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Abstract. In this paper we study the relative Chow and K-stability of toric manifolds.
First, we give a criterion for relative K-stability and instability of toric Fano manifolds in the
toric sense. The reduction of relative Chow stability on toric manifolds will be investigated
using the Hibert-Mumford criterion in two ways. One is to consider the maximal torus action
and its weight polytope. We obtain a reduction by the strategy of Ono [34], which fits into the
relative GIT stability detected by Székelyhidi. The other way relies on C∗-actions and Chow
weights associated to toric degenerations following Donaldson and Ross-Thomas [13, 36]. In
the end, we determine the relative K-stability of all toric Fano threefolds and present counter-
examples which are relatively K-stable in the toric sense but which are asymptotically relatively
Chow unstable.

1. Introduction. The well-known Yau-Tian-Donaldson conjecture asserts that a com-
pact complex polarized manifold (X, L) admits canonical metrics (Kähler-Einstein metrics,
constant scalar curvature (cscK) metrics, and extremal metrics, etc) in 2πc1(L) if and only
if (X, L) is stable in the sense of Geometric Invariant Theory. Among various notions of
stability, K-stability and Chow stability are the most widely studied. Many authors use the
term polystability rather than stability, since the former agrees better with the notions in GIT.
Throughout this paper, we use the latter for simplicity.

The conception of K-stability was first introduced by Tian [41] in the study of the existence
of Kähler-Einstein metrics in the first Chern class (if it is positive) on a Kähler manifold. Later,
Donaldson extended it to general polarized varieties [13] and made a conjecture on the relation
between K-stability and the existence of cscK metrics. More generally, for the existence of
extremal metrics, the definition of K-stability was extended by Székelyhidi [40] to Kähler
classes with non-vanishing Futaki invariant and was called relative K-stability. Meanwhile,
the conception of Chow stability is also significant in Kähler geometry. Let Aut(X, L) be the
automorphism group of (X,L). In [12] Donaldson showed that the existence of a cscK metric in
2πc1(L) implies the asymptotic Chow stability of (X, L) if Aut(X, L) is discrete. Donaldson’s
result was generalized by Mabuchi [25], with the assumption on Aut(X, L) replaced by the
condition of vanishing higher order Futaki invariants. Very recently, it has been shown that
the existence of extremal metrics implies asymptotically Chow stability relative to a maximal
torus [27, 37]. With these remarkable progress, the verification of the stabilities is drawing
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more and more attention. In general, this is a complicated problem since one has to study an
infinite number of possible degenerations of the manifold. In this paper, we shall discuss the
stabilities of toric manifolds.

For toric manifolds, a well-understood reduced version of the relative K-stability on the
moment polytope is believed to be equivalent to the existence of extremal metrics [13, 48].
This conjecture has been confirmed for toric surfaces [14, 15, 7].

Let (XΔ, LΔ) be the polarized toric manifold which corresponds to a lattice polytope Δ

〈li, x〉 ≤ λi, i = 1, . . . , d ,(1.1)

satisfying Delzant’s condition, where λi ∈ Z, li ∈ Zn is primitive. Let θΔ be the potential
function of the extremal vector field V [18], which is affine linear on Δ, and normalized by∫
Δ
θΔ dx = 0 (see Lemma 2.1). In [13], Donaldson reduced K-stability to the positivity of a

linear functional defined on Δ. This functional was generalized for relative K-stability and is
given by [48]

LΔ(u) =
∫
∂Δ

u dσ −
∫
Δ

(S̄ + θΔ)u dx(1.2)

where S̄ is the average of the scalar curvature, and dσ = |li |−1dσ0 on the face in {x ∈ Rn :
〈li, x〉 = λi }. Here dσ0 is the standard Lebesgue measure on ∂Δ. Note that S̄ = Vol(∂Δ)

Vol(Δ) and
the functional LΔ corresponds to the modified Futaki invariant in [40]. We mention that the
potential function θΔ is uniquely determined by the condition that LΔ(u) = 0 for any affine
linear function u, namely, one can solve the n + 1-linear system

LΔ(1) = 0, LΔ(xi ) = 0 for i = 1, . . . , n ,

in order to find θΔ =
∑

aixi + c with ai and c. See Section 5.1 for more detail.
Recall that a convex function u is piecewise linear if there are affine linear functions

f1, . . . , f� such that u = max { f1, . . . , f� }. Furthermore u is simple piecewise linear if it is of
the form u = max { 0, f } for a linear function f . In view of [13, 40, 48, 49], we have:

DEFINITION 1.1. A toric manifold (XΔ, LΔ) is called relatively K-semistable in the
toric sense if LΔ(u) � 0 for all piecewise linear convex functions. Furthermore, it is called
relatively K-stable in the toric sense when LΔ(u) = 0 if and only if u is affine linear.

When proving the existence of cscK metrics on toric surfaces [14, 15] Donaldson intro-
duced a stronger notion called strong K-stability. Let Δ∗ be the union of the interior of Δ and
the interiors of its co-dimension 1 faces. Denote

C1 = {u | u is convex on Δ∗ and
∫
∂Δ

u < ∞} .

The linear functional LΔ is well-defined on C1.
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DEFINITION 1.2. (XΔ, LΔ) is called relatively strongly K-stable in the toric sense if
LΔ(u) � 0 for all convex functions in C1 and LΔ(u) = 0 if and only if u is an affine linear
function.

To check the positivity of LΔ in dimension 2, it suffices to consider simple piecewise
linear convex functions on Δ [13, 45]. In higher dimensions, a sufficient condition for the
relative strong K-stability in the toric sense was given by [48]. When X is a Fano n-fold, L is
the anti-canonical line bundle and S̄ = n the sufficient condition is

sup
Δ
θΔ � 1 .(1.3)

Condition (1.3) has been verified for all toric Fano surfaces. In [48], it was also asked whether
it holds for higher dimensions or not. Furthermore, Mabuchi proposed the following question
when considering the existence of extremal metrics on toric Fano manifolds.

PROBLEM 1.3. Let (XΔ, LΔ) be a polarized toric Fano manifold. Is (XΔ, LΔ) always
relatively K-stable or not?

If the answer were affirmative, one can expect that any toric Fano manifold admits an
extremal metric like the case of Kähler-Ricci solitons [46]. However, we have found counter-
examples (Corollary 1.6). By a simple observation and together with (1.3), we have:

THEOREM 1.4. Assume (XΔ, LΔ) is a toric Fano manifold and θΔ =
∑n

i=1 aixi + c,
where ai, c ∈ R. Let Δ− = { x ∈ Δ : 1 − θΔ < 0 }.

(1) If Int(Δ−) = ∅, i.e. θΔ ≤ 1 on Δ, then (XΔ, LΔ) is relatively strongly K-stable in the
toric sense. Here Int(Δ−) is the interior of Δ−.

(2) If Int(Δ−) � ∅ and satisfies

1 − c <

∫
Δ− (1 − θΔ)2 dx

Vol(Δ−)
,(1.4)

then there exists a simple piecewise linear function such that LΔ(u) < 0.

An application of Theorem 1.4 is to determine relative K-stablities of all toric Fano
threefolds. The condition θΔ ≡ 0 is equivalent to the vanishing of the Futaki invariant [18].
Smooth toric Fano threefolds were classified by Batyrev [1, 2] and K. Watanabe and M.
Watanabe [44] independently. In this paper, we use the notation of [2]. See Section 2.1 for
more detail. Among all of them, CP3, B4, C3, C5 and F1 have the vanishing Futaki invariant,
so condition (1.3) is true. By computation with Theorem 1.4, we have:

THEOREM 1.5. Let X be a toric Fano threefold. We assume that the Futaki invariant of
X does not vanish. Then X is relatively strongly K-stable in the toric sense in the anti-canonical
class if and only if X is one of the following: B2, B3, C1, C4, E3, E4 and F2.

It is known that all toric Fano surfaces admit extremal metrics in the anti-canonical
class [6, 8]. The instability tells us that counter-examples appear in dimension 3.
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COROLLARY 1.6. If X is one of B1, C2, D1, D2, E1 and E2, then X does not admit
extremal metrics in its first Chern class.

On the other hand, the reduction of Chow stability is also an interesting problem. A
natural idea is to use the Hilbert-Mumford criterion. Ono [34] studied Chow stability of toric
manifolds by considering the maximal torus action and its weight polytope. He obtained a
reduction by adapting Gelfand-Kapranov-Zelevinsky’s theory of Chow polytopes [20, 22]. He
also defined a notion of the relative Chow semistability in the toric sense. In this paper, we
introduce a refinement of this notion so that it fits naturally into the relative GIT stability
detected by Székelyhidi [39, Chapter 1].

Let (XΔ, LΔ) be a polarized toric manifold and N = dim(H0(XΔ, LΔ)) − 1. We consider
the relative Chow stability of XΔ ⊂ CPN (see Section 3.1 for definitions). Now we assume
G = (C∗)N+1 is a subgroup of diagonal matrices in GL(N + 1,C). Following [34], we only
consider the specific maximal torus of SL(N +1,C) which is also a subtorus of (C∗)N+1 given
by

TCΔ = { (t1, . . . , tN+1) ∈ (C∗)N+1 |
N+1∏
j=1

t j = 1 } .

Let β be the C∗-action induced by the extremal vector field V as in Section 2.2.

DEFINITION 1.7. (XΔ, LΔ) is relatively Chow semistable(stable, unstable) in the toric
sense if the Chow form is TC

Δ
-semistable(stable, unstable) relative to β.

Finally we consider the asymptotic relative Chow stability. Denote the Ehrhart polynomial
of Δ by EΔ(t). For any i ∈ Z+, we replace Δ above by iΔ, N + 1 by EΔ(i) and G = (C∗)EΔ (i) .
Then we consider the maximal diagonalized torus TC

iΔ
:= G ∩ SL(EΔ(i),C).

DEFINITION 1.8. (XΔ, LΔ) is asymptotically relatively Chow semistable (stable, un-
stable) in the toric sense if the Chow form is TC

iΔ
-semistable (stable, unstable) relative to β for

all sufficiently large i.

