(
αv

1, . . . , α
v
n

)
∈ Cn = T0W1 .

Let {v1, . . . , v2n} be anR-basis forCn. It then follows from the assertion (2) that
{
Y v1

0 , . . . ,Y v2n
0

}
is linearly independent in P0. Together with (3.22), this yields at once that

T0W1 = R
{
ϕ(Xv1)0, . . . , ϕ(Xv2n )0

}
.

Therefore we obtain the last assertion; completing the proof of Lemma 5. �

As an immediate consequence of Lemma 5, we have the following:
(3.23) Every element Y in g′W ∩ (P0 ⊕ P2) can be written in the form Y = ϕ(Xv) with some
v ∈ Cn.
Indeed, since ϕ(g′D) = g

′
W , there exist some elements v ∈ Cn, A ∈ u(n) and a ∈ R such that

ϕ(Xv + XA+ aIw) = Y . Here we know that ϕ(XA+ aIw) ∈ P1 and ϕ(Xv) ∈ P0 ⊕P2 by Lemma
5. So, if Y ∈ P0 ⊕ P2, then we conclude that ϕ(XA + aIw) = 0 and ϕ(Xv) = Y , as required.

LEMMA 6. Let ρ : G′
W → Aut(W1) be the group homomorphism appearing in (3.13).

Then ρ(G′
W ) acts transitively on W1.
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PROOF. By (3.7) and Lemma 2, we see that W1 = Bn(r1) with 0 < r1 ≤ +∞. Consider
first the case where W1 = Bn(r1) with 0 < r1 < +∞. Then it is well-known that Aut(W1) is
a Lie group of dimRAut(W1) = n2 + 2n. In this case, ρ : G′

W → Aut(W1) is a Lie group
homomorphism and ρ∗ : g′W → g(W1) is the Lie algebra homomorphism induced by ρ. Take
any element ϕ(Xv) and write ϕ(Xv) = Y v

0 + Y v
2 as in Lemma 5. Then, by (3.14) ρ∗(ϕ(Xv)) can

be expressed as

ρ∗(ϕ(Xv)) = Y v
0 + Ŷ v

2 , Ŷ v
2 =

n∑
j=1

pv
j (z)

∂

∂zj
,

where each pv
j is a homogeneous polynomial in z of degree two; and hence

dimR{ρ∗(ϕ(Xv)) ; v ∈ Cn} = 2n

by the last assertion in Lemma 5. Since ρ∗ is injective on u(n) and u(n) ∩ ϕ(πD) = {0}, this
implies that dimR ρ∗(g′W ) ≥ n2 + 2n. Thus, dimR ρ∗(g′W ) = n2 + 2n and ρ(G′

W ) = Aut(W1)

because both the Lie groups are connected and have the same dimension. Since Aut(W1) acts
transitively on the ball W1 = Bn(r1), so does ρ(G′

W ), as desired.
Consider next the case where r1 = +∞ or W1 = C

n and let V1 := ρ(G′
W ) · 0 be the

ρ(G′
W )-orbit passing through the origin 0 of Cn. Notice that V1 is open in Cn by Lemma 5

and that U(n) ⊂ ρ(G′
W ). Then V1 = Bn(r) with some 0 < r ≤ +∞. Here we assert that

V1 = C
n or r = +∞. Indeed, assume not. Then V1 is a bounded ball Bn(r) and ρ(G′

W ) can
be regarded as a subgroup of Aut(Bn(r)). By the same reasoning as above, we then have
ρ(G′

W ) = Aut(Bn(r)). However, this is impossible because every element of the subgroup
ρ(G′

W ) of Aut(Cn) must be holomorphic on the whole of Cn, while Aut(Bn(r)) contains an
element that is not holomorphic on Cn. Therefore we have shown that V1 = C

n = W1 and
ρ(G′

W ) acts transitively on W1; completing the proof of Lemma 6. �

LEMMA 7. The domain W2 is an open ball Bm(r2) in Cm with 0 < r2 < +∞.

