Tohoku Math. J. 71 (2019), 549–557

VANISHING FOR FROBENIUS TWISTS OF AMPLE VECTOR BUNDLES

DANIEL LITT

(Received August 22, 2017, revised January 15, 2018)

Abstract. We prove several asymptotic vanishing theorems for Frobenius twists of ample vector bundles in positive characteristic. As an application, we improve the Bott-Danilov-Steenbrink vanishing theorem for ample vector bundles on toric varieties.

CONTENTS

1.	Introduction	549
2.	Proof of Theorem 2.2.1 and Corollary 2.2.3	551
3.	Proof of Theorem 3.0.2	554
4.	Applications	555
References		556

1. Introduction. Let k be a field, and X a finite-type k-scheme. Let \mathscr{E} be a vector bundle on X. In a beautiful series of papers [Ara04, Ara06, Ara11], Arapura studies a measure of the positivity of \mathscr{E} — the Frobenius amplitude of \mathscr{E} . Arapura bounds the Frobenius amplitude of ample vector bundles in the case that k has characteristic zero. The purpose of this paper is to prove bounds on the Frobenius amplitude in *positive* characteristic, under favorable hypotheses, and to give some applications to prove strong vanishing theorems on e.g. toric varieties.

DEFINITION 1.0.1 (Frobenius Amplitude). Let *k* be a field of characteristic p > 0 and *X* a finite-type *k*-scheme. If \mathscr{E} is a vector bundle on *X*, we define the *Frobenius amplitude* of \mathscr{E} , denoted $\phi(\mathscr{E})$, to be the least integer *l* such that for any coherent sheaf \mathscr{F} on *X*, there exists $N \gg 0$ such that

$$H^i(X, \mathscr{E}^{(p^n)} \otimes \mathscr{F}) = 0$$

for all i > l and n > N.

Now let *k* be a field of characteristic 0 and *X* a finite-type *k*-scheme. For \mathscr{E} a vector bundle on *X*, we say that $\phi(\mathscr{E}) < l$ if there exists a finite-type \mathbb{Z} -algebra *R*, a finite-type *R*-scheme *X*, and a vector bundle $\widetilde{\mathscr{E}}$ on *X* such that

(1) there is a ring map $R \to k$ and isomorphisms $X \simeq X_k, \mathscr{E} \simeq \widetilde{\mathscr{E}}_k$, and

²⁰¹⁰ Mathematics Subject Classification. Primary 14M25; Secondary 14F17.

Key words and phrases. Toric varieties, vanishing theorems, Cartier isomorphism.

(2) $\phi(\widetilde{\mathscr{E}}_{\mathfrak{q}}) < l$ for all closed points $\mathfrak{q} \subset \operatorname{Spec}(R)$.

See [Ara04, Section 1] for more details. Arapura proves

THEOREM 3.0.2 (Frobenius Amplitude of Ample Bundles, [Ara04, Theorem 6.1]). Let k be a field of characteristic zero and X a projective variety over k. Let \mathscr{E} be an ample vector bundle on X. Then

$$\phi(\mathscr{E}) < \operatorname{rk}(\mathscr{E})$$

We give a simple new proof of this theorem in Section 3.

This theorem implies several strong vanishing theorems [Ara04]. It motivates the following question:

QUESTION 1.0.2. Let *X* be a proper variety over a field *k* of characteristic p > 0. Let \mathscr{E} be an ample vector bundle on *X*. Is

$$\phi(\mathscr{E}) < \mathrm{rk}(\mathscr{E})?$$

The goal of this paper is to answer Question 1.0.2 under favorable hypotheses — in particular, we give a new short proof of Theorem 3.0.2, and answer Question 1.0.2, if X lifts to $W_2(k)$, and admits a lift of Frobenius.

Explicitly, our main results is:

THEOREM 2.2.1 (Main Theorem). Let k be a perfect field of characteristic p > 0 and X a projective k-scheme admitting a flat lift X_2 over $W_2(k)$. Let \mathscr{E} be an ample vector bundle on X with $\operatorname{rk}(\mathscr{E}) < p$, and suppose that for some N > 0, $\mathscr{E}^{(p^N)}$ lifts to X_2 . Then for j > 0, $n \ge j$ or j = 0, n > 0 we have

$$\phi\left(\operatorname{Sym}^{n-j}(\mathscr{E})\otimes\bigwedge^{j}(\mathscr{E})\right)\leq \operatorname{rk}(\mathscr{E})-j.$$

Taking n = 1, j = 1 we obtain

$$\phi(\mathscr{E}) < \mathrm{rk}(\mathscr{E}),$$

answering Question 1.0.2 in this case.