In this paper, we will describe the asymptotic relative Chow stability in the toric sense in
a combinatorial way. The character group χ(G) of G is identified with

{iΔ∩ Zn → Z} � {Δ∩ (Z/i)n → Z} � ZEΔ (i) .

For future convenience, we denote χ(G) ⊗ R by

W (iΔ) := {iΔ∩ Zn → R} � {Δ∩ (Z/i)n → R} � REΔ (i) .(1.5)

As in [20, p.220], we identify W (iΔ) with its dual space by the scalar product

〈ϕ, ψ〉 =
∑

a∈Δ∩(Z/i)n
ϕ(a)ψ(a) .

Let θ̄iΔ = 1
EΔ (i)

∑
a∈Δ∩(Z/i)n θΔ ( a

i ). We define diΔ, θ̃iΔ ∈ W (iΔ) by

diΔ(a) = 1, θ̃iΔ (a) =
θΔ(a) − θ̄iΔ

i
, a ∈ Δ∩ (Z/i)n .
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THEOREM 1.9. (XΔ, LΔ) is asymptotically relatively Chow semistable in the toric sense
if there is an i0 such that for each i � i0, there exists si satisfying

in (n + 1)!Vol(Δ)
EΔ(i)

(
diΔ + si θ̃iΔ

)
∈ Ch(iΔ) ,(1.6)

where Ch(iΔ) ⊂ W (iΔ) is the Chow polytope of (XΔ, Li
Δ

). Furthermore, it is asymptotically
relatively Chow stable in the toric sense if

in (n + 1)!Vol(Δ)
EΔ(i)

(
diΔ + si θ̃iΔ

)
∈ Int(Ch(iΔ)) .(1.7)

REMARK 1.10. As can be shown (Remark 3.12(1)), si , if exists, can be explicitly given
by

si =
iθ̄iΔEΔ(i)∑

a∈Δ∩(Z/i)n
(θΔ(a) − θ̄iΔ )2

.(1.8)

In [36], Ross-Thomas gave a description of Chow stability by using the Hilbert-Mumford
criterion for the C∗-actions induced by test configurations [13]. Inspired by this idea, we give
an alternative reduction of the relative Chow stability of toric manifolds in Section 4. In order
to see its relation to relative K-stability, we define

QΔ(i, g) = EΔ(i)
∫
Δ

g dx − Vol(Δ)
∑

a∈Δ∩(Z/i)n

(
1 + si θ̃iΔ (a)

)
g(a)(1.9)

for any g ∈ PL(Δ, i). Here PL(Δ, i) is the subset of piecewise linear concave functions (see
Section 3.2) and si is given by (1.8). Then we have

THEOREM 1.11. For any i ∈ Z+, (XΔ, Li
Δ) is relatively Chow semistable in the toric

sense if and only if QΔ(i, g) � 0, for all g ∈ PL(Δ, i). In addition, it is relatively Chow stable
in the toric sense if the equality holds only if g is an affine linear function.

We would like to point out that Theorems 1.9, 1.11 also hold for general polarized toric
varieties. Concerning on relation between Chow and K-stabilities, we have:

THEOREM 1.12. If a polarized toric manifold (X, L) is asymptotically relatively Chow
semistable in the toric sense, then it is relatively K-semistable in the toric sense.

In view of Corollary 1.6, we also have the following.

COROLLARY 1.13. If X is one of B1, C2,D1,D2, E1 and E2, then X is asymptotically
relatively Chow unstable.

In general, asymptotic Chow semistability is much stronger than K-semistability. In
order to see the direct evidence of the difference between Chow stability and K-stability
consider the first counter-example that was discovered in [35]. They used the non-symmetric
Kähler-Einstein toric Fano 7-fold of [30]. In the case where X is non-toric, lower dimensional
counter-examples were discovered by Odaka [32] and Vedova and Zuddas [43]. In [30], it was
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TABLE 1. Relative stability in the toric sense of toric Fano threefolds.

Notation Relative K-stability Asymptotic relative Chow stability
(Definition 1.9)

CP3 stable stable
B1 unstable unstable
B2 stable
B3 stable
B4 stable stable
C1 stable
C2 unstable unstable
C3 stable stable
C4 stable
C5 stable stable
D1 unstable unstable
D2 unstable unstable
E1 unstable unstable
E2 unstable unstable
E3 stable
E4 stable unstable
F1 stable stable
F2 stable

(1) All stable in the table are known before. Others are new in the present paper. All
stable in relative K-stability follows from [49]. All stable in asymptotic relative Chow
stability (Definition 1.9) follows from [25] and [19].

(2) Other relative K-stability/instability follows from Thereom 1.4. (Proposition 5.1).
(3) Asymptotic relative Chow unstability except for E4 follows from Theorem 1.12.
(4) Asymptotic relative Chow unstability of E4 follows from Proposition 5.4.



RELATIVE ALGEBRO-GEOMETRIC STABILITIES OF TORIC MANIFOLDS 501

also proved that all toric Fano manifolds with the vanishing Futaki invariant are symmetric if
dim X � 6. Note that if X is a symmetric toric Fano manifold, then (X,−KX ) is asymptotically
Chow stable [25, 16]. Hence the lowest dimension for an anti-canonically polarized Kähler-
Einstein toric Fano manifold (X,−KX ) to be asymptotically Chow unstable is 7. One aim of
this paper is to provide such an example in a lower dimensional toric case. We have found
a 3-dimensional toric orbifold example admitting the Kähler-Einstein metric but which is
asymptotically Chow unstable in the case where X is Q-Fano (Proposition 5.2). When we
consider the relative stabilities, we find the smooth example E4 which is relatively K-stable
but not asymptotically relatively Chow semistable (Proposition 5.4). The asymptotic Chow
stability of CP3, B4, C3, C5, F1 follows from [19, 25]. Hence, we list all the determined
stability of toric Fano threefolds in this paper in Table 1. Note that the stabilities are all in the
toric sense. It is an interesting question to complete the table, i.e. to determine the remaining
stabilities.

This paper is organized as follows. Section 2 is a brief review of toric varieties and the
reduction of relative K-stability on toric manifolds which will be used at later stages in the
paper. We also prove Theorem 1.4. In Sections 3 and 4 we shall discuss the two ways of
reduction of the relative Chow stability on toric manifolds. In Section 5, we present various
examples for the stabilities considered in the paper. We compute normalized potentials on
toric Fano threefolds and verify the relative K-stability or instablity in Section 5.1. We also
provide an example of K-stable toric Fano orbifold X which is asymptotically Chow unstable in
dim X = 3. Finally, we discuss the asymptotic relative Chow stability of toric Fano threefolds.
The computational results for θΔ and Δ− are listed in Table 2.

Acknowledgements. The first author would like to thank Professors Y. Nakagawa, Y. Sano and A.
Higashitani for their valuable comments and discussions. In particular, Higashitani suggested to us to
use the toric package [5] for our computations. Both authors thank the referee for valuable suggestions
to improve this article.

2. Preliminaries.
2.1. Toric varieties. We review some of notations of toric varieties. Detailed dis-

cussion on the general theory can be found in [9]. Let M be a lattice of rank n, where N =
Hom(M,Z) is the Z-dual ofM. We defineMR := M ⊗Z R � Rn (resp. NR := N ⊗Z R). Let
Σ denote a complete fan in NR, i.e.

⋃
σ∈Σ σ = NR. The k-dimensional cones of Σ form a set

Σ (k). Let σ be a cone in Σ . The associated affine scheme Uσ := SpecC[M∩σ∨] is called an
affine toric variety. Then Σ defines a toric variety X := X (N, Σ ) by constructing the disjoint
union of the affine toric varieties Uσ , where one glues Uσ1 and Uσ2 along the open subvariety
Uσ1∩σ2 , for σ1, σ2 ∈ Σ . We generally define a toric variety X as a complex algebraic normal
variety containing a torus Tn

C
= Spec C[M] as a Zariski open subset, such that, the action of

Tn
C

on itself extends to an algebraic action of Tn
C

on X .
A polytope Δ ⊆ MR is called a lattice (resp. rational) polytope if all its vertices are inM

(resp. MQ = M ⊗Z Q). Let Δ ⊆ MR be a rational n-dimensional polytope with 0 ∈ IntΔ. We
define the dual polytope Δ◦ ⊆ NR by
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Δ◦ := { a ∈ NR | 〈a, b〉 � −1 for all b ∈ Δ } ,
which is also a rational n-dimensional polytope with 0 ∈ IntΔ◦. We denote a face F of Δ◦ by
F ≺ Δ◦. The fan NΔ := { pos(F) | F ≺ Δ◦ } is called the normal fan of Δ, where pos(F) is
the linear positive hull of F . For a rational polytope Δ ⊆ MR, we define the associated toric
variety by XΔ := X (N,NΔ). In particular, when Δ satisfies Delzant’s condition, it corresponds
to a smooth compact toric manifold. It is well-known that there is the bijective correspondence
between n-dimensional lattice polytopes and compact toric varieties with (C∗)n-equivariant
very ample line bundles.

The discussion on examples (Section 5) will focus on toric Fano threefolds. We recall
the related notations here. See [11] and [29] for more details.

Let X be a complex projective normal variety. We call X a Q-Fano variety if the anti-
canonical divisor −KX is an ample Q-Cartier divisor. Furthermore, X is Fano variety if −KX

is an ample Cartier divisor. Let P ⊆ NR be an n-dimensional lattice polytope which contains
the origin in its interior. Then P is called a canonical Fano polytope if IntP ∩ N = { 0 }.
Furthermore, P is called a Fano polytope if the vertices of any facet of P form a Z-basis of the
latticeN. By [29, Proposition 2.3.7], there is a bijective correspondencebetween isomorphism
classes of Fano polytopes (resp. canonical Fano polytopes) and smooth toric Fano varieties
(resp. toric Fano varieties with canonical singularities). Here and hereafter we assume that
all singularities are at worst orbifold singularities. Hence they are associated to complete
simplicial fans [9, Theorem 3.1.19].

