COMBINATORIAL RICCI CURVATURE ON CELL-COMPLEX AND GAUSS-BONNNET THEOREM

KAZUYOSHI WATANABE

(Received June 16, 2017, revised December 7, 2017)

Abstract. In this paper, we introduce a new definition of the Ricci curvature on cell-complexes and prove the Gauss-Bonnnet type theorem for graphs and 2-complexes that decompose closed surfaces. The differential forms on a cell complex are defined as linear maps on the chain complex, and the Laplacian operates this differential forms. Our Ricci curvature is defined by the combinatorial Bochner-Weitzenböck formula. We prove some propositionerties of combinatorial vector fields on a cell complex.

1. Introduction. In this paper, we introduce a new definition of the Ricci curvature on cell-complexes and prove the Gauss-Bonnnet type theorem for graphs and 2-complexes that decompose closed surfaces. In the Riemanian geometry, the curvature plays an important role, and there are many results on the curvature on smooth manifolds. Especially the Gauss-Bonnet theorem is known as a fundamental property of a smooth closed manifold. The curvature on a cell complex was studied in many ways. R. Forman defined the Ricci curvature on a cell complex with the Bochner-Weitzenböck formula on the cochain. With this curvature he also showed Bochner's theorem, Myers' theorem and so on. For the curvature defined by angles, McCormick Paul [7] established the Gauss-Bonnet theorem, but in Forman's way the Gauss-Bonnet theorem does not hold.

R. Forman established the discrete Morse theory in [5]. He studied the function on a cell complex and the relation between critical cells and the homology of the cell complex. He also extended this thoery to the discrete Novikov-Morse theory, and in this theory he defined a differential form on the cell complex. This differential form is not the cochain of the cell complex but a linear map on the chain of the cell complex. In this paper we use these differential forms to define the Ricci curvature. We introduce the *L*² inner product on the space of combinatorial differential forms, and this inner product determines the Laplacian on combinatorial differential forms. Then the Ricci curvature is defined with the combinatorial Bochner-Weitzenböck formula for the combinatorial differential forms.

For the construction of the Bochner-Weitzenböck formula, we need the covariant of a 1-form. For this definition we present the 0- and 2-neighbor vector. These vectors are roughly regarded as "the pararell vectors". We define the covariant of a 1-form as the difference between the components of pararell vectors. Then for the cell complex with constant weights, the Ricci curvature is calculated as combinatorial computation,

²⁰¹⁰ *Mathematics Subject Classification.* Primary 05E45; Secondary 53B21.

Key words and phrases. Cell complex, Ricci curvature, Gauss-Bonnet theorem

Ric(ω)($\tau > \sigma$) = (2 – #{0 – neighbor vector of ($\tau > \sigma$)})(ω_{σ}^{τ})²

This formula means that the Ricci curvature on the cell complex at the cell σ is determined by the structure around σ . For a graph or a 2-dimensional complex that decomposes a closed surface, the Ricci curvature for a unit vector at a vertex (resp. at a face f) is independent of the choice of the unit vector, and we define this value as the Gauss curvature g_v (resp. g_f) at the vertex v (resp. the face f). We have the following Gauss-Bonnet type theorems.

THEOREM 1.1. *Let G be a finite simple graph. Then we have*

$$
(1.1)\qquad \qquad \sum_{v} g_v = 2\chi(G),
$$

where the sum is taken over all vertexes v and $\chi(G)$ *is the Euler number of G.*

THEOREM 1.2. *Let M be a 2-dimensional quasiconvex cell complex that decomposes a 2-dimensional closed smooth surface. Then we have*

$$
(1.2)\qquad \qquad \sum_{v}g_v+\sum_{f}g_f=4\chi(M),
$$

where the sums are taken over all vertexes v and all faces f *respectively, and* $\chi(M)$ *is the Euler number of M.*

We also present the vector field on a cell complex. This is defined as a dual of a combinatorial differential 1-form and we prove some properties of this vector field.

2. Combinatorial differential Forms.

2.1. Definition of Combinatorial differential Forms. In this section, we present a differential form on a cell-complex intoroduced in [3]. Let *M* be a regular cell complex of dimension *n*, and

$$
0 \longrightarrow C_n(M) \longrightarrow C_{n-1}(M) \longrightarrow \cdots \longrightarrow \cdots \longrightarrow C_0(M) \longrightarrow 0
$$

be the real cellular chain complex of *M*. We set

$$
(2.1) \tC*(M) = \bigoplus_{p} C_p(M).
$$

A linear map ω : $C_*(M) \to C_*(M)$ is said to be of *degree d* if for all $p = 1, \ldots, n$,

$$
\omega(C_p(M)) \subset C_{p-d}(M).
$$

We say that a linear map ω of degree *d* is *local* if, for each *p* and each oriented *p*-cell α , $\omega(\alpha)$ is a linear combination of oriented $(p - d)$ -cells that are faces of α .

DEFINITION 2.1. For $d \ge 0$, we say that a local linear map $\omega : C_*(M) \to C_*(M)$ of degree *d* is *a combinatorial differential d-form*, and we denote the space of combinatorial differential *d*-forms by $\Omega^d(M)$.