We view this as a Manivel-type vanishing theorem. Unfortunately, the hypotheses are rather strong — in particular, we must assume that $\mathscr{E}^{(p^N)}$ lifts for some N > 0 (note that N = 0 does not suffice). This is a difficult condition to verify — the main situation in which it may be checked is when \mathscr{E} admits a lift to X_2 , and X_2 admits a lift of Frobenius:

COROLLARY 2.2.3 (Main Corollary). Let k be a perfect field of characteristic p > 0and X a projective k-scheme admitting a flat lift X_2 over $\mathbb{Z}/p^2\mathbb{Z}$; suppose X_2 admits a lift of absolute Frobenius. Let \mathscr{E} be an ample vector bundle on X with $\operatorname{rk}(\mathscr{E}) < p$, and suppose that \mathscr{E} lifts to X_2 . Then for $j > 0, n \ge j$ or j = 0, n > 0 we have

$$\phi\left(\operatorname{Sym}^{n-j}(\mathscr{E})\otimes\bigwedge^{j}(\mathscr{E})\right)\leq \operatorname{rk}(\mathscr{E})-j$$
.

550

The condition that X_2 admits a lift of Frobenius is quite restrictive (see e.g. [Mig93]), but it holds for e.g. toric varieties [BTLM97] and canonical lifts of ordinary Abelian varieties.

As an application of these methods, we prove a generalization of the Bott-Steenbrink-Danilov vanishing theorem:

THEOREM 4.0.2 (Generalization of Bott-Steenbrink-Danilov). Let X be a normal projective toric variety over a perfect field k, and $\mathscr{E}_1, \ldots, \mathscr{E}_m$ ample vector bundles on X. Let $j: U \hookrightarrow X$ be the inclusion of the smooth locus. Then if a_i, b_i are non-negative integers not all equal to zero, $q \ge 0$, and

(1) char(k) = 0, or

(2) char(k) = $p > \sum_i \operatorname{rk}(\mathscr{E}_i)$, and each \mathscr{E}_i lifts to the canonical (toric) lift of X to $W_2(k)$, then

$$H^{s}\left(X, j_{*}\Omega_{U}^{q} \otimes \operatorname{Sym}^{a_{1}} \mathscr{E}_{1} \otimes \cdots \otimes \operatorname{Sym}^{a_{m}}(\mathscr{E}_{m}) \otimes \bigwedge^{b_{1}} \mathscr{E}_{1} \otimes \cdots \otimes \bigwedge^{b_{m}} \mathscr{E}_{m}\right) = 0$$

for $s > \sum_{i=1}^{m} (\operatorname{rk}(\mathscr{E}_i) - b_i)$.

Here as usual $\Omega_U^i = \bigwedge^i \Omega_U^1$.

This result generalizes several results in the literature. Danilov states (without proof) the special case where m = 1, $\mathscr{E}_1 = \mathscr{L}$ is an ample line bundle and $a_1 = 0$, $b_1 = 1$ [Dan78, Theorem 7.5.2]. This is proven in the case X is simplicial by Batyrev and Cox [BC94] and in general in [BTLM97]. Manivel [Man96] proves a version of this theorem in characteristic zero, when X is smooth. Theorem 4.0.2 is a strengthening (for toric varieties) of his famous vanishing theorem [Man97]. See also [Bri09, Fuj07, Mat02, Mav08, Mus02, HMP10] for related work.

Acknowledgments. This paper benefited from useful discussions with Donu Arapura, Adam Block, Johan de Jong, Daniel Halpern-Leistner, and John Ottem.