PROOF. By (3.7) we know that W2 = Bm(r2) with 0 < r2 ≤ +∞. Assume here that
r2 = +∞ or W2 = C

m. Then

W ⊃ {(z, w) ∈ W ; z = 0} = {0} × W2 = {0} × Cm

by Lemma 2 and Theorem C. So, if we take an arbitrary element f ∈ G′
W and represent

f (z, w) = (g(z), λ(z)w) as in (3.9), then

W ⊃ f ({0} × Cm) = {g(0)} × Cm

because λ(0) � 0. Thus, since ρ(G′
W ) acts transitively on W1 by Lemma 6, it follows that

W1 × C
m ⊃ W ⊃

⋃
g∈ρ(G′

W )

({g(0)} × Cm) = W1 × C
m ;

consequently, W =W1×C
m and Auto(W) does not have the structure of a Lie group. However,

this contradicts the fact that our Auto(W) is now a Lie group isomorphic to Aut(D). Therefore
we conclude that r2 � +∞; completing the proof of Lemma 7. �
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For the pseudoconvex Reinhardt domain W contained in W1 × W2 ⊂ Cn × Cm, we set
∂∗W = (W1 × Cm) ∩ ∂W ,

which is an open subset of the boundary ∂W of W . Then, by using the facts in (3.3) and
Lemmas 1, 6 and 7, the following four assertions are verified:
(3.24) Auto(W) can be regarded as a subgroup of Aut(W1 × C

m) leaving ∂∗W invariant;
(3.25) Auto(W) acts transitively on ∂∗W;
(3.26) Auto(W) · 0 = W1 (think of W1 as a complex submanifold of W);
(3.27) For any point zo ∈ W1, p−1

1 (zo) ∩ ∂∗W can be written in the form

p−1
1 (zo) ∩ ∂∗W = {(zo, w) ; ‖w‖ = r(zo)} with some 0 < r(zo) ≤ r2 .

Therefore ∂∗W is a connected real analytic hypersurface in p−1
1 (W1) ⊂ CN given by the

Auto(W)-orbit passing through a point of ∂∗W . Note that Auto(W) contains U(n) × U(m)

as its subgroup and that every point (z, w) of ∂∗W is mapped by a suitable element (A,B) ∈
U(n) × U(m) to some point of the set

∂∗W(z1 ,w1) :=
{
(z, w) ∈ ∂∗W ; zj = 0 (2 ≤ j ≤ n), ws = 0 (2 ≤ s ≤ m)

}
,

the cross-section of ∂∗W by the z1w1-coordinate space in CN . Thus the shape of ∂∗W is
completely determined by that of ∂∗W(z1 ,w1). Consequently, since ∂∗W(z1 ,w1) can be naturally
regarded as a Reinhardt hypersurface in C2, one can choose a small 0 < δ ≤ r1 and a real
analytic function H on the open interval Iδ := (−δ, δ) with H(t) > 0 on Iδ and H(0) = (r2)

2 in
such a way that p−1

1 (Bn(δ)) ∩ ∂∗W can be described as

(3.28) p−1
1 (Bn(δ)) ∩ ∂∗W =

{
(z, w) ∈ Bn(δ) × Cm ; ‖w‖2 = H(‖z‖2)

}
.

(For the Reinhardt hypersurfaces inCL , see e.g., [8; Chapter 1].) Thus, by (3.24) every element
V in g(W) satisfies the following tangency condition:

Re
(
(Vρ)(z, w)

)
= 0 whenever ρ(z, w) = 0 ,

where we have put ρ(z, w) = ‖w‖2 − H(‖z‖2).
By Lemma 7, we now have two possibilities as follows:

CASE I : W1 = C
n, W2 = Bm(r2) with 0 < r2 < +∞; and

CASE II : W1 = Bn(r1), W2 = Bm(r2) with 0 < r1, r2 < +∞ .

LEMMA 8. CASE II does not occur.

PROOF. Assuming contrarily that this case occurs, we shall derive a contradiction. After
a suitable change of coordinates of the form (̃z, w̃) = (sz, tw) with 0 < s, t ∈ R, if necessary,
we may assume that W1 = Bn and W2 = Bm, the unit balls in Cn and in Cm, respectively. The
proof will be divided into two cases where n = 1 and n ≥ 2.