We define *the differential of combinatorial differential forms*

$$
(2.3) \t d: \mathcal{Q}^d(M) \to \mathcal{Q}^{d+1}(M)
$$

as follows. For any $\omega \in \Omega^d(M)$ and any *p*-chain *c*, we define $(d\omega)(c) \in C_{p-(d+1)}(M)$ by

(2.4)
$$
(d\omega)(c) = \partial(\omega(c)) - (-1)^{d} \omega(\partial c).
$$

That is,

(2.5)
$$
d\omega = \partial \circ \omega - (-1)^{d} \omega \circ \partial.
$$

LEMMA 2.2 ([3]). *The differential for combinatorial differential forms satisfies the following propositionerties.*

• $d(\Omega^d(M)) \subseteq \Omega^{(d+1)}(M)$.

$$
\bullet \ \ d^2=0.
$$

This lemma determines the differential complex

$$
\Omega^*(M): 0 \longrightarrow \Omega^0(M) \xrightarrow{d} \Omega^1(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n(M) \longrightarrow 0.
$$

THEOREM 2.3 ([3]). *The cohomology of this complex is isomorphic to the singular*

cohomology of M. That is,

(2.6)
$$
H^*(\Omega^*(M)) \cong H^*(M).
$$

2.2. Laplacian for Combinatorial differential Forms. Let us define an inner product on $C_*(M)$. For any two *p*-cells σ , σ' , we set an inner product as

(2.7)
$$
\langle \sigma, \sigma' \rangle = \delta_{\sigma, \sigma'} w_{\sigma},
$$

where $\delta_{\sigma,\sigma'}$ is the Kronecker's delta, that is, $\delta_{\sigma,\sigma'} = 1$ for $\sigma = \sigma'$ and the others are 0, and $w_{\sigma} > 0$ is a weight of a cell σ . We define the L^2 inner product for combinatorial differential forms. For two *^d*-forms *^u*, v, we set

(2.8)
$$
\langle u, v \rangle = \sum_{\sigma} \frac{1}{w_{\sigma}} \langle u(\sigma), v(\sigma) \rangle,
$$

where the sum is taken over all cells σ in M.

Let us consider the adjoint operator of differential with respect to the inner product,

(2.9)
$$
d^* : \Omega^d(M) \to \Omega^{d-1}(M)
$$
.

That is, for a d -form u and a $(d - 1)$ -form v we have

$$
\langle d^*u, v \rangle = \langle u, dv \rangle.
$$

The space of combinatorial differential d -forms $\Omega^d(M)$ is a sub vector space of the space of linear maps of degree *d* on the chain *C*∗ (*M*). Then we set *p* as the projection on the space of linear maps of degree *d* on the chain $C_*(M)$ to the space of combinatorial differential *d*-forms $\Omega^d(M)$.

LEMMA 2.4. *For any ^d-form* ω*, we have*

(2.11)
$$
d^* = p \circ (\partial^* \circ \omega - (-1)^{(d-1)} \omega \circ \partial^*).
$$

PROOF. For a *p*-dimensional cell τ and a ($p - d$)-dimensional cell σ which is a face of τ , we put a *d*-form e_{σ}^{τ} such that

$$
(2.12) \t\t\t e_{\sigma}^{\tau}(\tau) = \sigma,
$$

and the value is 0 for other cells. They form a basis of *d*-forms as a real vector space.

Let τ , σ , α , β be cells, and assume that e_{σ}^{τ} is a *d*-form and e_{β}^{α} is a $(d-1)$ -form. Then we have

(2.13)
$$
\langle d^* e^{\tau}_{\sigma}, e^{\alpha}_{\beta} \rangle = \langle e^{\tau}_{\sigma}, de^{\alpha}_{\beta} \rangle = \langle e^{\tau}_{\sigma}, \partial \circ e^{\alpha}_{\beta} \rangle - (-1)^{(d-1)} \langle e^{\tau}_{\sigma}, e^{\alpha}_{\beta} \circ \partial \rangle.
$$

We put *A* as the right-hand side of equation (2.11), and have

(2.14)
$$
\langle Ae_{\sigma}^{\tau}, e_{\beta}^{\alpha}\rangle = \langle e_{\sigma}^{\tau}, \partial e_{\beta}^{\alpha}\rangle - (-1)^{(d-1)}\langle e_{\sigma}^{\tau} \circ \partial^*, e_{\beta}^{\alpha}\rangle.
$$

Now we calculate the last term of equation (2.13),

(2.15)
$$
\langle e_{\sigma}^{\tau}, e_{\beta}^{\alpha} \circ \partial \rangle = \sum_{c:\text{cell}} \frac{1}{w_c} \langle e_{\sigma}^{\tau}(c), e_{\beta}^{\alpha}(\partial c) \rangle
$$

$$
= \frac{1}{w_c} \langle \sigma, e_{\beta}^{\alpha}(\partial \tau) \rangle
$$

$$
= \begin{cases} \frac{w_{\sigma}}{w_{\tau}} (-1)^{\tau > \alpha} & \text{for } \tau > \alpha, \ \sigma = \beta \\ 0 & \text{otherwise.} \end{cases}
$$

We calculate the last term of eqation (2.14) ,

(2.16)
$$
\langle e_{\sigma}^{\tau} \circ \partial^*, e_{\beta}^{\alpha} \rangle = \sum_{c: \text{cell}} \frac{1}{w_c} \langle e_{\sigma}^{\tau}(\partial^*c), e_{\beta}^{\alpha}(c) \rangle
$$

$$
= \frac{1}{w_{\alpha}} \langle e_{\sigma}^{\tau}(\partial^* \alpha), \beta \rangle
$$

$$
= \begin{cases} \frac{w_{\sigma}}{w_{\tau}} (-1)^{\tau > \alpha} & \text{for } \tau > \alpha, \ \sigma = \beta \\ 0 & \text{otherwise.} \end{cases}
$$

Then we have

(2.17) $d^* e_{\sigma}^{\tau} = A e_{\sigma}^{\tau}$.

DEFINITION 2.5. We define *the Laplacian for combinatorial differential forms* by

$$
\varDelta = dd^* + d^*d \, .
$$

THEOREM 2.6. *Let M be a finite regular cell-complex. Then we have*

(2.19)
$$
\text{Ker}(\varDelta) \cong H^*(\varOmega^*(M)) \cong H^*(M).
$$

PROOF. The Laplacian is a self-adjoint operator on the finite dimensional vector space $Q^*(M)$ and we have Ker(Δ) = Ker(d) ∩ Ker(d^*). We consider a map

(2.20)
$$
\operatorname{Ker}(A) \rightarrow H^*(\Omega^*(M))
$$

$$
u \mapsto [u].
$$

This map is well-defined and injective. Next we prove that this map is surjective. The Laplacian has an eigen decomposition, and we denote the eigenvalues of the Laplacian by $\lambda_0, \ldots, \lambda_k$ are eigenvalues. Let *u* be a closed form. Then we have an eigen decomposition for the Laplacian

$$
\Delta u = \sum_{i=1,\dots,k} \lambda_i u_i,
$$

where u_i are eigen vectors for λ_i respectively such that $u = \sum_{i=0,\dots,k} u_i$. Then putting

(2.22)
$$
u' = \sum_{i=1,...,k} \frac{d^* u_i}{\lambda_i},
$$

we have

(2.23)
$$
u = u_0 + du'.
$$

We conclude that the map (2.20) is an isomorphism.