Let X be a complex normal variety. Recall that X is calledQ-factorial if any Weil divisor
isQ-Cartier. For the toric case, we have a well-known description in terms of a Fano polytope.
A polytope is called simplicial if any facet is a simplex. It was shown that simplicial Fano
polytopes correspond uniquely up to isomorphism to Q-factorial toric Fano varieties (see
Proposition 2.3.12 in [29]). Since a toric variety X has only finite quotient singularities (that
is, X is an orbifold) if and only if the associated fan Σ is simplicial, Q-factorial toric Fano
varieties are toric Fano orbifolds.

In [23], Kasprzyk found that there are 12, 190 Q-factorial toric Fano varieties up to
isomorphism. In the case when X is smooth, toric Fano threefolds are classified in [1, 44].
There are 18 toric Fano threefolds, that is, CP3, B1, B2, B3, B4 = CP2 × CP1, C1, C2, C3 =

CP1 × CP1 × CP1, C4 = CP1 × (CP2 # CP2), C5 = CPCP1×CP1 (O ⊕ O(1,−1)),D1, D2, E1,
E2, E3 = CP1 × (CP2 # 2CP2), E4, F1 = CP1 × (CP2 # 3CP2) and F2. Note that we use the
same notation as in [2]. These classification results are available online at [50, 31].

2.2. Reduction of relative K-stability. In this subsection, we recall the reduction
of the Futaki invariant on toric manifolds. We also present the formulae to determine the
normalized potential θΔ of the extremal vector field in symplectic coordinate and criterions
for relative K-stability and instablity.

First we recall the Futaki invariant and the extremal vector field. Let (X, ωg) be a compact
Kähler manifold. Let Aut0(X ) be the identity component of the biholomorphisms group of X .
Then Aut0(X ) has a semidirect decomposition



RELATIVE ALGEBRO-GEOMETRIC STABILITIES OF TORIC MANIFOLDS 503

Aut0(X ) = Autr (X ) � Ru ,

where Autr (X ) is a reductive algebraic subgroup of Aut0(X ), which is the complexification
of a maximal compact subgroup K , and Ru is the nilpotent radical of Aut0(X ). We denote
the Lie algebra of Autr (X ) by ηr (X ). Let v ∈ ηr (X ) so that its imaginary part generates a
one-parameter compact subgroup of K . Then if the Kähler formωg is K-invariant, there exists
a unique real-valued function θv (ωg) (called normalized potential of v) such that

ivωg =
√−1∂̄θv (ωg) and

∫
X

θv (ωg)
ωn
g

n!
= 0 .(2.1)

For simplicity, we denote the set of such potentials θv by Ξωg . Then the Futaki invariant on
ηr can be written as

F (v ) = −
∫
X

θv (ωg)(S(ωg) − S̄)
ωn
g

n!
,(2.2)

where S(ωg) is the scalar curvature of ωg. In [18], Futaki and Mabuchi defined the extremal
vector field,V = gi j̄ (proj(S(ωg))) j̄

∂
∂zi

in ηr (X ) for the Kähler class [ωg], where proj(S(ωg)) is
the L2-inner projection of the scalar curvature ofωg to Ξωg . They showed that V is independent
of the choice of K-invariant metrics in [ωg], and its potential is uniquely determined as the
dual of the Futaki invariant with respect to the L2 bilinear form

F (v ) = −
∫
X

θv (ωg)θV (ωg)
ωn
g

n!
, ∀ v ∈ ηr (X ) .(2.3)

Now we consider the reduction on a polarized toric manifolds (X, L). Choose an (S1)n-
invariant Kähler metric g with ωg ∈ 2πc1(L). By choosing a base point, we identify the open
dense orbit of the complex torus action on X with (C∗)n and use the coordinates (z1, . . . , zn)
induced from (C∗)n. Denote the affine logarithmic coordinates wi = log zi = yi +

√−1ηi .
Then ωg is determined by a smooth convex function ϕ which depends only on y1, . . . , yn ∈
Rn in the coordinates (w1, . . . , wn), namely

ωg = 2
√−1∂∂̄ϕ(2.4)

on (C∗)n. As is well-known, the moment map can be given by Dϕ and the image Δ = Dϕ(Rn)
is a polytope. We denote by xi =

∂ϕ
∂yi

, i = 1, . . . , n, the symplectic coordinates. Note that in the
affine logarithm coordinates (w1, . . . , wn), { ∂

∂wi
, i = 1, . . . , n} is a basis of the Lie algebra of

Tn
C

as a complex subalgebra of the Lie algebra of holomorphic vector fields on X . In particular,
the Futaki invariant is given by the formula

F
(
∂

∂wi

)
=

∫
∂Δ

xi dσ − S̄
∫
Δ

xi dx

and this leads the fact that LΔ(u) = 0 for any affine linear function u as mentioned in (1.2).
The following lemma was given in [48] on how to determine θV (ωg) in symplectic coordinates
through the Futaki invariant.
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LEMMA 2.1. Let g be an (S1)n-invariant metric on X . Assume V is the extremal
vector field and θV (ωg) is the normalized potential associated to ωg by (2.1). Then there are
2n-numbers ai and ci such that

θV (ωg) =
n∑
i=1

ai (xi + ci) =: θΔ ,

where x = (xi ) = Dϕ ∈ Δ. Moreover ai and ci are determined uniquely by 2n-equations,

1
(2π)n

F
(
∂

∂wi

)
= −

∫
Δ

���
n∑
j=1

a j (x j + cj )
��� (xi + ci)dx, i = 1, . . . , n ,(2.5)

∫
Δ

(xi + ci )dx = 0, i = 1, . . . , n .(2.6)

As mentioned in the introduction, the relative K-stability in the toric sense refers to the
positivity of the linear functional (1.2) for convex functions. Note that LΔ(u) is invariant
when adding an affine linear function to u. Without loss of generality, we assume 0 lies in the
interior of Δ. Hence, it suffices to consider convex functions normalized at 0 in the sense that
infx∈Δ u(x) = u(0) = 0. When X is a toric Fano manifold, it is observed in [48] that

LΔ(u) =
∫
Δ

��
n∑
i=1

xiui − u�� + (1 − θΔ)u dx(2.7)

for C1 functions by an integration by parts from (1.2). Here ui = ∂u
∂xi

. By approximation,
it is easy to see that (2.7) can also be used for the computation of LΔ(u) for piecewise C1

functions. As can be seen from (2.7), the positivity of LΔ relies heavily on the positivity of
1 − θΔ. Assume θΔ =

∑n
i=1 aixi + c. Then we shall prove Theorem 1.4.

PROOF OF THEOREM 1.4. (1) is obvious [48]. We only need to consider (2). If 1 −
θΔ < 0, i.e. Δ− = Δ, it is obvious that all simple piecewise linear convex functions of the form
max{∑n

i=1 bixi, 0} will destabilize Δ. So we assume 1− θΔ = 0 intersects the interior of Δ. Let

u = max{−(1 − θΔ), 0} .
Then

n∑
i=1

xiui − u =
⎧⎪⎨⎪⎩

1 − c, x ∈ Δ−;
0, x ∈ Δ \ Δ− .

Hence,

LΔ(u) = (1 − c)Vol(Δ−) −
∫
Δ−

(1 − θΔ)2 dx .

The theorem follows. �

3. Relative Chow stability of toric manifolds. In this section, we consider relative
Chow stability of polarized toric manifolds.
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3.1. Notions of Chow stabilities. We first recall various notions of Chow stabilities.
We refer to the monograph [17] by Futaki for a more general concept of Chow stability in
Kähler geometry. In [24, 26], Mabuchi defined the notion of relative Chow stability in order
to consider the existence problem of extremal Kähler metrics. A historical background of
relative GIT stability is given by Székelyhidi [39, Chapter 1].

Let G be a connected reductive complex algebraic group with Lie algebra g. Let V be
a finite dimensional complex vector space. Suppose that G acts linearly on V. Assume v∗ is
a nonzero vector in V which is a representative of v = [v∗] ∈ P(V). According to GIT, v∗ is
G-semistable if the closure of the G-orbit OG (v∗) does not contain the origin. Furthermore, v∗

is G-stable if OG (v∗) is closed. We call v∗ G-unstable if v∗ is not G-semistable. Analogously,
v ∈ P(V) is said to be G-semistable (resp. stable, unstable) if any representative of v is
G-semistable (resp. stable, unstable).

To feature relative stability, following [39, Chapter 1], we consider a torus T in G, and
denote its Lie algebra by t. Then we define subalgebras of g by

gT = { α ∈ g | [α, β] = 0 for all β ∈ t } ,
gT⊥ = { α ∈ gT | 〈α, β〉 = 0 for all β ∈ t } ,

where 〈·, ·〉 is a rational invariant inner product. We denote the image of gT (resp. gT⊥ ) under
the exponential map by GT (resp. GT⊥).

DEFINITION 3.1 ([39]). Let T be a torus in G fixing the point v . Then v is said to be
semistable (resp. stable, unstable) relative to T if it is GT⊥ -semistable (resp. stable, unstable).

The Hilbert-Mumford criterion says that v ∈ P(V) is G-semistable if and only if v is H-
semistable for any maximal algebraic torus H ⊂ G [10, p.137]. When G itself is isomorphic
to an algebraic torus, the above stabilities can be described by the weight polytopes of the
actions as follows. Let χ(G) denote the character group of G. Then χ(G) consists of algebraic
homomorphisms χ : G −→ C∗. If we fix an isomorphism G � (C∗)N+1, we may express each
χ as a Laurent monomial

χ(t1, . . . , tN+1) = ta1
1 · · · taN+1

N+1 , ti ∈ C∗, ai ∈ Z .

Thus, there is the identification between χ(G) and ZN+1 by χ = (a1, . . . , aN+1) ∈ ZN+1.
Then it is well-known that V decomposes under the action of G into weight spaces

V =
⊕

χ∈χ(G)

Vχ, Vχ := { v∗ ∈ V | t · v∗ = χ(t) · v∗, t ∈ G } .

DEFINITION 3.2. Let v∗ be a nonzero vector in V with v∗ =
∑

χ∈χ(G) vχ, vχ ∈ Vχ.
The weight polytope of v∗ (with respect to G-action) is the convex lattice polytope in χ(G) ⊗
R � RN+1 defined by

NG (v∗) := Conv { χ ∈ χ(G) | vχ � 0 } ⊆ RN+1 .