2. Proof of Theorem 2.2.1 and Corollary 2.2.3.

2.1. The Cartier Isomorphism. We first recall the main theorem of [DI87]:

THEOREM 2.1.1 (Deligne-Illusie). Let k be a perfect field of characteristic p > 0 and S a k-scheme. Suppose that S admits a flat lift \tilde{S} over $W_2(k)$. Let X be a smooth S-scheme with dim(X/S) < p. Then there is an isomorphism

$$F_{X/S*}\mathcal{Q}_{X/S}^{\bullet} \simeq \bigoplus \mathcal{Q}_{X'/S}^{i}[-i]$$

in D(X') if and only if X' admits a flat lift over \tilde{S} .

Here X' is the Frobenius twist of X, i.e. it fits into the Cartesian diagram

$$\begin{array}{ccc} X' \longrightarrow X \\ & & & \\ & & & \\ S \xrightarrow{\operatorname{Frob}} S \end{array}$$

and $F_{X/S} : X \to X'$ is the relative Frobenius.

D. LITT

Let k be a perfect field of characteristic p > 0, and S a k-scheme admitting a flat lift \tilde{S} to $W_2(k)$. Now suppose \mathscr{E} is a vector bundle on S and set

$$\mathbb{E}^{\vee} = \operatorname{Spec}_{S}(\operatorname{Sym}^{*}(\mathscr{E}))$$

to be the total space of \mathscr{E}^{\vee} ; let

 $\pi:\mathbb{E}^{\vee}\to S$

be the structure morphism. Then the Frobenius twist $\mathbb{E}^{\vee'}$ of \mathbb{E}^{\vee} is

$$\mathbb{E}^{\vee'} \simeq \underline{\operatorname{Spec}}_{S}(\operatorname{Sym}^{*}(\mathscr{E}^{(p)}));$$

let π' be the structure map for $\mathbb{E}^{\vee'}$. Consider the \mathcal{O}_S -linear complex

$$\pi_* \mathcal{Q}^{\bullet}_{\mathbb{E}^{\vee}/S} : 0 \to \operatorname{Sym}^*(\mathscr{E}) \to \operatorname{Sym}^*(\mathscr{E}) \otimes \mathscr{E} \to \operatorname{Sym}^*(\mathscr{E}) \otimes \bigwedge^{\sim} \mathscr{E} \to \cdots$$

The natural action of the multiplicative group \mathbb{G}_m on \mathbb{E}^{\vee} makes this into a graded complex; let

$$\mathcal{Q}^{\bullet}_{\mathbb{E}^{\vee}/S}(n): 0 \to \operatorname{Sym}^{n}(\mathscr{E}) \to \operatorname{Sym}^{n-1}(\mathscr{E}) \otimes \mathscr{E} \to \cdots \to \operatorname{Sym}^{n-i}(\mathscr{E}) \otimes \bigwedge^{\iota} \mathscr{E} \to \cdots$$

be the *n*-th graded piece. The analogous complex for $\mathbb{E}^{\vee'}$ is

$$\pi_* \Omega^{\bullet}_{\mathbb{R}^{\vee'}/S} : 0 \to \operatorname{Sym}^*(\mathscr{E}^{(p)}) \to \operatorname{Sym}^*(\mathscr{E}^{(p)}) \otimes \mathscr{E} \to \operatorname{Sym}^*(\mathscr{E}^{(p)}) \otimes \bigwedge^2 \mathscr{E}^{(p)} \to \cdots$$

which is also naturally a graded complex.

By a result of Cartier (see e.g. [Kat70, Theorem 7.2], taking $X = \mathbb{E}^{\vee}$), there is a natural isomorphism

$$\mathscr{H}^{i}(\pi_{*}\Omega^{\bullet}_{\mathbb{E}^{\vee}/S}) \simeq \pi'_{*}\Omega^{i}_{\mathbb{E}^{\vee'}/S} = \operatorname{Sym}^{*}\mathscr{E}^{(p)} \otimes \bigwedge^{\iota} \mathscr{E}^{(p)}$$

and keeping track of the grading we find that

$$\mathscr{H}^{i}(\Omega^{\bullet}_{\mathbb{E}^{\vee}/S}(pn)) \simeq \operatorname{Sym}^{n-i}(\mathscr{E}^{(p)}) \otimes \bigwedge^{l} \mathscr{E}^{(p)}.$$

By Theorem 2.1.1, this isomorphism may be promoted to an isomorphism in $D^b(S)$ if $\mathscr{E}^{(p)}$ admits a lift to \widetilde{S} , and $\operatorname{rk}(\mathscr{E}) < p$. In this case, we have an isomorphism

$$\mathcal{Q}^{\bullet}_{\mathbb{E}^{\vee}/S}(pn) \simeq \bigoplus_{i} \operatorname{Sym}^{n-i}(\mathscr{E}^{(p)}) \otimes \bigwedge^{i} \mathscr{E}^{(p)}[-i]$$

in $D^b(S)$.