2.3. Combinatorial function on cell-complex. We realize a combinatorial 0-form as a function. We set $f \in \Omega^0(M)$, that is,

$$
(2.24) \t\t f: C^*(M) \to C^*(M).
$$

For any cell σ , we have

$$
(2.25) \t\t f(\sigma) = f_{\sigma}\sigma,
$$

and we realize $f_{\sigma} \in \mathbf{R}$ as the value of the function *f*. For a *p*-dimensional cell τ , the derivative of *f* is

(2.26)
$$
df(\tau) = \sum_{\sigma:\tau>\sigma} (f(\tau) - f(\sigma)) (-1)^{\tau>\sigma} \sigma,
$$

where the sum is taken over all $(p-1)$ -dimensional cells σ that are faces of τ , and $(-1)^{\tau > \sigma}$ is the incidence number between τ and σ .

LEMMA 2.7. *Let M be a regular cell-complex and f a function on M, where we identify M* with the set of cells of *M.* f is locally constant if and only if $df = 0$.

2.4. Combinatorial 1-form on cell-complex. Let $\omega \in \Omega^1(M)$ be a combinatorial 1-form. For a *p*-dimensional cell τ , we set

(2.27)
$$
\omega(\tau) = \sum_{\sigma: \tau > \sigma} \omega_{\sigma}^{\tau} (-1)^{\tau > \sigma} \sigma,
$$

where the sum is taken over all $(p-1)$ -dimensional cells σ that are faces of τ , and $(-1)^{\tau > \sigma}$
is the incidence number between τ and τ . We sell the neir $(\tau > \tau)$ s usets provided that a is the incidence number between τ and σ . We call the pair ($\tau > \sigma$) *a vector* provided that a

 \Box

538 K. WATANABE

p-dimensional cell σ is a face of $(p + 1)$ -dimensional cell τ . We say that ω has the value ω_{σ}^{τ} at the vector ($\tau > \sigma$). For a *p*-dimensional cell μ , the derivative of ω is

$$
(2.28) \t d\omega(\mu) = \sum_{(\mu > \tau, \tau' > \sigma)} (\omega_\tau^{\mu} + \omega_\sigma^{\tau} - \omega_{\tau'}^{\mu} - \omega_{\sigma'}^{\tau'}) (-1)^{\mu > \tau} (-1)^{\tau > \sigma} \sigma,
$$

where the sum is taken over all two $(p - 1)$ -dimensional cells τ , τ' and $(p - 2)$ -dimensional cells σ such that

(2.29)
$$
\mu > \tau > \sigma, \ \mu > \tau' > \sigma, \ \tau \neq \tau'.
$$

PROPOSITION 2.8. *For a combinatorial 1-form* ω *, we have* $d\omega = 0$ *if and only if*

(2.30)
$$
\omega_{\tau}^{\mu} + \omega_{\sigma}^{\tau} = \omega_{\tau'}^{\mu} + \omega_{\sigma}^{\tau'}
$$

for any p-dimensional cell μ, any two (*p*−1) *dimensional cells* τ, τ' and any (*p*−2)*-dimensional cell* σ *such that*

(2.31)
$$
\mu > \tau > \sigma, \mu > \tau' > \sigma, \tau \neq \tau'.
$$

For any cell σ , the dual derrivative of ω is

(2.32)
$$
d^*\omega(\sigma) = \left(-\sum_{\tau:\tau>\sigma} \frac{w_{\sigma}}{w_{\tau}} \omega_{\sigma}^{\tau} + \sum_{\rho:\rho<\sigma} \frac{w_{\sigma}}{w_{\rho}} \omega_{\rho}^{\sigma}\right) \sigma,
$$

where the first sum is taken over all $(p + 1)$ -dimensional cells τ that have σ as a face, and the second sum is over all $(p - 1)$ -dimensional cells ρ that are the faces of σ .

3. Combinatorial Vector field on cell-complex.

DEFINITION 3.1. We call a linear map $X : C_*(M) \to C_{(*+1)}(M)$ *a combinatorial vector field* on a cell-complex *M* provided that for any cell σ any component of $X(\sigma)$ has σ as a face.

In the same manner as a 1-form, for a *p*-dimensional cell σ we set

(3.1)
$$
X(\sigma) = \sum_{\tau : \tau > \sigma} X_{\sigma}^{\tau} (-1)^{\tau > \sigma} \tau,
$$

where the sum is taken over all $(p-1)$ -dimensional cells τ that have σ as a face, and $(-1)^{\tau > \sigma}$ is the incidence number between τ and σ .