Case (II-1). n = 1: We set W1 = Δ (the unit disc) for a while. Recall that the
one-parameter subgroup {ψt }t ∈R of Aut(Δ) given by

ψt : z �−→
(cosh t)z + sinh t
(sinh t)z + cosh t

, t ∈ R ,

induces the complete holomorphic vector field V := (1 − z2)∂/∂z on Δ.
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First we assert that there exists an element v ∈ C such that ϕ(Xv) has the form

(3.29) ϕ(Xv) = (1 − z2)
∂

∂z
+ cz

m∑
s=1

ws
∂

∂ws
.

Indeed, since g(Δ) = ρ∗(g′W ) = ρ∗(ϕ(g
′
D)) by the proof of Lemma 6 and since V ∈ g(Δ), one

can choose some constants α, β, γ ∈ R and v, c ∈ C in such a way that

ϕ(Xv + αIz + βIw) = (1 − z2)
∂

∂z
+ γIw + cz

m∑
s=1

ws
∂

∂ws
.

Put X = Xv + αIz + βIw for a while and let Î = aIz + bIw be the vector field on D appearing
in (3.19). Then we have

ϕ(a2Xv) = −ϕ([Î, [Î, X]]) = (1 − z2)
∂

∂z
+ cz

m∑
s=1

ws
∂

∂ws
.

Therefore, after taking a2v instead of v, if necessary, we obtain (3.29).
Next we wish to show that the constant c in (3.29) is real. To this end, recall that

ϕ(Iw) = a12Iz + a22Iw with some (a12,a22) ∈ Z
2 \ {0}. It then follows from (3.20) that

(3.30) ϕ([Xv, [Î, Xv]]) = −2aμ|v |2(a12Iz + a22Iw) .

On the other hand, if we put ϕ(Xv) = Y in (3.29), then routine computations show that

(3.31) [Y, [I,Y]] = −4Iz + 2cIw .

Thus, comparing the coefficients of Iw on the right-hand sides in (3.30) and (3.31), we obtain
that c = −aμ|v |2a22 ∈ R, as desired.

Now, recall that

(3.32) p−1
1 (Δ(δ)) ∩ ∂∗W = {(z, w) ∈ Δ(δ) × Cm ; ρ(z, w) = 0} ,

where Δ(δ) = {z ∈ C ; |z| < δ ≤ 1} and ρ(z, w) = ‖w‖2 − H(|z|2). Then, from the tangency
condition Re(ϕ(Xv)ρ) = 0 on p−1

1 (Δ(δ)) ∩ ∂∗W for the vector field ϕ(Xv) in (3.29), we obtain
the differential equation

cH(|z|2) = H ′(|z|2)(1 − |z|2) on Δ(δ) with H(0) = 1 ;

consequently, H(r2) = (1 − r2)−c for all 0 ≤ r < δ. Therefore, by analytic continuation we
have

∂∗W =
{
(z, w) ∈ Δ × Cm ; ‖w‖2 = (1 − |z|2)−c

}
and so

W =
{
(z, w) ∈ Δ × Cm ; ‖w‖2 < (1 − |z|2)−c

}
.

Here, if c = 0, then W = Δ × Bm and dimR Auto(W) = m2 + 2m + 3 > dimRAut(D).
This is absurd because Auto(W) is now isomorphic to Aut(D) as Lie groups. If c > 0, then
lim |z |↑1(1 − |z|2)−c = ∞; so that W ⊂ W1 × W2 = Δ × Bm

� W , a contradiction. Hence, c
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must be a negative constant. So, putting p := −1/c > 0, we conclude that
W =

{
(z, w) ∈ C × Cm ; |z|2 + ‖w‖2p < 1

}
,

a generalized complex ellipsoid, say Ep, in C × Cm = CN . In this case, we know [13] that
Aut(Ep) contains the one-parameter subgroup {τt }t ∈R given by

τt : (z, w) �−→

(
(cosh t)z + sinh t
(sinh t)z + cosh t

,
w(

(sinh t)z + cosh t
)1/p

)
, t ∈ R ,

which induces the complete holomorphic vector field

Y := (1 − z2)
∂

∂z
−

1
p

z
m∑
s=1

ws
∂

∂ws
∈ g′W ∩ (P0 ⊕ P2) .