2.2. The Main Theorem. We are now ready to prove:

THEOREM 2.2.1 (Main Theorem). Let k be a perfect field of characteristic p > 0 and X a projective k-scheme admitting a flat lift X_2 over $W_2(k)$. Let \mathscr{E} be an ample vector bundle on X with $\operatorname{rk}(\mathscr{E}) < p$, and suppose that for some N > 0, $\mathscr{E}^{(p^N)}$ lifts to X_2 . Then for j > 0, $n \ge j$ or j = 0, n > 0 we have

$$\phi\left(\operatorname{Sym}^{n-j}(\mathscr{E})\otimes\bigwedge^{j}(\mathscr{E})\right)\leq \operatorname{rk}(\mathscr{E})-j\;.$$

552

PROOF. Let \mathscr{F} be any coherent sheaf on *X* and $j \ge 0$ an integer; we wish to show that for $i > \operatorname{rk}(\mathscr{E}) - j$, and $m \gg 0$,

$$H^{i}\left(X,\operatorname{Sym}^{n-j}(\mathscr{E}^{(p^{m})})\otimes\bigwedge^{j}\mathscr{E}^{(p^{m})}\otimes\mathscr{F}\right)=0.$$

Choose $r \gg 0$ so that

$$H^{i}\left(X,\operatorname{Sym}^{p^{r}n-j}(\mathscr{E}^{(p^{N})})\otimes\bigwedge^{j}\mathscr{E}^{(p^{N})}\otimes\mathscr{F}\right)=0$$

for all *j* and all i > 0. Such an *r* exists by the ampleness of $\mathscr{E}^{(p^N)}$.

We claim that

(2.2.2)
$$H^{i}\left(X, \operatorname{Sym}^{p^{r-s}n-j}(\mathscr{E}^{(p^{N+s})}) \otimes \bigwedge^{j} \mathscr{E}^{(p^{N+s})} \otimes \mathscr{F}\right) = 0$$

for all $0 \le s \le r$ and all $i > rk(\mathscr{E}) - j$. We will prove this by induction on *s*; the case s = 0 is immediate from our choice of *r*.

Assume that Equation 2.2.2 holds for some *s*; we will prove it for *s* + 1. From the first hypercohomology spectral sequence (associated to the stupid filtration of $\Omega^{\bullet}_{\mathbb{E}^{\vee}/X}(p^{r-s}n)^{(p^{N+s})}$, i.e. $F^{i}\Omega^{\bullet}_{\mathbb{E}^{\vee}/X}(p^{r-s}n)^{(p^{N+s})} = \Omega^{\bullet \geq i}_{\mathbb{E}^{\vee}/X}(p^{r-s}n)^{(p^{N+s})}$),

$$E_1^{u,v} = H^u\left(X, \operatorname{Sym}^{p^{r-s}n-v}(\mathscr{E}^{(p^{N+s})}) \otimes \bigwedge^v \mathscr{E}^{(p^{N+s})} \otimes \mathscr{F}\right) \Longrightarrow \mathbb{H}^{u+v}(X, \Omega^{\bullet}_{\mathbb{E}^{\vee}/X}(p^{r-s}n)^{(p^{N+s})} \otimes \mathscr{F})$$

we have that

$$\mathbb{H}^{i}(X, \Omega^{\bullet}_{\mathbb{H}^{\vee}/X}(p^{r-s}n)^{(p^{N+s})}\otimes \mathscr{F}) = 0$$

for $i > \operatorname{rk}(\mathscr{E})$, by the induction hypothesis, as $E_1^{u,v} = 0$ for $u + v > \operatorname{rk}(\mathscr{E})$.