For a 1-form ω and a vector field *^X* on *^M*, we define *the pairing*

(3.2)
$$
\omega(X)(\sigma) = \sum_{\tau:\tau>\sigma} \omega_{\sigma}^{\tau} X_{\sigma}^{\tau}.
$$

Then for a function *f* on *M*, we define

(3.3)
$$
X(f)(\sigma) = df(X)(\sigma) = \sum_{\tau: \tau > \sigma} X_{\sigma}^{\tau}(f(\tau) - f(\sigma)).
$$

DEFINITION 3.2. Let f be a function on M . We define *the gradient vector field* grad(f) *of f* by

(3.4)
$$
\operatorname{grad}(f)_{\sigma}^{\tau} = \frac{w_{\sigma}}{w_{\tau}}(f(\tau) - f(\sigma)).
$$

Let *X* be a vector field on *M*. We also define *the divergence* div(*X*) *of f* by

(3.5)
$$
\operatorname{div}(X)(\sigma) = -\sum_{\tau^{(p+1)}:\tau > \sigma} X_{\sigma}^{\tau} + \sum_{\rho^{(p-1)}:\rho > \sigma} X_{\rho}^{\sigma}.
$$

We define the inner product for vector fields in the same manner as combinatorial differential forms, i.e. for two vector fields *^X*,*^Y*

(3.6)
$$
\langle X, Y \rangle (\sigma) = \frac{1}{w_{\sigma}} \langle X(\sigma), Y(\sigma) \rangle = \sum_{\tau: \tau > \sigma} \frac{w_{\tau}}{w_{\sigma}} X_{\sigma}^{\tau} Y_{\sigma}^{\tau}.
$$

Then we have

$$
(3.7) \t df(X) = \langle X, \text{grad}(f) \rangle.
$$

DEFINITION 3.3. For a function f on M , we define *the integral of* f *over* M by

(3.8)
$$
\int_M f = \sum_{\sigma} f(\sigma),
$$

where the sum is taken over all cells of *M*.

THEOREM 3.4. *We assume that M is a finite regular cell-complex. Let f be a function on M and X a vector fieldon M. Then we have*

(3.9)
$$
\int_M \langle \text{grad}(f), X \rangle = \int_M f \, \text{div}(X) \, .
$$

PROOF. For a cell σ , we have

(3.10)
$$
\sum_{\sigma} \langle \text{grad}(f), X \rangle (\sigma) = \sum_{\sigma} \sum_{\tau : \tau > \sigma} \frac{w_{\tau}}{w_{\sigma}} X_{\sigma}^{\tau} \cdot \frac{w_{\sigma}}{w_{\tau}} (f(\tau) - f(\sigma))
$$

$$
= \sum_{(\tau > \sigma)} X_{\sigma}^{\tau} (f(\tau) - f(\sigma))
$$

$$
= \sum_{\sigma} f(\sigma) \left(- \sum_{\tau^{(p+1)} : \tau > \sigma} X_{\sigma}^{\tau} + \sum_{\rho^{(p-1)} : \rho > \sigma} X_{\rho}^{\sigma} \right)
$$

$$
= \int_{M} f \operatorname{div}(X).
$$

 \Box

 $\overline{}$ J COROLLARY 3.5. *For any vector field X on M we have*

$$
\int_M \operatorname{div}(X) = 0.
$$

PROOF. For a constant function *f* , the gradient of *f* vanishes. Then we take a constant function *f* as

$$
(3.12)\qquad \qquad f(\sigma) = 1
$$

for any cell σ . Then we have the corollary from Theorem 3.4. \Box

COROLLARY 3.6. *For any function f on M we have*

$$
\int_M Af = 0.
$$

PROOF. For any cell σ ,

(3.14)
$$
\Delta f(\sigma) = \left(- \sum_{\tau^{(p+1)} : \tau > \sigma} (f(\tau) - f(\sigma)) + \sum_{\rho^{(p-1)} : \rho > \sigma} (f(\sigma) - f(\rho)) \right)
$$

$$
= \text{div}(\text{grad}(f))(\sigma).
$$

Then we have the corollaryorally from the previous corollary.

4. Combinatorial Ricci curvature.

4.1. Combinatorial Ricci curvature.

DEFINITION 4.1. Let *M* be a regular cell complex. We say that *M* is *quasiconvex* if for every two distinct $(p + 1)$ -cells $τ_1$ and $τ_2$ of *M*, if $τ_1 ∩ τ_2$ contains a *p*-cell $σ$, then $τ_1 ∩ τ_2$ = $\bar{\sigma}$. In particular this implies that $\bar{\tau}_1 \cap \bar{\tau}_2$ contains at most one *p*-cell.

Let *M* be a regular quasiconvex cell complex.

DEFINITION 4.2. Let τ , σ be two cells of *M* such that the dimension is $(p + 1)$ and *p* respectively and σ is a face of τ .

We define *a* 0-*neighbor vector of* ($\tau > \sigma$) as the following.

- The vectors $(\tau' > \sigma)$ for $(p + 1)$ -cells $\tau' \neq \tau$ such that there are no $(p + 2)$ -cell μ such that $\mu > \tau, \tau'$.
The vectors $(\tau > \tau)$
- The vectors ($\tau > \sigma'$) for *p*-cells $\sigma' \neq \sigma$ such that there are no (*p* 1)-cell ρ such that $\sigma, \sigma' > \rho$.

We define *a 2-neighbor vector of* ($\tau > \sigma$) as the following.

• The vectors $(\mu > \tau')$ for $(p + 1)$, $(p + 2)$ -cells τ' and μ such that $\mu > \tau > \sigma$, $\mu > \tau' > \tau$ and $\tau \pm \tau'$ $\tau' > \sigma$ and $\tau \neq \tau'.$

 \Box

• The vectors $(\sigma' > \rho)$ for $(p-1)$, *p*-cells ρ and σ' such that $\tau > \sigma > \rho$, $\tau > \sigma' > \rho$ and $\sigma \neq \sigma'$.

DEFINITION 4.3. For a combinatorial 1-form ω on M , we define *the combinatorial covariant derivative* as

$$
|\nabla \omega|^2(\tau > \sigma) = \sum_{(\mu > \tau');2-\text{neighbor}} \frac{w_{\sigma}}{w_{\mu}} (\omega_{\sigma}^{\tau} - \omega_{\tau'}^{\mu})^2 + \sum_{(\sigma' > \rho);2-\text{neighbor}} \frac{w_{\rho}}{w_{\tau}} (\omega_{\sigma}^{\tau} - \omega_{\rho}^{\sigma'})^2 + \sum_{(\tau' > \sigma);0-\text{neighbor}} \frac{(w_{\sigma})^2}{w_{\tau}w_{\tau'}} (\omega_{\sigma}^{\tau} + \omega_{\sigma'}^{\tau'})^2 + \sum_{(\tau > \sigma');0-\text{neighbor}} \frac{w_{\sigma}w_{\sigma'}}{(w_{\tau})^2} (\omega_{\sigma}^{\tau} + \omega_{\sigma'}^{\tau})^2,
$$

where the sums are taken over all 2-neighbor vectors and 0-neighbor vectors for $(\tau > \sigma)$ respectively.