Thus, by (3.23) there exists an element v ∈ C∗ such that ϕ(Xv) = Y . Recall that
[Xv, [Î, Xv]] = −2aμ|v |2Iw ; and hence, [Xv, [Xv, [Î, Xv]]] = 0 .

Then we arrive at a contradiction:

ϕ([Xv, [Xv, [Î, Xv]]]) = [Y, [Y, [I,Y]]] = −4i

{
(1 + z2)

∂

∂z
+

1
p

z
m∑
s=1

ws
∂

∂ws

}
� 0 .

Therefore we have shown that Case II does not occur in the case where n = 1.

Case (II-2). n ≥ 2: Note that the generalized complex ellipsoid E1 in C × Cn−1 = Cn

is nothing but the unit ball Bn in Cn. Then it is obvious that ρ∗(g′W ) = g(Bn) contains the
complete holomorphic vector field V := (1− z2

1)∂/∂z1− z1
∑n

k=2 zk∂/∂zk. Hence, by the same
method used in the proof of (3.29), one can choose an element v ∈ Cn in such a way that ϕ(Xv)

has the form

ϕ(Xv) = (1 − z2
1)

∂

∂z1
− z1

n∑
k=2

zk
∂

∂zk
+

∑
1≤l≤n,1≤s≤m

clzlws
∂

∂ws
.

Put again ϕ(Xv) = Y . Then

−[Iz1 , [I
z
1 ,Y]] = (1 − z2

1)
∂

∂z1
− z1

n∑
k=2

zk
∂

∂zk
+ c1z1

m∑
s=1

ws
∂

∂ws

and this is obviously an element of g′W ∩ (P0 ⊕P2). Hence, by the fact (3.23) we may assume
from the beginning that

Y = (1 − z2
1)

∂

∂z1
− z1

n∑
k=2

zk
∂

∂zk
+ c1z1

m∑
s=1

ws
∂

∂ws
.

As in (3.30) and (3.31), it then follows that
ϕ([Xv, [Î, Xv]]) = −2aμ‖v‖2(a12Iz + a22Iw) and

[Y, [I,Y]] = −4Iz1 − 2
n∑

k=2
Iz
k
+ 2c1Iw .

Thus, comparing the coefficients of Iz1 and Iz2 on the right-hand sides in the above two equations,
one obtains that aμ‖v‖2a12 = 2 and aμ‖v‖2a12 = 1, a contradiction. Therefore we have shown
that Case II does not occur also in the case where n ≥ 2, completing the proof of Lemma
8. �
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LEMMA 9. In CASE I, W is biholomorphically equivalent to D.

PROOF. Without loss of generality, we may assume that W2 = Bm in Case I. We divide
again the proof into two cases.

Case (I-1). n = 1: Since {ϕ(Xv)0 ; v ∈ C} = T0C by Lemma 5, there exists an element
v ∈ C such that ϕ(Xv) has the form

(3.33) ϕ(Xv) =
∂

∂z
+ p(z)

∂

∂z
+ cz

m∑
s=1

ws
∂

∂ws
,

where p is a homogeneous polynomial in z of degree two and c ∈ C. Here we claim that
p(z) = 0 on W1 = C and c ∈ R∗. Indeed, since

g(C) =

{
(αz + β)

∂

∂z
; α, β ∈ C

}
and (1 + p(z))

∂

∂z
= ρ∗(ϕ(Xv)) ∈ g(C) ,

we have p(z) = 0 on C. Moreover, by combining the fact (2) of Lemma 5 with the same
computations as in (3.30) and (3.31), one can verify that c ∈ R∗, as claimed.

Describe now p−1
1 (Δ(δ)) ∩ ∂∗W in the same form as in (3.32). Then, for the complete

holomorphic vector field ϕ(Xv) on W in (3.33) with p(z) ≡ 0 and c ∈ R∗, the tangency
condition Re(ϕ(Xv)ρ) = 0 on p−1

1 (Δ(δ)) ∩ ∂∗W with the initial condition H(0) = 1 yields that
H(r2) = ecr

2 for all 0 ≤ r < δ. Therefore, by anlytic continuation we obtain that

∂W = ∂∗W =
{
(z, w) ∈ C × Cm ; ‖w‖2 = ec |z |

2
}
.