Now consider the second hypercohomology spectral sequence

$$E_2^{u,v} = H^u(X, \mathscr{H}^v(\Omega^{\bullet}_{\mathbb{E}^v/X}(p^{r-s}n)^{(p^{N+s})} \otimes \mathscr{F})) \implies \mathbb{H}^{u+v}(X, \Omega^{\bullet}_{\mathbb{E}^v/X}(p^{r-s}n)^{(p^{N+s})} \otimes \mathscr{F}).$$

As $\mathscr{E}^{(p^N)}$ is assumed to admit a lift to W_2 , this spectral sequence is degenerate by Theorem 2.1.1. Thus $E_2^{u,v} = 0$ for $u + v > \operatorname{rk}(\mathscr{E})$. But by the Cartier isomorphism,

$$E_{2}^{u,v} = H^{u}(X, \mathscr{H}^{v}(\Omega^{\bullet}_{\mathbb{E}^{\vee}/X}(p^{r-s}n)^{(p^{N+s})} \otimes \mathscr{F}))$$
$$= H^{u}\left(X, \operatorname{Sym}^{p^{r-s-1}n-v}(\mathscr{E}^{(p^{N+s+1})}) \otimes \bigwedge^{v} \mathscr{E}^{(p^{N+s+1})} \otimes \mathscr{F}\right)$$

completing the induction step and proving the claim in Equation 2.2.2. Taking r = s in 2.2.2 completes the proof.

The corollary follows easily:

COROLLARY 2.2.3 (Main Corollary). Let k be a perfect field of characteristic p > 0and X a projective k-scheme admitting a flat lift X_2 over $\mathbb{Z}/p^2\mathbb{Z}$; suppose X_2 admits a lift of D. LITT

absolute Frobenius. Let \mathscr{E} be an ample vector bundle on X with $\operatorname{rk}(\mathscr{E}) < p$, and suppose that \mathscr{E} lifts to X₂. Then for $j > 0, n \ge j$ or j = 0, n > 0 we have

$$\phi\left(\operatorname{Sym}^{n-j}(\mathscr{E})\otimes\bigwedge^{j}(\mathscr{E})\right)\leq \operatorname{rk}(\mathscr{E})-j.$$

PROOF. By Theorem 2.2.1, it suffices to show that $\mathscr{E}^{(p)}$ lifts to X_2 . But \mathscr{E} lifts to a vector bundle \mathscr{E}_2 on X_2 , and Frobenius lifts to a $\mathbb{Z}/p^2\mathbb{Z}$ -endomorphism of X_2 , say F_2 . Then $F_2^*\mathscr{E}_2$ is a lift of $\mathscr{E}^{(p)}$, as desired.

COROLLARY 2.2.4. Let k, X, X_2 be as in Corollary 2.2.3. Let $\mathcal{E}_1, \ldots, \mathcal{E}_m$ be ample vector vector bundles on X which lift to X_2 , with $\sum_s \operatorname{rk}(\mathcal{E}_s) < \operatorname{char}(k)$. Then for a_i, b_i nonnegative integers not all equal to zero,

$$\phi\left(\operatorname{Sym}^{a_1}(\mathscr{E}_1)\otimes\cdots\otimes\operatorname{Sym}^{a_m}(\mathscr{E}_m)\otimes\bigwedge^{b_1}\mathscr{E}_1\otimes\cdots\otimes\bigwedge^{b_m}\mathscr{E}_m\right)\leq\sum_{i=1}^m(\operatorname{rk}(\mathscr{E}_i)-b_i)$$

PROOF. Let $\mathscr{E} = \bigoplus_i \mathscr{E}_i$; let $a = \sum_i a_i, b = \sum_i b_i$. Then by Corollary 2.2.3, we have that

$$\phi\left(\operatorname{Sym}^{a}(\mathscr{E})\otimes\bigwedge^{b}\mathscr{E}\right)\leq \operatorname{rk}(\mathscr{E})-b=\sum_{i=1}^{m}(\operatorname{rk}(\mathscr{E}_{i})-b_{i}).$$

But

$$\operatorname{Sym}^{a_1}(\mathscr{E}_1) \otimes \cdots \otimes \operatorname{Sym}^{a_m}(\mathscr{E}_m) \otimes \bigwedge^{b_1} \mathscr{E}_1 \otimes \cdots \otimes \bigwedge^{b_m} \mathscr{E}_m$$

is a direct summand of $\operatorname{Sym}^{a}(\mathscr{E}) \otimes \bigwedge^{b} \mathscr{E}$ so the result follows.