DEFINITION 4.4. For a combinatorial 1-form ω on *M*, we define *the Laplacian of* $|\omega|^2$ as

$$
\Delta^{b} |\omega|^{2} (\tau > \sigma)
$$
\n
$$
= \sum_{(\mu > \tau');2\text{-neighbor}} \frac{w_{\sigma}}{w_{\mu}} ((\omega_{\sigma}^{\tau})^{2} - (\omega_{\tau'}^{\mu})^{2}) + \sum_{(\sigma' > \rho);2\text{-neighbor}} \frac{w_{\rho}}{w_{\tau}} ((\omega_{\sigma}^{\tau})^{2} - (\omega_{\rho}^{\sigma'})^{2})
$$
\n
$$
+ \sum_{(\tau' > \sigma);0\text{-neighbor}} \frac{(w_{\sigma})^{2}}{w_{\tau}w_{\tau'}} ((\omega_{\sigma}^{\tau})^{2} + (\omega_{\sigma'}^{\tau'})^{2}) + \sum_{(\tau > \sigma');0\text{-neighbor}} \frac{w_{\sigma}w_{\sigma'}}{(w_{\tau})^{2}} ((\omega_{\sigma}^{\tau})^{2} + (\omega_{\sigma'}^{\tau'})^{2}),
$$

where the sums are taken over all 2-neighbor vectors and 0-neighbor vectors for $(\tau > \sigma)$ respectively.

This Laplacian is symmetric for vectors, hence we have

(4.1)
$$
\sum_{(\tau > \sigma)} \Delta^{\flat} |\omega|^2 (\tau > \sigma) = 0,
$$

where the sum is taken over all vectors.

DEFINITION 4.5. For a combinatorial 1-form ω , we define *the Ricci curvature on a vector* $(\tau > \sigma)$ as

$$
Ric(\omega)(\tau > \sigma) = \langle \Delta \omega, \omega \rangle (\tau > \sigma) - \frac{1}{2} |\nabla \omega|^2 (\tau > \sigma) + \frac{1}{2} \Delta^{\{ \!\!\!\ p \ \!\!\!\}} |\omega|^2 (\tau > \sigma).
$$

LEMMA 4.6. *For any combinatorial 1-form* ω *on ^M, we have*

$$
\langle \Delta \omega, \omega \rangle (\tau > \sigma) = - \sum_{(\mu > \tau');2-\text{neighbor}} \frac{w_{\sigma}}{w_{\mu}} \omega_{\sigma}^{\tau} \omega_{\tau'}^{\mu} - \sum_{(\sigma' > \rho);2-\text{neighbor}} \frac{w_{\rho}}{w_{\tau}} \omega_{\sigma}^{\tau} \omega_{\rho'}^{\sigma'}
$$

$$
+ \sum_{(\tau' > \sigma);0-\text{neighbor}} \frac{(w_{\sigma})^2}{w_{\tau} w_{\tau'}} \omega_{\sigma}^{\tau} \omega_{\sigma'}^{\tau'} + \sum_{(\tau > \sigma');0-\text{neighbor}} \frac{w_{\sigma} w_{\sigma'}}{(w_{\tau})^2} \omega_{\sigma}^{\tau} \omega_{\sigma'}^{\tau'}
$$

$$
+ \sum_{(\mu > \tau');2-\text{neighbor}} \left(\frac{(w_{\sigma})^2}{w_{\tau} w_{\tau'}} - \frac{w_{\sigma}}{w_{\mu}}\right) \omega_{\sigma}^{\tau} \omega_{\sigma'}^{\tau'} + \sum_{(\sigma' > \rho);2-\text{neighbor}} \left(\frac{w_{\sigma} w_{\sigma'}}{(w_{\tau})^2} - \frac{w_{\rho}}{w_{\tau}}\right) \omega_{\sigma}^{\tau} \omega_{\sigma'}^{\tau'}
$$

+(#{2-neighbour vector}) + 2)
$$
\left(\frac{w_{\sigma}}{w_{\tau}}\right)^2 (\omega_{\sigma}^{\tau})^2
$$
.

PROOF. For a 1-form ω , we have

(4.2)
$$
(d^* d\omega)_{\sigma}^{\tau} = \sum_{(\mu > \tau'); 2-\text{neighbor}} \frac{w_{\mu}}{w_{\tau}} (\omega_{\tau}^{\mu} + \omega_{\sigma}^{\tau} - \omega_{\tau'}^{\mu} - \omega_{\sigma}^{\tau'})
$$

$$
+ \sum_{(\sigma' > \rho); 2-\text{neighbor}} \frac{w_{\sigma}}{w_{\rho}} (\omega_{\sigma}^{\tau} + \omega_{\rho}^{\sigma} - \omega_{\sigma'}^{\tau} - \omega_{\rho}^{\sigma'})
$$

$$
(dd^*\omega)_{\sigma}^{\tau} = -\sum_{\mu > \tau} \frac{w_{\mu}}{w_{\tau}} \omega_{\tau}^{\mu} + \sum_{\tau > \sigma'} \frac{w_{\tau}}{w_{\sigma'}} \omega_{\sigma'}^{\tau} + \sum_{\tau' > \sigma} \frac{w_{\tau'}}{w_{\sigma'}} \omega_{\sigma'}^{\tau'} - \sum_{\sigma > \rho} \frac{\sigma}{\rho} \omega_{\rho}^{\sigma}.
$$