506 N. YOTSUTANI AND B. ZHOU

According to [10, Theorem 9.2], v∗ is G-semistable (resp. stable) if and only if 0 ∈
NG (v∗) (resp. 0 ∈ IntNG (v∗)). In the relative stability setting, we also have the following.

PROPOSITION 3.3 ([39, Theorem 1.5.2]). Let T be a torus in G fixing the point v . v
is semistable (resp. stable) relative to T if and only if the orthogonal projection of the origin
onto the minimal affine subspace containingNG (v∗) is in NG (v∗) (resp, relintNG (v∗)).

Next we define Chow form and Chow stability of irreducible projective varieties.
See [20, 47] for more details. Let X ⊂ CPN be an n-dimensional irreducible complex
projective variety of degree d. Recall that the Grassmann variety G(k,CPN ) parameterizes
k-dimensional projective linear subspaces ofCPN . The associated hypersurface of X ⊂ CPN

is the subvariety in G(N − n − 1,CPN ) which is given by

ZX := {W ∈ G(N − n − 1,CPN ) | W ∩ X � ∅ } .

It is known that is ZX is an irreducible hypersurface with deg ZX = d in the Plücker coordinates.
In particular, ZX is given by the vanishing of a section R∗X ∈ H0(G(N − n − 1,CPN ),O(d)).
We call R∗X the Chow form of X . Note that R∗X is well defined up to a multiplicative constant.
Let V := H0(G(N − n − 1,CPN ),O(d)) and RX ∈ P(V) be the projectivization of R∗X . We
call RX the Chow point of X . The weight polytope of R∗X ∈ V with respect to the action
(C∗)N+1 ⊂ GL(N + 1,C) of diagonal matrices is called Chow polytope of X , and is denoted
by Ch(X ). See [20, Chapter 6] for more details. Since we have the natural action of G =
SL(N + 1,C) into P(V), we can define stabilities of RX as follows.

DEFINITION 3.4. Let X ⊂ CPN be an irreducible, n-dimensional complex projective
variety. Then X is said to be Chow semistable (resp. stable, unstable) if the Chow point RX

of X is SL(N + 1,C)-semistable (resp. stable, unstable).

We consider relative Chow stability when the Futaki invariant does not vanish. Choose
T = β to be the C∗- action induced by the extremal vector field V . T also acts on P(V).

DEFINITION 3.5. Let X ⊂ CPN be an irreducible, n-dimensional complex projective
variety. Then X is said to be relatively Chow semistable (resp. stable, unstable) if the Chow
point RX of X is SL(N + 1,C)-semistable (resp. stable, unstable) relative to T .

DEFINITION 3.6. Let (X, L) be a polarized variety. For i � 0, let Ψi : X −→
P(H0(X, Li )∗) be the Kodaira embedding.

(1) Suppose that L is very ample. (X, L) is said to be relatively Chow semistable (resp.
stable, unstable) ifΨ1(X ) ⊂ P(H0(X, L)∗) is relatively Chow semistable (resp. stable,
unstable).

(2) (X, L) is called asymptotically relatively Chow semistable (resp. stable) if there is an
i0 such thatΨi (X ) is relatively Chow semistable (resp. stable) for each i � i0.

We say that (X, L) is asymptotically relatively Chow unstable if it is not asymptotically
relatively Chow semistable.
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3.2. Reduction on toric manifolds. We reduce the relative Chow stability of polarized
toric manifolds by developing on an idea in [33, 34].

Recall that TC
Δ

of SL(N + 1,C) is given by

TCΔ ↪→ G = (C∗)N+1 ∩ SL(N + 1,C)

(t1, . . . , tN ) �−→ (t1, . . . , tN, (t1 · · · tN )−1) .

In particular, TC
Δ
� (C∗)N . We view the Lie algebra of TC

Δ
as a subalgebra of sl(N + 1,C)

by considering the traceless part. The inner product 〈, 〉 on sl(N + 1,C) is given by 〈A, B〉 =
Tr (AB). Let { a1, . . . , aN+1 } be all the lattice points in Δ. We define

θ̄Δ =
1

N + 1

N+1∑
j=1

θΔ (aj ) .

Let θΔ be the potential function as in Section 2, and T = β be the C∗- action induced by V .
Then T is given in TC

Δ
by

T : C∗ ↪→ G(3.1)

t �−→
(
t (θΔ (a1 )−θ̄Δ ), . . . , t (θΔ (aN+1 )−θ̄Δ )

)
.

Let Ch(Δ) be the Chow polytope of XΔ ⊂ CPN . In the literature of Gelfand-Kapranov-
Zelevinsky’s theory, Ch(Δ) coincides with the secondary polytope [22]. In particular, it is
known that the affine span of the secondary polytope is given by the following.

PROPOSITION 3.7 ([20, Chapter 7, Proposition 1.11]). Let ϕ = (ϕ1, . . . , ϕN+1) be a
point in the affine hull of Ch(Δ) in χ(G) ⊗ R � RN+1. Then

N+1∑
j=1

ϕ j = (n + 1)!Vol(Δ),
N+1∑
j=1

ϕ jaj = (n + 1)!
∫
Δ

x dx .(3.2)

Here x = (x1, . . . , xn) and Δ∩ M = { a1, . . . , aN+1 } is all the lattice points in Δ.
Denote

dΔ = (1, . . . , 1), θ̃Δ = ((θΔ (a1) − θ̄Δ), . . . , (θΔ (aN+1) − θ̄Δ))

in χ(G) ⊗ R. Then we have the following.

THEOREM 3.8. (XΔ, LΔ) is relatively Chow semistable in the toric sense if and only if
there exists s ∈ R such that

(n + 1)!Vol(Δ)
N + 1

(
dΔ + sθ̃Δ

)
∈ Ch(Δ) .(3.3)

Furthermore, it is relatively Chow stable in the toric sense if

(n + 1)!Vol(Δ)
N + 1

(
dΔ + sθ̃Δ

)
∈ Int(Ch(Δ)) .(3.4)
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PROOF. We define a two dimensional subspace in RN+1 by W := SpanR { dΔ, θ̃Δ }.
Let β1, . . . , βN−1 ∈ RN+1 be a basis of the subspace perpendicular to W. Note that GT⊥ is
isomorphic to (C∗)N−1. Considering the projection

πGT⊥ : χ(G) ⊗ R � RN+1 −→ χ(GT⊥ ) ⊗ R � RN−1

ϕ = (ϕ1, . . . , ϕN+1) �−→ (〈ϕ, β1〉, . . . , 〈ϕ, βN−1〉) ,
we observe thatNGT⊥ (RXΔ ) = πGT⊥ (NG (RXΔ )) ⊂ RN−1.

By definition, RXΔ is GT⊥ -semistable if and only if 0 ∈ NGT⊥ (RXΔ ). By the projection
above, it is equivalent to W ∩ Ch(Δ) � ∅, that is, there exist s1, s2 ∈ R such that

s1dΔ + s2θ̃Δ ∈ Ch(Δ) .(3.5)

By (3.2) and the fact
∑N+1

j=1 θ̃Δ (aj ) = 0, we have s1 =
(n+1)!Vol(Δ)

N+1 . �

REMARK 3.9. The reader should notice that (3.3) implies
N+1∑
j=1

aj + s
N+1∑
j=1

θ̃Δ(a)aj =
N + 1

Vol(Δ)

∫
Δ

x dx ,(3.6)

by Proposition 3.7. This theorem extends Ono’s description of Chow semistability [33, 34] to
relative case.

Next, we consider asymptotic relative Chow semistability. Denote the Ehrhart polynomial
of Δ by EΔ(t). It has degree n = dim Δ and satisfies

EΔ(i) = Card(iΔ∩ Zn) = Card(Δ∩ (Z/i)n)

for any positive integer i ∈ Z+. Moreover, EΔ(t) has the form

EΔ(t) = Vol(Δ)tn +
Vol(∂Δ)

2
tn−1 + · · · + 1 ,

by theorem of Ehrhart. Note that
∫
iΔ

x dx = in+1
∫
Δ

x dx, hence Theorem 1.9 follows from the
same argument in the proof of Theorem 3.8.

The asymptotic relative Chow semistability can be related to relative K-semistability in
the toric sense. For this purpose, we recall some notations. For a fixed ϕ ∈ W (iΔ)(see (1.5)
for the definition of W (iΔ)), let

Gϕ = the convex hull of
⋃

a∈Δ∩(Z/i)n
{(a, t) | t � ϕ(a)} ⊂ MR × R � Rn+1 .

Then we define a piecewise linear function gϕ : Δ −→ R by

gϕ (x) = max{t | (x, t) ∈ Gϕ } .
The upper boundary of Gϕ can be regarded as the graph of gϕ . Furthermore, gϕ has the
following properties.

LEMMA 3.10 ([20] p.221, Lemma 1.9). For any ϕ ∈ W (iΔ),
(a) the function gϕ is concave,
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(b) we have the equality

max{〈ϕ, ψ〉 | ψ ∈ Ch(iΔ)} = in (n + 1)!
∫
Δ

gϕ dx .

Denote PL(Δ, i) = {gϕ | ϕ ∈ W (iΔ)}. The proof of Theorem 1.11 is similar to [34]. One
can see that the condition (1.6) holds if and only if the following condition holds:

max{〈ϕ, ψ〉 | ψ ∈ Ch(iΔ)} � in (n + 1)!Vol(Δ)
EΔ(i)

〈ϕ, 1 + si θ̃iΔ〉(3.7)

for all ϕ ∈ W (iΔ). By applying Lemma 3.10 to (3.7), we obtain (1.9).