3. Proof of Theorem 3.0.2. We now give a short proof of Theorem 3.0.2, originally due to Arapura [Ara04, Theorem 6.1]. We require a lemma, essentially from [Ara04]:

LEMMA 3.0.1. Let \mathscr{E} be an ample vector bundle, and \mathscr{F} any vector bundle. Then for $N \gg 0$, $\phi(\operatorname{Sym}^N(\mathscr{E}) \otimes \mathscr{F}) = 0$.

PROOF. By [Ara04, Lemma 3.3], it suffices to observe that the Castelnuovo-Mumford regularity of $\text{Sym}^N(\mathscr{E}) \otimes \mathscr{F}$ tends to $-\infty$ as N tends to ∞ . But this is immediate from the ampleness of \mathscr{E} .

We are now ready to prove:

THEOREM 3.0.2 (Frobenius Amplitude of Ample Bundles, [Ara04, Theorem 6.1]). Let k be a field of characteristic zero and X a projective variety over k. Let \mathscr{E} be an ample vector bundle on X. Then

$$\phi(\mathscr{E}) < \mathrm{rk}(\mathscr{E}) \,.$$

PROOF. By Lemma 3.0.1, there exists N_0 such that for all $n > N_0$,

$$\phi\left(\operatorname{Sym}^{n-i}(\mathscr{E})\otimes\bigwedge^{i}\mathscr{E}\right)=0$$

for all *i* (using the ampleness of \mathscr{E}). Now let *R* be a finite-type \mathbb{Z} -algebra, with a map $R \to k$ and $(X, \widetilde{\mathscr{E}})$ a finite-type *R*-scheme with a vector bundle so that $X_k \simeq X, \widetilde{\mathscr{E}}_k \simeq \mathscr{E}$, and such that

$$\phi\left(\operatorname{Sym}^{n-i}(\widetilde{\mathscr{E}}_{\mathfrak{q}})\otimes\bigwedge^{i}\widetilde{\mathscr{E}}_{\mathfrak{q}}\right)=0$$

for all closed points $q \in \text{Spec}(R)$ (such a model $(R, X, \widetilde{\mathcal{E}})$ exists by the definition of ϕ).

Let \mathscr{F} be any coherent sheaf on X; we may assume \mathscr{F} extends to a coherent sheaf $\widetilde{\mathscr{F}}$ on \mathcal{X} . We claim that for closed points $\mathfrak{q} \in \operatorname{Spec}(R)$ with $p = \operatorname{char}(\kappa(\mathfrak{q})) > N_0, j \ge \operatorname{rk}(\mathscr{E})$, and for $m \gg 0$,

$$H^{j}(\mathcal{X}_{\mathfrak{q}},\widetilde{\mathscr{E}}_{\mathfrak{q}}^{(p^{m})}\otimes\widetilde{\mathscr{F}}_{\mathfrak{q}})=0,$$

which clearly suffices.

Consider the hypercohomology spectral sequence

$$E_2^{i,j} = H^i(X_{\mathfrak{q}}, \mathscr{H}^j(\Omega^{\bullet}_{\widetilde{\mathbb{E}_{\mathfrak{q}}}/X_{\mathfrak{q}}}(p)^{(p^T)} \otimes \widetilde{\mathscr{F}_{\mathfrak{q}}})) \implies \mathbb{H}^{i+j}(X_{\mathfrak{q}}, \Omega^{\bullet}_{\widetilde{\mathbb{E}_{\mathfrak{q}}}/X_{\mathfrak{q}}}(p)^{(p^T)} \otimes \widetilde{\mathscr{F}_{\mathfrak{q}}}).$$

By the first paragraph of this proof, the right hand side vanishes for $T \gg 0$, $i + j > rk(\mathcal{E})$. On the other hand,

$$\mathscr{H}^{j}(\Omega^{\bullet}_{\widetilde{\mathbb{E}}_{q}/X_{\mathfrak{q}}}(p)^{(p^{T})}\otimes\widetilde{\mathscr{F}}_{\mathfrak{q}}) = \begin{cases} \widetilde{\mathscr{E}}_{\mathfrak{q}}^{(p^{T+1})}\otimes\widetilde{\mathscr{F}}_{\mathfrak{q}} & \text{if } j = 0,1\\ 0 & \text{otherwise.} \end{cases}$$