Moreover, by the same reasoning as in the proof of Lemma 8, Case (II-1), c has to be a negative
constant. Thus, putting ν = −c > 0, we conclude that W can be described as

W =
{
(z, w) ∈ C × Cm ; ‖w‖2 < e−ν |z |

2
}

;
accordingly, the non-singular linear mapping L : C × Cm → C × Cm defined by

L : (z, w) �→ (ξ, η) =
(√
ν/μz, w

)
for (z, w) ∈ C × Cm

gives rise to a linear equivalence between W and D = D1,m(μ); completing the proof of
Lemma 9 in the case where n = 1.

Case (I-2). n ≥ 2: Since {ϕ(Xv)0 ; v ∈ Cn} = T0C
n by Lemma 5, one can choose an

element v ∈ Cn in such a way that ϕ(Xv) has the form

ϕ(Xv) =
∂

∂z1
+

n∑
k=1

pk(z)
∂

∂zk
+ μ(z)

m∑
s=1

ws
∂

∂ws
,

where pk’s (resp. μ) are homogeneous polynomials in z of degree two (resp. of degree one).
Putting ϕ(Xv) = Y , we here assert that
(3.34) [Iz

k
,Y] = 0 for all k = 2, . . . ,n .

Indeed, a straightforward computation shows that

[Iz
k
,Y] = i

{
n∑
j=1

(
zk
∂pj(z)

∂zk
− δjkpk(z)

)
∂

∂zj
+ zk

∂μ(z)
∂zk

m∑
s=1

ws
∂

∂ws

}

for each 2 ≤ k ≤ n, where δjk denotes the Kronecker symbol. Thus [Iz
k
,Y] ∈ g′W ∩ P2;

hence, by (3.23) there exists an element u ∈ Cn such that [Iz
k
,Y] = ϕ(Xu) and ϕ(Xu) ∈ P2.
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Consequently, [Iz
k
,Y] = ϕ(Xu) = 0 by Lemma 5, as asserted. On the other hand, one can check

that Y satisfies the equations (3.34) only when Y has the form

(3.35) Y =
∂

∂z1
+

n∑
k=1

ak z1zk
∂

∂zk
+ cz1

m∑
s=1

ws
∂

∂ws

with some constants ak, c ∈ C. Moreover, in exactly the same way as in the proof of Lemma
8, Case (II-1), it can be shown that c ∈ R (and also ak ∈ R for all k).

Now we put
C(z1 ,w) =

{
(z, w) ∈ Cn × Cm ; zj = 0 (2 ≤ j ≤ n)

}
,

W(z1 ,w) = W ∩ C(z1 ,w) and ∂∗W(z1 ,w) = ∂
∗W ∩ C(z1 ,w) .

Then C(z1 ,w) can be naturally identified with Cm+1 with the coordinate system (z1, w) and
W(z1 ,w) can be regarded as a domain in Cm+1 with real analytic boundary ∂∗W(z1 ,w). Moreover,
we have

(3.36) p−1
1 (Δ(δ)) ∩ ∂∗W(z1 ,w) =

{
(z1, w) ∈ Δ(δ) × C

m ; ‖w‖2 = H(|z1 |
2)
}

under the natural identification {z ∈ Bn(δ) ; zj = 0 (2 ≤ j ≤ n)} = Δ(δ), the open disc with
radius δ and center 0 in the z1-coordinate space C; and
(3.37) the holomorphic vector field Y on Cn × Cm in (3.35) is tangent to W(z1 ,w); hence,
its restriction Y (1) := (1 + a1z2

1)∂/∂z1 + cz1
∑m

s=1 ws∂/∂ws to W(z1,w) induces a complete
holomorphic vector field on W(z1 ,w).
Clearly the vector field Y (1) is tangent to {(z1, w) ∈ W(z1 ,w) ; w = 0} = C, a complex submani-
fold of W(z1,w); accordingly, (1 + a1z2

1)∂/∂z1 gives now a complete holomorphic vector field
on C. Thus a1 = 0 and

Y (1) =
∂

∂z1
+ cz1

m∑
s=1

ws
∂

∂ws
∈ g(W(z1 ,w)) .