Then the Laplacian of ω is

$$
\left(\Delta\omega\right)_{\sigma}^{\tau} = -\sum_{(\mu > \tau'),2\text{-neighbor}} \frac{w_{\mu}}{w_{\tau}} \omega_{\tau'}^{\mu} - \sum_{(\sigma' > \rho);2\text{-neighbor}} \frac{w_{\sigma}}{w_{\rho}} \omega_{\rho'}^{\sigma'} + \sum_{(\tau' > \sigma');0\text{-neighbor}} \frac{w_{\tau'}}{w_{\sigma'}} \omega_{\sigma'}^{\tau} + \sum_{(\tau > \sigma');0\text{-neighbor}} \frac{w_{\tau}}{w_{\sigma'}} \omega_{\sigma'}^{\tau} + \sum_{(\mu > \tau'),2\text{-neighbor}} \left(\frac{w_{\sigma}}{w_{\tau'}} - \frac{w_{\tau}}{w_{\mu}}\right) \omega_{\sigma'}^{\tau'} + \sum_{(\sigma' > \rho);2\text{-neighbor}} \left(\frac{w_{\sigma'}}{w_{\tau}} - \frac{w_{\rho}}{w_{\sigma}}\right) \omega_{\sigma'}^{\tau} + \left(\#\{2\text{-neighbor vector}\} + 2\right) \frac{w_{\sigma}}{w_{\tau}} \left(\omega_{\sigma}^{\tau}\right).
$$

Takeing the inner product of ω and $\Delta\omega$, we have the lemma. \square

THEOREM 4.7. *Let M be a regular quasiconvex cell-complex, and* $(\tau > \sigma)$ *a vector on ^M. For a combinatorial 1-form* ω *on ^M, the Ricci curvature* Ric(ω) *is reprenseted by*

(4.3) \t\t\tRic(
$$
\omega
$$
)($\tau > \sigma$) = (2 - #{0-neighbor vector of ($\tau > \sigma$)} $)$) $\left(\frac{w_{\sigma}}{w_{\tau}}\right)^2 (\omega_{\sigma}^{\tau})^2$
+
$$
\sum_{(\mu > \tau');2\text{-neighbor}} \left(\frac{(w_{\sigma})^2}{w_{\tau}w_{\tau'}} - \frac{w_{\sigma}}{w_{\mu}}\right) \omega_{\sigma}^{\tau} \omega_{\sigma}^{\tau'} + \sum_{(\sigma' > \rho);2\text{-neighbor}} \left(\frac{w_{\sigma}w_{\sigma'}}{(w_{\tau})^2} - \frac{w_{\rho}}{w_{\tau}}\right) \omega_{\sigma}^{\tau} \omega_{\sigma'}^{\tau'}.
$$

In particular, with the assumption that the weight of each cell is constant, we have

$$
Ric(\omega)(\tau > \sigma) = (2 - #\{0\text{-neighbor vector of } (\tau > \sigma)\}) \left(\frac{w_{\sigma}}{w_{\tau}}\right)^2 (\omega_{\sigma}^{\tau})^2.
$$

PROOF. With the above lemma, we have

$$
2\langle \Delta\omega, \omega \rangle (\tau > \sigma)
$$
\n
$$
= - \sum_{(\mu > \tau');2\text{-neighbor}} \frac{w_{\sigma}}{w_{\mu}} \left((\omega_{\sigma}^{\tau} - \omega_{\tau'}^{\mu})^2 - ((\omega_{\sigma}^{\tau})^2 - (\omega_{\tau'}^{\mu})^2) - 2(\omega_{\sigma}^{\tau})^2 \right)
$$
\n
$$
- \sum_{(\sigma' > \rho);2\text{-neighbor}} \frac{w_{\rho}}{w_{\tau}} \left((\omega_{\sigma}^{\tau} - \omega_{\rho}^{\sigma'})^2 - ((\omega_{\sigma}^{\tau})^2 - (\omega_{\rho}^{\sigma'})^2) - 2(\omega_{\sigma}^{\tau})^2 \right)
$$

RICCI CURVATURE ON CELL-COMPLEX 543

+
$$
\sum_{(\tau' > \sigma); 0-\text{neighbor}} \frac{(w_{\sigma})^2}{w_{\tau} w_{\tau'}} ((\omega_{\sigma}^{\tau} + \omega_{\sigma}^{\tau'})^2 - ((\omega_{\sigma}^{\tau})^2 + (\omega_{\sigma}^{\tau'})^2) - 2(\omega_{\sigma}^{\tau})^2)
$$

+
$$
\sum_{(\tau > \sigma'); 0-\text{neighbor}} \frac{w_{\sigma} w_{\sigma'}}{(w_{\tau})^2} ((\omega_{\sigma}^{\tau} + \omega_{\sigma'}^{\tau})^2 - ((\omega_{\sigma}^{\tau})^2 + (\omega_{\sigma'}^{\tau})^2) - (\omega_{\sigma}^{\tau})^2)
$$

+ 2(#{2-neighbor vector} + 2) $(\omega_{\sigma}^{\tau})^2$

+2
$$
\sum_{(\mu>r');2\text{-neighbor}} \left(\frac{(w_{\sigma})^2}{w_{\tau}w_{\tau'}} - \frac{w_{\sigma}}{w_{\mu}} \right) \omega_{\sigma}^{\tau} \omega_{\sigma}^{\tau'} + 2 \sum_{(\sigma' > \rho);2\text{-neighbor}} \left(\frac{w_{\sigma}w_{\sigma'}}{(w_{\tau})^2} - \frac{w_{\rho}}{w_{\tau}} \right) \omega_{\sigma}^{\tau} \omega_{\sigma'}^{\tau}.
$$

\n=|\nabla\omega|^2(\tau > \sigma) - \Delta^{\flat}|\omega|^2(\tau > \sigma) + 2(2 - #{0-neighbour vector}) (\omega_{\sigma}^{\tau})^2.
\n+2
$$
\sum_{(\mu > \tau');2\text{-neighbor}} \left(\frac{(w_{\sigma})^2}{w_{\tau}w_{\tau'}} - \frac{w_{\sigma}}{w_{\mu}} \right) \omega_{\sigma}^{\tau} \omega_{\sigma'}^{\tau'} + 2 \sum_{(\sigma' > \rho);2\text{-neighbor}} \left(\frac{w_{\sigma}w_{\sigma'}}{(w_{\tau})^2} - \frac{w_{\rho}}{w_{\tau}} \right) \omega_{\sigma}^{\tau} \omega_{\sigma'}^{\tau}.
$$

Then we have the equation (4.3) .