Moreover, the only non-zero differentials are on the E_2 page for degree reasons, i.e.

$$d_2^i: H^i(X_{\mathfrak{q}}, \widetilde{\mathscr{E}}_{\mathfrak{q}}^{(p^{T+1})} \otimes \widetilde{\mathscr{F}}_{\mathfrak{q}}) \to H^{i+2}(X_{\mathfrak{q}}, \widetilde{\mathscr{E}}_{\mathfrak{q}}^{(p^{T+1})} \otimes \widetilde{\mathscr{F}}_{\mathfrak{q}}).$$

For $T \gg 0$, and $i > rk(\mathcal{E}) - 1$, these differentials are thus isomorphisms. Thus for $T \gg 0$, $i > rk(\mathcal{E}) - 1$

$$H^{i}(X_{\mathfrak{q}},\widetilde{\mathscr{E}}_{\mathfrak{q}}^{(p^{T+1})}\otimes\widetilde{\mathscr{F}}_{\mathfrak{q}})=0$$

by backwards induction on *i*, as desired (using that H^i vanishes for $i > \dim(X)$).

REMARK 3.0.3. In [Ara04, Proof of Theorem 6.1], Arapura gives a proof of Theorem 3.0.2 using a resolution of $\mathscr{E}^{(p)}$ by Schur functors, from [CL74]. This complex is a subcomplex of $\Omega^{\bullet}_{\widetilde{\mathbb{E}}/X}(p)$. Arapura's proof requires the Kempf vanishing theorem as input; we are able to avoid this input because of our use of symmetric powers as opposed to other Schur functors.

4. Applications. Let *k* be a perfect field and *X* a variety over *k*. We say that *X* admits a Frobenius lift if *X* admits a flat lift X_2 to $W_2(k)$, and if absolute Frobenius lifts to X_2 as a $\mathbb{Z}/p^2\mathbb{Z}$ -morphism. We first prove the following easy theorem:

THEOREM 4.0.1. Let k be a perfect field of characteristic p > 0, and X a normal projective k-variety which admits a Frobenius lift; let $j : U \to X$ be the inclusion of the

D. LITT

non-singular locus. Let \mathscr{E} be a vector bundle on X. Then for all i and all $q > \phi(\mathscr{E})$,

 $H^q(X, \mathscr{E} \otimes j_* \Omega^i_{U/k}) = 0.$

PROOF. We follow the proof of [BTLM97, Theorem 3]. By [BTLM97, Theorem 2], there is a split monomorphism of abelian sheaves

$$0 \to \Omega^i_U \to F_* \Omega^i_U,$$

and hence pushing forward to X, a split monomorphism

$$0 \to j_* \Omega^i_U \to F_* j_* \Omega^i_U$$

(using that *j* and *F* commute). Tensoring with $\mathscr{E}^{(p^r)}$, we obtain injections

$$H^{s}(X, j_{*}\Omega_{U}^{i} \otimes \mathcal{E}^{(p^{r})}) \hookrightarrow H^{s}(X, F_{*}j_{*}\Omega_{U}^{i} \otimes \mathcal{E}^{(p^{r})}) \simeq H^{s}(X, j_{*}\Omega_{U}^{i} \otimes \mathcal{E}^{(p^{r+1})})$$

for all *s*, where the latter isomorphism uses the projection formula and the fact that *F* is affine. Now we are done by backwards induction on *r*, by the definition of $\phi(\mathscr{E})$.