COROLLARY 3.11. If (XΔ, LΔ) is asymptotically relatively Chow semistable, then for
any i ∈ Z+, there exists si such that

∑
a∈Δ∩(Z/i)n

ia + si
∑

a∈Δ∩(Z/i)n
θ̃iΔ (a)a = iEΔ(i)

Vol(Δ)

∫
Δ

x dx .(3.8)

PROOF. Since (XΔ, LΔ) is asymptotically relatively Chow semistable, (XΔ, Li
Δ

) is rel-
atively Chow semistable for i � 0. By Theorem 1.11, QΔ(i, g) � 0 for all g ∈ PL(Δ, i).
Taking g to affine linear functions, one can see that QΔ(i, g) = 0. Note that QΔ (i, g) can be
written as a fractional polynomial in i as in (3.10). We prove the assertion by contradiction.
If (3.8) does not hold for an integer i0 ∈ Z+, (i.e. QΔ(i0, x) � 0), then the identity theorem
for polynomial functions implies that there is an integer i1 ∈ Z+ such that QΔ(i, x) � 0 for
any i > i1. This means (XΔ, Li

Δ) is relatively Chow unstable for i > i1, that is, (XΔ, LΔ) is
asymptotically relatively Chow unstable. The assertion is proved. �

REMARK 3.12. (1) One can see that if si exists, then (1.8) follows from (3.8). (2) It is
clear that (3.8) is an over-determined linear system since there is only one parameter si , but
n equations. Hence, one can expect to find counter-examples from polytopes which are not
symmetric with respect to x1, . . . , xn. (Cf. Proposition 5.4). (3) When V = 0, (3.8) becomes

Vol(Δ)sΔ(i) − EΔ(i)
∫
Δ

x dx = 0(3.9)

which is the necessary condition for (XΔ, Li
Δ) to be Chow semistable proved by Ono [33,

Theorem 1.4]. From the argument in the proof of Corollary 3.11, one can see that the
following: let Δ ⊆ MR be a simple lattice polytope and (XΔ, LΔ) be the associated polarized
toric orbifold. If (3.9) does not hold for a positive integer i0 ∈ Z+, then there is a positive
integer i1 ∈ Z+, such that (XΔ, Li

Δ) is Chow unstable for any i > i1.

Finally we show asymptotical relative Chow semistability implies relative K-semistability
in the toric case. It is known that asymptotic Chow semistability implies K-semistability in
general [36]. First, we need the following lemma.

LEMMA 3.13. si in (3.8) satisfies si = − 1
2 +O(i−1).
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PROOF. By
∫
Δ
θΔ dx = 0 and Lemma 3.3 of [48], we have

θ̄iΔ =
in−1

2EΔ(i)

∫
∂Δ

θΔdσ +O(in−2) ,

∑
a∈Δ∩(Z/i)n

ia = in+1
∫
Δ

x dx +
in

2

∫
∂Δ

x dσ + O(in−1), and

∑
a∈Δ∩(Z/i)n

θΔ (a)a = in
∫
Δ

θΔx dx + O(in−1) .

Then (3.8) is written as

iEΔ(i)
∫
Δ

x dx = Vol(Δ)

(
in+1

∫
Δ

x dx +
in

2

∫
∂Δ

x dσ +O(in−1)

)
+ siVol(Δ)

⎡⎢⎢⎢⎢⎣in
∫
Δ

θΔx dx +O(in−1) − in
∫
Δ

x dx +O(in−1)

EΔ(i)

(
in−1

2

∫
∂Δ

θΔ dσ +O(in−2)

)⎤⎥⎥⎥⎥⎦ .
Comparing the coefficient of in, we conclude that

Vol(Δ)

[
1
2

∫
∂Δ

x dσ + si

∫
Δ

θΔx dx

]
=

1
2

Vol(∂Δ)
∫
Δ

x dx .

Since θΔ is the potential function of the extremal vector field, it holds∫
∂Δ

xk dσ −
∫
Δ

(
Vol(∂Δ)
Vol(Δ)

+ θΔ

)
xk dx = 0 for k = 1, . . . , n .

Hence we have si = − 1
2 +O(i−1). �

Now we prove Theorem 1.12.

PROOF OF THEOREM 1.12. For any i ∈ Z+ and g ∈ PL(Δ, i), by Lemma 3.13,

QΔ (i, g)

=EΔ(i)
∫
Δ
g dx − Vol(Δ)

∑
a∈Δ∩(Z/i)n

(
− θΔ (a) − θ̄iΔ

2i
+ 1 +O(i−2)

)
g(a)

=

(
Vol(Δ)in +

Vol(∂Δ)
2

in−1 +O(in−2)

) ∫
Δ

g dx + in−1Vol(Δ)
∫
Δ

θΔ − θ̄iΔ
2

g dx

+O(in−2) −
(
inVol(Δ)

∫
Δ

g dx +
in−1Vol(Δ)

2

∫
∂Δ

g dσ +O(in−2)

)
.

Note that θ̄iΔ = O(i−1), then

QΔ(i, g) = − Vol(Δ)
2

[∫
∂Δ
g dσ −

∫
Δ

(
Vol(∂Δ)
Vol(Δ)

+ θΔ

)
g dx

]
in−1 +O(in−2)(3.10)

= − Vol(Δ)
2
LΔ(g)in−1 + O(in−2) .
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By the assumption, QΔ(i, g) ≥ 0 when i is sufficiently large. This implies LΔ(g) ≤ 0.
Hence, LΔ(u) ≥ 0 for any piecewise linear convex function u. The theorem is proved. �

4. Reduction of relative Chow stability: an alternative approach. The asymptotic
Chow stability can also be described through the Chow weight of C∗-actions induced by
test configurations [13, 36]. In this section, we derive an alternative reduction of relative
Chow stability of toric manifolds by investigating the normalized weight in [36] for toric
degenerations.

First, we recall the notion of a test configuration [13]. A test configuration for (X, L) is a
polarized scheme (X,L) with:

• a C∗-action and a proper flat morphism π : X → C which is C∗-equivariant for the
usual action on C,
• a C∗-equivariant line bundle L → X which is ample over all fibers of π such that for

z � 0, (X, L) is isomorphic to (Xz,Lz ), Lz = L |Xz .
(X,L) is called product if X = X × C, and trivial if in addition C∗ acts only on C.

It is shown in [36] that, for any i ∈ Z+, the data of a test configuration for (X, Li ) gives
a C∗- action of GL(di,C) and vice versa, where di = dim H0(X, Li ). Let (X0,L0) be the
central fiber. For any r ∈ Z+, let k = ri. Let w(k) = w(ri) be the total weight of the induced
C∗-action on H0(X0,L

r
0 ). As in [36], we define the normalized weight w̃i,k by

w̃i,k = w(k)idi − w(i)kdk .(4.1)

By general algebraic theory, w̃i,k is a polynomial of degree n + 1 in k, for k � 0. Write

w̃i,k =

n+1∑
j=1

ej (i)k j .

Then the leading coefficient en+1 (i) is the Chow weight. Then using the Hibert-Mumford
criterion for the C∗-actions, Chow stability is described as follows.

THEOREM 4.1 ([36]). A polarized variety (X, L) is Chow stable with respect to i if
for any nontrivial test configuration for (X, Li ), en+1 (i) > 0. (X, L) is asymptotically Chow
stable if there exists i0 such that for i � i0, any nontrivial test configuration for (X, Li ) has
en+1 (i) > 0.

Now we consider toric manifolds. Recall that a piecewise linear convex function u =
max { f1, . . . , f� } is called rational if fk =

∑
ak,ixi + ck, k = 1, . . . , �, for some vectors

(ak,1, . . . , ak,n) ∈ Rn and some numbers ck ∈ R such that all ak,i and ck are rational.
According to [13], a toric degeneration for (XΔ, Li

Δ) is a test configuration induced by a
rational piecewise linear convex function u on Δ, such that iQ is a lattice polytope in Rn+1 =

Rn × R. Here R is an integer such that u � R and

Q = { (x, t) | x ∈ Δ, 0 < t < R − u(x) } .
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Denote the set of all rational piecewise linear convex functions satisfying the above condition
by PLi (Δ)Q.

LEMMA 4.2. The Chow weight of the toric degeneration for (XΔ, Li
Δ

) induced by u is
given by en+1(i) = −iPΔ(i, u), where

PΔ(i, u) = EΔ(i)
∫
Δ

u dx − Vol(Δ)
∑

a∈Δ∩(Z/i)n
u(a) .(4.2)

PROOF. By computation [13, 48],

di = EΔ(i) ,

dk = EΔ(k) = Vol(Δ)kn +
Vol(∂Δ)

2
kn−1 + · · · + 1 ,

w(i) = i
∑

a∈Δ∩(Z/i)n
(R − u)(a) ,

w(k) = kn+1
∫
Δ

(R − u) dx +
kn

2

∫
∂Δ

(R − u) dσ + · · · .
Substituting them into (4.1), we get

en+1 (i) = iEΔ(i)
∫
Δ

(R − u) dx − Vol(Δ)i
∑

a∈Δ∩(Z/i)n
(R − u)(a)

= i

⎡⎢⎢⎢⎢⎢⎣EΔ(i)
∫
Δ

(−u) dx − Vol(Δ)
∑

a∈Δ∩(Z/i)n
(−u)(a)

⎤⎥⎥⎥⎥⎥⎦ .
�

More generally, for the purpose of relative stability, i.e. when the extremal vector field
V � 0, we consider the toric degenerations perpendicular to the C∗-action β induced by V .
We use the notations of toric data in Section 3. Following [26], we view the Lie algebra of
TC
iΔ

as a subalgebra of sl(EΔ(i),C) by considering the traceless part. The inner product 〈, 〉i
on sl(EΔ(i),C) is given by

〈A, B〉i = Tr (AB)

in+2 .(4.3)

Now let α be the C∗-action on the central fiber induced by the toric degeneration. According
to [48], the infinitesimal generators of α and β are

diag(i(R − u)(a1), . . . , i(R − u)(aEΔ (i) )), diag(iθΔ (a1), . . . , iθΔ (aEΔ (i) ))

respectively. By considering the traceless parts of them with (4.3), we call the toric degenera-
tion is perpendicular to β if∑

a∈Δ∩(Z/i)n
(R − u)(a)(θΔ(a) − θ̄iΔ) =

∑
a∈Δ∩(Z/i)n

u(a)(θΔ(a) − θ̄iΔ) = 0 .(4.4)

In view of (4.2), we have:



RELATIVE ALGEBRO-GEOMETRIC STABILITIES OF TORIC MANIFOLDS 513

DEFINITION 4.3. (XΔ, LΔ) is called asymptotically relativelyChow semistable for toric
degenerations if there exists i0 ∈ Z+, such that when i � i0, the Chow weight of any toric
degeneration for (XΔ, Li

Δ
) which is perpendicular to β is nonnegative. Furthermore, it is called

asymptotically relatively Chow stable for toric degenerations if the Chow weight is positive
for any nontrivial toric degeneration for (XΔ, Li

Δ
).