So, by repeating exactly the same argument as in Case (I-1), one can verify that W(z1 ,w) can be
written in the form

W(z1,w) =
{
(z1, w) ∈ C × Cm ; ‖w‖2 < ec |z1 |

2 }
with c < 0 .

Therefore, by the invariance of W under the standard U(n) ×U(m)-action on Cn ×Cm, we now
conclude that W has the representation

W =
{
(z, w) ∈ Cn × Cm ; ‖w‖2 < e−ν ‖z ‖

2 }
with ν := −c > 0 ,

which is linearly equivalent to D = Dn,m(μ) as in Case (I-1); thereby completing the proof of
Lemma 9 in the case where n ≥ 2. �

Summarizing our results obtained in the above, we have shown that only Case I occurs
and the domain W is, in fact, biholomorphically equivalent to the model domain D = Dn,m(μ).
We have thus completed the proof of our theorem. �

4. Proof of the Corollary. For the sake of simplicity, we write D1 = Dn1 ,m1 (μ1) and
D2 = Dn2 ,m2 (μ2) in this section.
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It is trivial that Aut(D1) and Aut(D2) are isomorphic as topological groups if D1 and
D2 are linearly equivalent. So, assuming that there exists a topological group isomorphism
Φ : Aut(D1) → Aut(D2), we would like to prove that D1 and D2 are linearly equivalent. We
have now two cases to consider.

CASE 1. N1 = N2: In this case, if m1 ≥ 2 or m2 ≥ 2, there exists a biholomorphic map-
ping f : D1 → D2 by our theorem. It then follows that f (ΔD1) = ΔD2 and f induces a biholo-
morphic mapping from ΔD1 � C

n1 onto ΔD2 � C
n2 because the degeneracy sets for Kobayashi

pseudodistances are invariant under biholomorphic mappings, in general. Therefore, n1 = n2
and so m1 = m2. If m1 = m2 = 1, it is trivial that n1 = n2. Anyway we have (n1,m1) = (n2,m2)

in Case 1; and hence, a non-singular linear mapping L : Cn1 × Cm1 → C
n2 × Cm2 can be

defined by

L(z, w) =
(√
μ1/μ2z, w

)
for (z, w) ∈ Cn1 × Cm1 .

Clearly this L gives now a linear equivalence between D1 and D2, as desired.

CASE 2. N1 � N2: We assert that this case does not occur. Indeed, assuming that this
case occurs, we wish to derive a contradiction. For this, let us recall the following:

FACT ([15; Lemma 2.1]). Let M be a connected Stein manifold of dimension n. If N > n,
then there is no injective continuous group homomorphism of the N-dimensional torus T N

into the topological group Aut(M).

Without loss of generality, we may assume that N1 > N2. Then, under the identification
T N1 = T (D1), our isomorphism Φ gives now an injective continuous group homomorphism
of T N1 into Aut(D2). Since D2 is a connected Stein manifold of dimension N2 < N1, this
contradicts the Fact above; thereby, Case 2 does not occur, as asserted.

Finally, by the argument in Case 1 above, it is obvious that D1 is linearly equivalent to
D2 if and only if (n1,m1) = (n2,m2).

Therefore we have completed the proof of our corollary. �

REMARK. Let D1 and D2 be two Reinhardt domains in CN and assume that Aut(D1) has
the structure of a Lie group with respect to the compact-open topology. Then we know the
following result due to Shimizu [27; Section 4]: If D1 and D2 are holomorphically equivalent,
then they are algebraically equivalent. In addition to this, if D1 contains the origin 0 of CN ,
then D1 and D2 are linearly equivalent.

Now let us consider the special case where D1 and D2 are our Fock-Bargmann-Hartogs
domains in the above proof of the Corollary. Then we know that Aut(Dj ) has the structure of a
Lie group with respect to the compact-open topology and Dj contains the origin 0 of CNj for
j = 1,2. Accordingly, Shimizu’s result also assures us that D1 and D2 are linearly equivalent
if they are holomorphically equivalent.
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