We may immediately conclude:

THEOREM 4.0.2 (Generalization of Bott-Steenbrink-Danilov). Let X be a normal projective toric variety over a perfect field k, and $\mathscr{E}_1, \ldots, \mathscr{E}_m$ ample vector bundles on X. Let $j: U \hookrightarrow X$ be the inclusion of the smooth locus. Then if a_i, b_i are non-negative integers not all equal to zero, $q \ge 0$, and

(1) char(k) = 0, or

(2) char(k) = $p > \sum_{i} \operatorname{rk}(\mathscr{E}_{i})$, and each \mathscr{E}_{i} lifts to the canonical (toric) lift of X to $W_{2}(k)$,

then

$$H^{s}\left(X, j_{*}\Omega_{U}^{q} \otimes \operatorname{Sym}^{a_{1}} \mathscr{E}_{1} \otimes \cdots \otimes \operatorname{Sym}^{a_{m}}(\mathscr{E}_{m}) \otimes \bigwedge^{b_{1}} \mathscr{E}_{1} \otimes \cdots \otimes \bigwedge^{b_{m}} \mathscr{E}_{m}\right) = 0$$

for $s > \sum_{i=1}^{m} (\operatorname{rk}(\mathcal{E}_i) - b_i)$.

PROOF. By a standard spreading-out argument, it suffices to prove the characteristic p statement. But this is immediate from Theorem 4.0.1 and Corollary 2.2.4.

REFERENCES

- [Ara04] DONU ARAPURA, Frobenius amplitude and strong vanishing theorems for vector bundles, With an appendix by Dennis S. Keeler, Duke Math. J. 121 (2004), no. 2, 231–267.
- [Ara06] DONU ARAPURA, Partial regularity and amplitude, Amer. J. Math. 128 (2006), no. 4, 1025–1056.
- [Ara11] DONU ARAPURA, Frobenius amplitude, ultraproducts, and vanishing on singular spaces, Illinois J. Math. 55 (2013), no. 4, 1367–1384.
- [BC94] VICTOR V. BATYREV AND DAVID A. COX, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994), no. 2, 293–338.
- [Bri09] MICHEL BRION, Vanishing theorems for Dolbeault cohomology of log homogeneous varieties, Tohoku Math. J. (2) 61 (2009), no. 3, 365–392.
- [BTLM97] ANDERS BUCH, JESPER F. THOMSEN, NIELS LAURITZEN AND VIKRAM MEHTA, The Frobenius morphism on a toric variety, Tohoku Math. J. (2) 49 (1997), no. 3, 355–366.

- [CL74] ROGER W. CARTER AND GEORGE LUSZTIG, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193–242.
- [Dan78] V. I. DANILOV. The geometry of toric varieties, Uspekhi Mat. Nauk. 33 (1978), no. 2 (200), 85–134, 247.
- [DI87] PIERRE DELIGNE AND LUC ILLUSIE, Relèvements modulo p^2 et décomposition du complexe de de Rham, Invent. Math. 89 (1987), no. 2, 247–270.
- [Fuj07] OSAMU FUJINO, Multiplication maps and vanishing theorems for toric varieties, Math. Z. 257 (2007), no. 3, 631–641.
- [HMP10] MILENA HERING, MIRCEA MUSTATĂ AND SAM PAYNE, Positivity properties of toric vector bundles, Ann. Inst. Fourier (Grenoble), 60 (2010), no. 2, 607–640.
- [Kat70] NICHOLAS M. KATZ, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ, Math. (1970), no. 39, 175–232.
- [Man96] LAURENT MANIVEL, Théorèmes d'annulation sur certaines variétés projectives, Comment. Math. Helv. 71 (1991), no. 3, 402–425.
- [Man97] LAURENT MANIVEL, Vanishing theorems for ample vector bundles, Invent. Math. 127 (1997), no. 2, 401–416.
- [Mat02] EVGENY N. MATEROV, The Bott formula for toric varieties, Mosc. Math. J. 2 (2002), no. 1, 161-182.
- [Mav08] ANVAR R. MAVLYUTOV, Cohomology of rational forms and a vanishing theorem on toric varieties, J. Reine Angew. Math. 615 (2008), 45–58.
- [Mig93] LUCA MIGLIORINI, Some observations on cohomologically *p*-ample bundles, Ann. Mat. Pura Appl. (4) 164 (1993), no. 2, 89–102.
- [Mus02] MIRCEA MUSTAȚĂ, Vanishing theorems on toric varieties, Tohoku Math. J. (2) 54 (2002), no. 3, 451–470.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GEORGIA ATHENS, GEORGIA 30602 U.S.A.

E-mail address: dlitt@uga.edu