PROPOSITION 4.4. (XΔ, LΔ) is asymptotically relatively Chow semistable for toric
degenerations if and only if (3.8) holds and there exists i0 ∈ Z+, such that when i � i0, for any
u ∈ PLi (Δ)Q, QΔ(i, u) � 0.

PROOF. We consider the projection of u onto the perpendicular space. Let

ũ = u −

∑
a∈Δ∩(Z/i)n

u(a)(θΔ(a) − θ̄iΔ )

∑
a∈Δ∩(Z/i)n

(θΔ (a) − θ̄iΔ )2
(θΔ − θ̄iΔ ) .

Then there exists r ∈ Z+ such that rũ induces a toric degeneration for (XΔ, Li
Δ) perpendicular

to β. By (4.2), we have

PΔ(i, rũ) = EΔ(i)
∫
Δ

rũ dx − Vol(Δ)
∑

a∈Δ∩(Z/i)n
rũ(a)

= EΔ(i)
∫
Δ

ru dx − Vol(Δ)
∑

a∈Δ∩(Z/i)n
(1 + si θ̃iΔ (a))ru(a) = rQΔ (i, u) ,

where si is given by (1.8), and the normalization condition
∫
Δ
θΔ dx = 0 is used. �

REMARK 4.5. The sign differs from (1.9) because we consider convex functions here,
while in (1.9) g is a concave function. Futhermore, one can see that if the nonpositivity of
QΔ (i, ·) is strengthened for all function in PL(Δ, i), it corresponds to the asymptotic relative
Chow semistability in the toric sense. The necessary condition (3.8) for asymptotic relative
Chow semistability in the toric sense in the last section can also be recovered by substituting
u = x j and −x j into the above for j = 1, . . . , n.

5. Examples. Finally we provide many interesting examples which will support our
understanding of stabilities. Here we will mainly concentrate on toric Fano manifolds.

5.1. Relative K-stability of toric Fano threefolds. In this section, we shall determine
the potential θΔ of the extremal vector field V of toric Fano threefolds in symplectic coordinates
and verify the relative K-stability or instability by Theorem 1.4.

If V is given by V =
∑n

i=1 ai ∂
∂wi

in the affine logarithm coordinates (w1, . . . , wn ), then
the potential function θΔ is given by θΔ =

∑n
i=1 aixi + c for some constant c. There are several

ways to compute θΔ. The most general one is to use the linear functional (1.2). In order to
determine constants ai and c, one can solve the n + 1-linear system

LΔ(1) = 0, LΔ(xi ) = 0 for i = 1, . . . , n .(5.1)
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In Fano case, we have a more efficient algorithm. By [3], ϕ in (2.4) can be given by

ϕ = log ��
m∑
i=1

e〈p
(i),y〉�� ,(5.2)

where p(1), . . . , p(m) are the vertices of Δ. The Fano assumption implies

|ϕ + log det(ϕij ) | < ∞ .(5.3)

We recall another normalization on the potentials of holomorphic vector fields. Let v be a
holomorphic vector field on X and θ′v (ωg) be the potential function determined by

ivωg =
√−1∂̄θ′v (ωg), and

∫
X

θ′v (ωg)ehg
ωn
g

n!
= 0 ,(5.4)

where hg is a Ricci potential of ωg. According to [42], the above θ′v satisfies

θ′v = −Δgθ′v − v (hg) ,(5.5)

where Δg is the Laplacian. Assume v =
∑n

i=1 aizi ∂
∂zi
=

∑n
i=1 ai ∂

∂wi
on the torus orbit,

where ai ∈ R. Then we have θ′v (ωg) =
∑n

i=1 aixi in the symplectic coordinates by a simple
observation from (5.2). In particular, θ′ ∂

∂wi

(ωg) = xi for i = 1, . . . , n. This simple fact has

been used in [48]. Then by (5.5), we can compute the Futaki invariant by

F (v ) =
∫
X
v (hg)ωn = −

∫
X
θ′vω

n = −(2π)2
∫
Δ
θ′vdx .(5.6)

The first step of the algorithm is to determine a1, . . . , an by (5.6) and Lemma 2.1. Then

c = − 1
Vol(Δ)

∫
Δ

∑
i

aixi dx(5.7)

by the normalization condition. An alternative method to compute a1, . . . , an was also given
by Nakagawa. He gave a combinatorial formula for Futaki invariant and the generalized Killing
form of toric Fano orbifolds in [28]. As an application, he computed the extremal vector field
in the anti-canonical class on a toric Fano manifold X with dim X � 4. In order to prove
Theorem 1.5, we shall use his result on toric Fano threefolds directly.

The main goal of this section is to prove the following proposition.

PROPOSITION 5.1. Let X be a toric Fano threefold with anti-canonical polarization.
(a) If X = B2, then X is relatively (strongly) K-stable in the toric sense in the anti-

canonical class.
(b) If X = B1, then X is relatively K-unstable in its first Chern class.

Once Proposition 5.1 has been proved, other cases are similar and further details are left
to the reader1. In Table 1 and Table 2 we give the list of all results proved in Theorem 1.5.

1In the practical computation we used packages (i) Normaliz and (ii) Polymake. These packages are available
at [5] and [21] respectively.
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PROOF. (a) Let ei (i = 1, 2, 3) be the standard basis of N � Z3. Let Σ be the complete
fan in NR � R3 whose 1-dimensional cones are given by Σ (1) = {σ1, σ2, σ3, σ4, σ5 } where

σ1 = Cone(e1), σ2 = Cone(e2), σ3 = Cone(e3) ,

σ4 = Cone(−e3), and σ5 = Cone(−e1 − e2 − e3) .

Then the associated toric manifold X is CP(OCP2 ⊕ OCP2 (1)) and

Δ =
{
(x1, x2, x3) ∈ R3 | x1 � −1, x2 � −1, x3 � −1, x3 � 1, x1 + x2 + x3 � 1

}
.

Hence Vol(Δ) = 28
3 . Let V ∈ ηc (X ) be the extremal vector field in the anti-canonical class

and θΔ be the potential function of V . Then θΔ = − 70
97 x3 + c for some constant c. (See [28],

Section 6, Table 2). Since we have
∫
Δ

x3 = −2, we conclude that c = − 15
97 by (5.7). Thus θΔ =

− 70
97 x3 − 15

97 and

Δ− =
{

(x1, x2, x3) ∈ Δ
����� −112

97
− 70

97
x3 � 0

}
= ∅ .

X satisfies the condition (1.3). The assertion is verified.
(b) Let Σ be the complete fan in NR � R3 whose 1-dimensional cones are given by Σ (1) =
{ σ1, . . . , σ5 } where

σ1 = Cone(e1), σ2 = Cone(e2), σ3 = Cone(e3) ,

σ4 = Cone(−e3), and σ5 = Cone(−e1 − e2 − 2e3) .

Then we readily see that X = CP(OCP2 ⊕ OCP2 (2)) and

Δ = Conv { e∗3−e∗2, 4e∗1−e∗2−e∗3, −e∗1−e∗2−e∗3, e∗3−e∗1−e∗2, 4e∗2−e∗1−e∗3, e∗3−e∗1 } ,
where e∗i is the dual basis of ei . Then Vol(Δ) = 31

3 and θΔ = − 620
349 x3 + c for some constant c.

Since
∫
Δ

x3 = −4, we obtain c = − 240
349 . Hence we conclude θΔ = − 620

349 x3 − 240
349 and

Δ− = { (x1, x2, x3) ∈ Δ | −589
349
− 620

349
x3 � 0 }

= Conv
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4e∗1 − e∗2 − e∗3,
39
10 e∗1 − e∗2 − 19

20 e∗3, −e∗1 − e∗2 − 19
20 e∗3

−e∗1 +
39
10 e∗2 − 19

20 e∗3, −e∗1 − e∗2 − e∗3, −e∗1 + 4e∗2 − e∗3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Thus

Vol(Δ−) =
7351
12000

.(5.8)

Now we shall verify Condition (1.4). First we note that
∫
Δ− x3 dx = − 96197

4 and∫
Δ− x2

3 dx = 1828273
5 . Hence one can see that

∫
Δ−

(1 − θΔ)2 dx =
∫
Δ−

(
589
349
+

620
349

x3

)2
dx =

1475918766336271
1461612000

.

Plugging this and (5.8) into (1.4), we obtain the desired result because 1 − c = 589
349 . �
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5.2. Relative Chow stability. We study relatively Chow unstable examples of toric
Fano manifolds. First, we recall the example found by Nill and Paffenholz [30] which is
isomorphic to P(OW ⊕ OW (−1,−1,−1, 2)) =: XNP where W = (CP1)3 × CP3. XNP is a non-
symmetric Kähler-Einstein toric Fano 7-fold. In [35], Ono, Sano and Yotsutani showed that
(XNP,−KXNP ) is asymptotically Chow unstable. Later Yotsutani observed that XNP is Chow
unstable w.r.t. −KXNP (i.e. i = 1) using (3.9). Meanwhile, Nill and Paffenholz [30] also proved
that all toric Kähler-Einstein Fano manifolds are symmetric if dim X � 6. It is known that if
X is a symmetric toric Fano manifold, then (X,−KX ) is asymptotically Chow stable. Hence,
the lowest dimension for an anti-canonically polarized Kähler-Einstein toric Fano manifold
(X,−KX ) to be (asymptotically) Chow unstable is 7. However, in the case where X is a Fano
orbifold, such an example appears in dim X = 3.

PROPOSITION 5.2. There is a Kähler-Einstein toric Fano orbifold X with dim X = 3
which is Chow unstable w.r.t. −2KX .