5. Combinatorial Gauss-Bonnet Theorem.

5.1. Gauss-Bonnet Theorem for graph. Let $G = (V, E)$ be a finite simple graph, where *V* is the set of vertexes and *E* the set of edges. We realize *G* as 1-dimensional cell complex, i.e. vertexes are 0-cells and edges are 1-cells.

LEMMA 5.1. Let v and e be a vertex and an edge of G respectively such that $e > v$. We *take a combinatorial* ¹*-form* ω *on ^G. Then we have*

Ric(ω)(*^e* > v) ⁼ (² [−] deg(v)) wv we 2 (ωe v) ² (5.1) ,

where $deg(v)$ *is the degree of v.*

PROOF. Let v and e be a vertex and an edge of G respectively such that $e > v$. For the definition of 0-neighbor vector, we find two vectors $(e' > v)$ and $(e > v')$ such that there are no 2-cell *f* such that $f > e$, e' , and there are no (−1)-cell ρ such that $v, v' > \rho$ respectively.
Since there are no 2 cells in *G*, the vector $(e' > v)$ is a 0 peighbor vector for any e' which

Since there are no 2-cells in *G*, the vector ($e' > v$) is a 0-neighbor vector for any e' which has the vertex v except for the edge e . Hence there are exactly deg(v) – 1 edges that satisfy the above condition. Since there are no (−1)-cells, there is only one vertex v' such that $(e > v')$ is a 0-neighbor vector for $(e > v)$. Then the number of 0-neighbor vectors for $(e > v)$ is deg(v).

With the definition of a 2-neighbor vecotor, there are not 2-neighbor vectors for the vector $(e > v)$. We have the lemma from the equation (4.3) . \Box

With this lemma, we immediately have the following lemma.

LEMMA 5.2. *We take a combinatorial* 1-form ω on G such that for any vertex v

(5.2)
$$
\sum_{e:e>v} \left(\frac{w_v}{w_e}\right)^2 (\omega_v^e)^2 = 1,
$$

where the sum is taken over all edges ^e such that ^e > v*. Then for any vertex* v *we have*

(5.3)
$$
\sum_{e,e>v} \text{Ric}(\omega)(e > v) = 2 - \text{deg}(v).
$$

For a smooth surface the Gauss curvature at a point *p* equal to the Ricci curvature for a unit vector at *p*. The following definition is an analogue to this fact.

DEFINITION 5.3. We define *the Gauss curvature for a vertex* v by

$$
(5.4) \t\t\t g_v = 2 - \deg(v).
$$

PROOF OF THEOREM 1.1. From the definition of the Gauss curvature, we have

(5.5)

$$
\sum_{v} g_v = \sum_{v} (2 - \deg(v))
$$

$$
= 2\#V - \sum_{v} \deg(v)
$$

$$
= 2\#V - 2\#E
$$

$$
= 2\chi(G).
$$

5.2. Gauss-Bonnet Theorem for 2-complex. Let *M* be a 2-dimensional quasiconvex cell complex that decomposes a 2-dimensional closed smooth surface.

 \Box

LEMMA 5.4. Let v and e be a vertex and an edge on M respectively such that $e > v$. *We take a combinatorial* ¹*-form* ω *on ^M. Then we have*

$$
\operatorname{Ric}(\omega)(e > v) = (4 - \deg(v)) \left(\frac{w_v}{w_e}\right)^2 (\omega_v^e)^2 + \sum_{(f > e'); 2\text{-neighbor}} \left(\frac{(w_v)^2}{w_e w_{e'}} - \frac{w_v}{w_f}\right) \omega_v^e \omega_v^{e'},
$$

where deg(v) *is the degree of* v *and the sum is taken over all 2-neighbor vectors of the vector* $(e > v)$.

PROOF. Let v and e be a vertex and an edge on M respectively such that $e > v$. For the definition of a 0-neghbor vecotor, we find the vectors $(e' > v)$ and $(e > v')$ such that there are $e \ge 2$ call f such that $f > e$ a' and there are no (b) call g such that $v \le 2$ are presentively no 2-cell *f* such that $f > e$, e' and there are no (-1)-cell ρ such that $v, v' > \rho$ respectively.

For the edge *e* there are exactly two faces that have the edge *e*. For exactly two edges *e* the vectors $(e' > v)$ are not 0-neghbor vecotors of $(e > v)$. The number of 0-neghbor vecotors of $(e > v)$ is deg(v) – 3. Since there are no (-1)-cells in *M*, there is only one vertex v' such that $(e > v')$ is a 0-neighbor vector for $(e > v)$. Then the number of 0-neighbor vecotors for $(e > v)$ is deg(*v*) 2. We have the lamma from the equation (4.3) $(e > v)$ is deg(v) – 2. We have the lemma from the equation (4.3). \Box

For a vertex v we consider the sum

(5.6)
$$
Ric(\omega)(v) := \sum_{e; e > v} Ric(\omega)(e > v),
$$

where the sum is taken over all edges e that have the vertex v . This is a quadratic form for real bases $\{\frac{w_v}{w_e}\omega_v^e\}_{e>v}$. The trace with this bases is $deg(v)(4-deg(v))$. For a smooth manifold the

scalar curvature is a trace of the Ricci curvature. The next definition is an analogue to this fact.

DEFINITION 5.5. We define *the scalar curvature* $S(v)$ *at a vertex* v as

(5.7)
$$
S(v) = \text{trace Ric}(\omega)(v) = \text{deg}(v)(4 - \text{deg}(v)).
$$

For a smooth surface the scalar curvature is the twice of the Gauss curvature. The next definition is analogue to this fact.