Our strategy is the following. For any toric Fano orbifold X with the associated simplicial
Fano polytope Δ◦ ⊆ NR, X admits Kähler-Einstein metric if and only if the Futaki invariant
of X vanishes by Shi-Zhu’s result [38]. LetW (X ) be the Weyl group of Aut(X ) with respect
to the maximal torus and NW (X)

R
be theW (X )-invariant subspace of NR. It is known that∑

v∈V (Δ◦ ) v ∈ NW (X)
R

(see [29, Chapter 5]). Here V (Δ◦) denotes the set of vertices of Δ◦.
Note that X is symmetric if and only if NW (X)

R
= { 0 }. Hence we may consider toric Fano

orbifolds with the vanishing Futaki invariant satisfying
∑

v∈V(Δ◦ ) v � 0. Among all 12, 190
3-dimensional canonical toric Fano orbifolds (i.e. Q-factorial toric Fano varieties), there are
42 toric Fano orbifolds with the vanishing Futaki invariant. Of these 42 toric Fano orbifolds,
there is the only one example satisfying the above conditions. Then it suffices to check (3.9)
for the dual moment polytope Δ ⊆ MR of this one. Note that the Gorenstein index jX is given
by minimal k such that kΔ is a lattice polytope for a fixed canonical Fano polytope Δ◦ ⊆ NR
[29, Proposition 2.3.2].

PROOF OF PROPOSITION 5.2. Again we use the same notations as in the proof of
Proposition 5.1. We consider the 3-dimensional simplicial canonical Fano polytope2

Δ◦ :=Conv { e1−e2−2e3, e2 + 3e3, e1 + e2 + 3e3, e1 + 2e2 + 4e3, e2,−2e1−2e2−3e3 } .
The vertices of the dual polytope Δ are

−1
2

e∗1 +
5
2

e∗2−e∗3, e
∗
1−e∗2, 2e∗2−e∗3,

1
2

e∗2−
1
2

e∗3,−e∗1,−e∗1−e∗2 +
1
2

e∗3,
3
2

e∗1−e∗2,−e∗2 + e∗3 .

Thus Δ is a simple polytope and jXΔ = 2. Setting Δ̃ := 2Δ, we compute the Chow weight of
Δ̃. We readily see that

EΔ̃(i) = 12i3 + 9i2 + 3i + 1, Vol( Δ̃) = 12,
∫
Δ̃

x dx = (0, 0, 0),
∫
∂Δ̃

x dσ = (0, 0, 0)

2ID number in the database [50] is 530571.
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and ∑
a∈Δ̃∩Z3

a = (0, 1,−1),
∑

a∈2Δ̃∩Z3

a = (0, 3,−3),
∑

a∈3Δ̃∩Z3

a = (0, 6,−6)

hold. This implies that ∫
∂Δ̃

x dσ − Vol(∂ Δ̃)

Vol( Δ̃)

∫
Δ̃

x dx = (0, 0, 0)

i.e. the Futaki invariant vanishes. However obviously,
∑

a∈Δ̃∩Z3

a �
EΔ̃(1)

Vol( Δ̃)

∫
Δ̃

x dx .

By (3.9), the 2-Gorenstein toric Fano variety (XΔ,−2KXΔ ) is Chow unstable. �

In [4], Berman proved that a Q-Fano variety X admitting Kähler-Einstein metrics is
K-stable. Hence Remark 3.12 (2) gives the following.

COROLLARY 5.3. The example in Proposition 5.2 is K-stable but asymptotically Chow
unstable.

Next, we consider the general case with the nontrivial Futaki invariant. We see that a
smooth counter-example appears in dim X = 3.

PROPOSITION 5.4. Let X be a toric Fano threefold which is isomorphic to E4. Then
(X,−KX ) is relatively K-stable but it is asymptotically relatively Chow unstable.

PROOF. It suffices to see that (3.8) is not satisfied. The corresponding 3-dimensional
moment polytope is listed in Table 3. Thus we have

EΔ(i) =
20
3

i3 + 10i2 +
16
3

i + 1 and
∫
Δ

x dx =

(
−7

8
,

5
12
,

5
24

)
.

In particular, ∑
a∈Δ∩Z3

a = (−4, 2, 1)

and

s1
∑

a∈Δ∩Z3

(θΔ (a) − θ̄Δ)a = s1

(
−11134272

1816885
,
1079424
363377

,
539712
363377

)

holds. Thus there is no s1 satisfying (3.8). The assertion follows from Corollary 3.11. �
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TABLE 2. θΔ and Δ− of toric Fano threefolds.

Notation θΔ =
∑3

i=1 aixi + c Δ−

CP3 ≡ 0 ∅

B1 − 620
349 x3 − 240

349 Conv
⎧⎪⎪⎨⎪⎪⎩
���

4
−1
−1

��� , ���
39
10−1
− 19

20

��� , ���
−1
−1
− 19

20

��� , ���
−1
39
10
− 19

20

��� ,���
−1
−1
−1

��� , ���
−1
4
−1

���
⎫⎪⎪⎬⎪⎪⎭B2 − 70

97 x3 − 15
97 ∅

B3 − 20
43 x1 − 20

43 x2 − 5
43 ∅

B4 ≡ 0 ∅
C1 − 260

219 x3 − 80
219 ∅

C2 − 7600
17787 x1 − 17750

17787 x3 − 4868
17787 Conv

⎧⎪⎪⎨⎪⎪⎩
���
− 981

1520−1
−1

��� ,
���
− 981

1520
4021
1520−1

��� ,
���
−1

10111
3550
− 3011

3550

��� ,���
−1
3
−1

��� ,
���
−1
−1
− 3011

3550

��� ,
���
−1
−1
−1

���
⎫⎪⎪⎬⎪⎪⎭

C3 ≡ 0 ∅
C4 − 6

11 x2 − 1
11 ∅

C5 ≡ 0 ∅

D1
99600
467581 x1 − 627000

467581 x2 − 213939
467581 Conv

⎧⎪⎪⎪⎨⎪⎪⎪⎩
����

48388
18165
− 12058

18165−1

���� ,
���

1363
2490−1
3617
2490

��� , ���
3
−1
−1

��� , ���
1363
2490−1
−1

���
⎫⎪⎪⎪⎬⎪⎪⎪⎭

D2
219420
650251 x1 − 318320

650251 x2 − 62565
650251 Conv

⎧⎪⎪⎨⎪⎪⎩
���

2
− 1489

1730−1

��� ,
���

4288
2385−1
− 1903

2385

��� ,
���

2
−1
−1

��� ,
���

4288
2385−1
−1

���
⎫⎪⎪⎬⎪⎪⎭

E1 − 17020
19651 x1 − 17020

19651 x2 − 6845
19651 Conv

⎧⎪⎪⎨⎪⎪⎩
���
− 103

185−1
−1

��� ,
���
− 103

185−1
− 473

185

��� ,
���
−1
− 103

185−1

��� ,���
−1
− 103

185
473
185

��� ,
���
−1
−1
3

��� ,
���
−1
−1
−1

���
⎫⎪⎪⎬⎪⎪⎭
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Notation θΔ Δ−

E2 − 2646160
2735927 x1 − 982960

2735927 x2 − 692905
2735927 Conv

⎧⎪⎪⎨⎪⎪⎩
���
− 13897

15035−1
−1

��� ,
���
− 13897

15035−1
− 28932

15035

��� ,
���
−1
− 4447

5585−1

��� ,���
−1
− 4447

5585
2

��� ,
���
−1
−1
2

��� ,
���
−1
−1
−1

���
⎫⎪⎪⎬⎪⎪⎭

E3 − 168
409 x1 − 168

409 x2 − 32
409 ∅

E4 − 34208
78995 x1 +

7936
78995 x2 − 24929

394975 ∅
F1 ≡ 0 ∅
F2

36
67 x2 − 5

67 ∅
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TABLE 3. The moment polytopes of toric Fano threefolds.