DEFINITION 5.6. We define *the Gauss curvature at a vetex* v as

(5.8)
$$
g_v = \frac{S(v)}{\deg(v)} = 4 - \deg(v).
$$

LEMMA 5.7. Let e and f be an edge and a face of M respectively such that $f > e$. We *take a combinatorial* ¹*-form* ω *on ^M. Then we have*

$$
\operatorname{Ric}(\omega)(f > e) = (4 - \deg(f)) \left(\frac{w_e}{w_f}\right)^2 (\omega_e^f)^2 + \sum_{(e' > v); 2\text{-neighbor}} \left(\frac{w_e w_{e'}}{(w_f)^2} - \frac{w_v}{w_f}\right) \omega_e^f \omega_{e'}^f,
$$

where $deg(f)$ *is the degree of* f *, that is, the number of edges of* f *and the sum is taken over the all 2-neighbor vector of the vector* $(f > e)$ *.*

PROOF. Let *^e* and *^f* be an edge and a face of *^M* respectively such that *^f* > *^e*. For the definition of a 0-neghbor vecotor, we find two vectors $(f' > e)$ and $(f > e')$ such that there
are no 3 call σ such that $\sigma > f$, f' and there are no 0 call n such that $e, e' > 0$ respectively. are no 3-cell σ such that $\sigma > f$, f' and there are no 0-cell v such that $e, e' > v$ respectively.

For the edge *e* there are exactly two faces that have *e* as an edge. Then for only one face *f'* the vector $(f' > e)$ is a 0-neighbor vector of $(f > e)$. For edges of the face *f*, exactly two edges e_1, e_2 intersect with the edge *e*, then the two vectors $(f > e_1)$ and $(f > e_2)$ are not 0-neighbor vectors of $(f > e)$. For the other edges e' of the face f , the vector $(f > e')$ is a 0 neighbor vector of $(f > e)$. Then the number of 0 neighbor vectors for $(e > n)$ is deg(f) 0-neighbor vector of $(f > e)$. Then the number of 0-neighbor vecotors for $(e > v)$ is deg (f) –
2. We have the lemma from the equation (4.4) 2. We have the lemma from the eqation (4.4) .

For a face *f* we consider the next sum,

(5.9)
$$
Ric(\omega)(f) := \sum_{e:f \geq e} Ric(\omega)(f > e),
$$

where the sum is taken over the all edges *e* contained in the boundary of the face *f* .

DEFINITION 5.8. We define *the scalar curvature* $S(f)$ *at a face* f as

(5.10)
$$
S(f) = \operatorname{trace} \operatorname{Ric}(\omega)(f) = \deg(f)(4 - \deg(f)).
$$

We define *the Gauss curvature at a face f* as

(5.11)
$$
g_f = \frac{S(f)}{\deg(f)} = 4 - \deg(f).
$$

546 K. WATANABE

If all weights of cells of *M* are constants, we conclude the following lemma that is an analogue to the smooth surface.

LEMMA 5.9. *Let M be a 2-dimensional quasiconvex cell complex that decomposes a 2-dimensional closed smooth surface. We assume that all weights of cells of M are constants.*

(1) *Let* v *be a vertex of ^M. We take a combinatorial* ¹*-form* ω *on ^M such that*

(5.12)
$$
\sum_{e; e > v} (\omega_v^e)^2 = 1,
$$

where the sum is taken over all edges ^e such that ^e > v*. Then we have*

(5.13)
$$
\sum_{e: e > v} \text{Ric}(\omega)(e > v) = 4 - \text{deg}(v) = g_v.
$$

(2) *Let ^f be a face of ^M. We take a combinatorial* ¹*-form* ω *on ^M such that*

(5.14)
$$
\sum_{e:f > e} (\omega_e^f)^2 = 1,
$$

where the sum is taken over all edges ^e such that ^f > *^e. Then we have*

(5.15)
$$
\sum_{e:f\geq e} \text{Ric}(\omega)(f>e) = 4 - \text{deg}(f) = g_f.
$$

PROOF OF THEOREM 1.2. We denote *^V*, *^E* and *^F* by the numbers of vertexes, edges and faces in *M* respectively.

From the definition of the Gauss curvature, we have

(5.16)
$$
\sum_{v} g_{v} + \sum_{f} g_{f} = \sum_{v} (4 - \deg(v)) + \sum_{f} (4 - \deg(f))
$$

$$
= 4V - \sum_{v} \deg(v) + 4F - \sum_{f} \deg(f)
$$

$$
= 4V - 2E + 4F - 2E
$$

$$
= 4(V - E + F)
$$

$$
= 4\chi(M).
$$

 \Box

REFERENCES

- [1] R. F. ARNORD, The Discrete Hodge Star Operator and Poincaré Duality, Virginia Polytechnic Institute and State University, 2012.
- [2] R. FORMAN, Bochner's method for cell complexes and combinatorial Ricci curvature, Discrete Comput. Geom. 29 (2003), no.3, 323–374.
- [3] R. FORMAN, Combinatorial Novikov-Morse theory, Internat. J. Math. 13 (2002), no.4, 333–368.
- [4] R. FORMAN, Combinatorial vector fields and dynamical systems, Math. Z. 228 (1998), no.4, 629–681.
- [5] R. FORMAN, Morse theory for cell complexes, Adv. Math. 134 (1998), no.1, 90–145.
- [6] A.T. LUNDELL AND S. WEINGRAM, The Topology of CW Complexes, The university series in higher mathematics, Springer New York, 2012.

[7] P. MCCORMICK, Combinatorial Curvature of Cellular Complexes, The University of Melbourne, Department of Mathematics and Statistics, 2004.

TOME R&D INC. 134 CHUDOJI MINAMIMACHI SHIMOGYO-KU, KYOTO-CITY KYOTO 600–8813 JAPAN