Notation The moment polytope Δ

CP3 Conv
⎧⎪⎪⎨⎪⎪⎩
���
−1
−1
−1

��� , ���
−1
−1
3

��� , ���
−1
3
−1

��� , ���
3
−1
−1

���
⎫⎪⎪⎬⎪⎪⎭

B1 Conv
⎧⎪⎪⎨⎪⎪⎩
���

0
−1
1

��� ,
���

4
−1
−1

��� ,
���
−1
−1
−1

��� ,
���
−1
−1
1

��� ,
���
−1
4
−1

��� ,
���
−1
0
1

���
⎫⎪⎪⎬⎪⎪⎭

B2 Conv
⎧⎪⎪⎨⎪⎪⎩
���

1
−1
1

��� ,
���

3
−1
−1

��� ,
���
−1
−1
−1

��� ,
���
−1
−1
1

��� ,
���
−1
3
−1

��� ,
���
−1
1
1

���
⎫⎪⎪⎬⎪⎪⎭

B3 Conv
⎧⎪⎪⎨⎪⎪⎩
���

2
−1
0

��� , ���
2
−1
−1

��� , ���
−1
2
−1

��� , ���
−1
−1
−1

��� , ���
−1
2
0

��� , ���
−1
−1
3

���
⎫⎪⎪⎬⎪⎪⎭

B4 Conv
⎧⎪⎪⎨⎪⎪⎩
���

2
−1
1

��� , ���
2
−1
−1

��� , ���
−1
−1
−1

��� , ���
−1
−1
1

��� , ���
−1
2
−1

��� , ���
−1
2
1

���
⎫⎪⎪⎬⎪⎪⎭

C1 Conv
⎧⎪⎪⎨⎪⎪⎩
���

0
−1
1

��� , ���
2
−1
−1

��� , ���
2
2
−1

��� , ���
0
0
1

��� , ���
−1
2
−1

��� , ���
−1
0
1

��� , ���
−1
−1
−1

��� , ���
−1
−1
1

���
⎫⎪⎪⎬⎪⎪⎭

C2 Conv
⎧⎪⎪⎨⎪⎪⎩
���

0
−1
1

��� ,
���

2
−1
−1

��� ,
���

2
0
−1

��� ,
���
0
0
1

��� ,
���
−1
3
−1

��� ,
���
−1
1
1

��� ,
���
−1
−1
−1

��� ,
���
−1
−1
1

���
⎫⎪⎪⎬⎪⎪⎭

C3 Conv
⎧⎪⎪⎨⎪⎪⎩
���

1
−1
1

��� ,
���

1
−1
−1

��� ,
���

1
1
−1

��� ,
���
1
1
1

��� ,
���
−1
1
−1

��� ,
���
−1
1
1

��� ,
���
−1
−1
−1

��� ,
���
−1
−1
1

���
⎫⎪⎪⎬⎪⎪⎭

C4 Conv
⎧⎪⎪⎨⎪⎪⎩
���

2
−1
1

��� , ���
2
−1
−1

��� , ���
0
1
−1

��� , ���
0
1
1

��� , ���
−1
1
−1

��� , ���
−1
1
1

��� , ���
−1
−1
−1

��� , ���
−1
−1
1

���
⎫⎪⎪⎬⎪⎪⎭

C5 Conv
⎧⎪⎪⎨⎪⎪⎩
���

0
−1
1

��� , ���
2
−1
−1

��� , ���
2
0
−1

��� , ���
0
2
1

��� , ���
−1
0
−1

��� , ���
−1
2
1

��� , ���
−1
−1
−1

��� , ���
−1
−1
1

���
⎫⎪⎪⎬⎪⎪⎭

D1 Conv
⎧⎪⎪⎨⎪⎪⎩
���
0
1
0

��� ,
���

0
1
−1

��� ,
���

3
−1
−1

��� ,
���

1
1
−1

��� ,
���
−1
−1
3

��� ,
���
−1
−1
−1

��� ,
���
−1
0
−1

��� ,
���
−1
0
2

���
⎫⎪⎪⎬⎪⎪⎭

D2 Conv
⎧⎪⎪⎨⎪⎪⎩
���
0
1
1

��� ,
���

0
1
−1

��� ,
���

2
−1
−1

��� ,
���

2
1
−1

��� ,
���
−1
−1
2

��� ,
���
−1
−1
−1

��� ,
���
−1
0
−1

��� ,
���
−1
0
2

���
⎫⎪⎪⎬⎪⎪⎭
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Notation The moment polytope Δ

E1 Conv
⎧⎪⎪⎨⎪⎪⎩
���

1
−1
−1

��� , ���
1
−1
1

��� , ���
0
1
0

��� , ���
1
0
0

��� , ���
1
0
−1

��� ,
���

0
1
−1

��� , ���
−1
1
−1

��� , ���
−1
1
1

��� , ���
−1
−1
3

��� , ���
−1
−1
−1

���
⎫⎪⎪⎬⎪⎪⎭

E2 Conv
⎧⎪⎪⎨⎪⎪⎩
���

1
−1
−1

��� , ���
1
−1
0

��� , ���
0
1
1

��� , ���
1
0
0

��� , ���
1
0
−1

��� ,
���

0
1
−1

��� ,
���
−1
1
−1

��� ,
���
−1
1
2

��� ,
���
−1
−1
2

��� ,
���
−1
−1
−1

���
⎫⎪⎪⎬⎪⎪⎭

E3 Conv
⎧⎪⎪⎨⎪⎪⎩
���

1
−1
−1

��� ,
���

1
−1
1

��� ,
���
0
1
1

��� ,
���
1
0
1

��� ,
���

1
0
−1

��� ,
���

0
1
−1

��� , ���
−1
1
1

��� , ���
−1
1
−1

��� , ���
−1
−1
1

��� , ���
−1
−1
−1

���
⎫⎪⎪⎬⎪⎪⎭

E4 Conv
⎧⎪⎪⎨⎪⎪⎩
���

1
−1
0

��� , ���
1
−1
−1

��� , ���
0
1
−1

��� , ���
1
0
−1

��� , ���
1
0
1

��� ,
���
0
1
2

��� ,
���
−1
1
−1

��� ,
���
−1
1
2

��� ,
���
−1
−1
−1

��� ,
���
−1
−1
0

���
⎫⎪⎪⎬⎪⎪⎭

F1 Conv
⎧⎪⎪⎨⎪⎪⎩
���

0
1
−1

��� ,
���
0
1
1

��� ,
���

1
1
−1

��� ,
���

1
0
−1

��� ,
���
1
0
1

��� ,
���
1
1
1

��� ,
���

0
−1
1

��� , ���
0
−1
−1

��� , ���
−1
−1
−1

��� , ���
−1
−1
1

��� , ���
−1
0
1

��� , ���
−1
0
−1

���
⎫⎪⎪⎬⎪⎪⎭

F2 Conv
⎧⎪⎪⎨⎪⎪⎩
���
0
1
2

��� , ���
0
1
−1

��� , ���
1
1
2

��� , ���
1
0
1

��� , ���
1
0
−1

��� , ���
1
1
−1

��� ,
���

0
−1
−1

��� , ���
0
−1
0

��� , ���
−1
−1
0

��� , ���
−1
−1
−1

��� , ���
−1
0
−1

��� , ���
−1
0
1

���
⎫⎪⎪⎬⎪⎪⎭



522 N. YOTSUTANI AND B. ZHOU

REFERENCES

[ 1 ] V. BATYREV, Troidal Fano 3-folds, Math. USSR-Izv. 19 (1982), 13–25. Izv. Akad. Nauk SSSR 45 (1981),
704–717.

[ 2 ] V. V. BATYREV, On the classification of toric Fano 4-folds, Algebraic geometry, 9, J. Math. Sci. (New York)
94 (1999), 1021–1050.

[ 3 ] V. BATYREV AND E. SELIVANOVA, Einstein-Kähler metrics on symmetric toric Fano manifolds, J. Reine
Angew. Math. 512 (1999), 225–236.

[ 4 ] R. BERMAN, K-stability of Q-Fano varieties admitting Kahler-Einstein metrics, Invent. Math. 203 (2016),
973–1025.

[ 5 ] W. BRUNS, B. ICHIM, T. RÖMER AND C. SÖGER, Normaliz. Algorithms for rational cones and affine
monoids. Available at http://www.math.uos.de/normaliz.

[ 6 ] E. CALABI, Extremal Kähler metrics, Seminar on differential geometry, pp. 259–290, Ann. of Math Stud. 102,
Princeton Univ. Press, Princeton, N.J., 1982.

[ 7 ] B. H. CHEN, A. M. LI AND L. SHENG, Extremal metrics on toric surfaces, Adv. Math. 340 (2018), 363–405.
[ 8 ] X. X. CHEN, C. LEBRUN AND B. WEBER, On conformally Kähler-Einstein manifolds, J. Amer. Math. Soc.

21 (2008), 1137–1168.
[ 9 ] D. A. COX, J. B. LITTLE AND H. K. SCHENCK, Toric varieties, Graduate Studies in Mathematics, 124.

American Mathematical Society, Providence, RI, 2011. xxiv+841 pp.
[10] I. DOLGACHEV, Lectures on invariant theory, London Mathematical Society Lecture Note Series, 296. Cam-

bridge University Press, Cambridge, 2003.
[11] O. DEBARRE, Fano varieties, Higher dimensional varieties and rational points, (Budapest, 2001), 93–132,

Bolyai Society Mathematical Studies 12, Springer, Berlin, 2003.
[12] S. K. DONALDSON, Scalar curvature and projective embeddings, I, J. Defferential Geom. 59 (2001), 479–522.
[13] S. K. DONALDSON, Scalar curvature and stability of toric varieties, J. Defferential Geom. 62 (2002), 289–349.
[14] S. K. DONALDSON, Extremal metrics on toric surfaces: a continuity method, J. Defferential Geom. 79 (2008),

389–432.
[15] S. K. DONALDSON, Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal. 19 (2009),

83–136.
[16] A. FUTAKI, Asymptotic Chow semi-stability and integral invariants, Int. J. Math. 15 (2004), 967–979.
[17] A. FUTAKI, Asymptotic Chow stability in Kähler geometry, Fifth International Congress of Chinese Mathe-

maticians. Part 1, 2, 139–153, AMS/IP Stud. Adv. Math., 51, pt. 1, 2, Amer. Math. Soc., Providence, RI,
2012.

[18] A. FUTAKI AND T. MABUCHI, Bilinear forms and extremal Kähler vector fields associated with Kähler class,
Math. Ann. 301 (1995), 199–210.

[19] A. FUTAKI, H. ONO AND Y. SANO, Hilbert series and obstructions to asymptotic semistability, Adv. Math.
226 (2011), 254–284.

[20] I. M. GELFAND, M. M. KAPRANOV, AND A. V. ZELEVINSKY, Discriminants, resultants, and multidimen-
sional determinants, Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA, 1994.

[21] E. GAWRILOW AND M. JOSWIG,Polymake Version 2.9.8-Convex polytopes, polyhedra, simplicial complexes,
matroids, fans, and tropical objects, Available at wwwopt.mathematik.tu- darmstadt.de/polymake/doku.php,
1997-present.

[22] M. M. KAPRANOV, B. STURMFELS AND A. V. ZELEVINSKY, Chow polytopes and general resultants, Duke
Math. J. 67 (1992), 189–218.

[23] A. M. KASPRZYK, Canonical toric Fano threefolds, Canad. J. Math. 62 (2010), 1293–1309.
[24] T. MABUCHI, Stability of extremal Kähler manifolds, Osaka J. Math. 41 (2004), 563–582.
[25] T. MABUCHI, An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. I, Invent.

Math. 159 (2005), 225–243.



RELATIVE ALGEBRO-GEOMETRIC STABILITIES OF TORIC MANIFOLDS 523

[26] T. MABUCHI, Relative stability and extremal metrics, J. Math. Soc. Japan 66 (2014), 535–563.
[27] T. MABUCHI, Asymptotic polybalanced kernels on extremal Kähler manifolds, Asian J. Math. 22 (2018),

647–664.
[28] Y. NAKAGAWA, Combinatorial formulae for Futaki characters and generalized killing forms of toric Fano

orbifolds, The Third Pacific Rim Geometry Conference (Seoul, 1996), 223–260, Monogr. Geom. Topology,
25, Int. Press, Cambridge, MA, 1998.

[29] B. NILL, Gorenstein toric Fano varieties, Dissertation, Universität Tübingen, 2005. Available at http://tobias-
lib.uni-tuebingen.de/volltexte/2005/1888

[30] B. NILL AND A. PAFFENHOLZ, Examples of Kähler-Eisntein toric Fano manifolds associated to non-
symmetric reflexive polytopes, Beitr. Algebra. Geom 52 (2011), 297–304.

[31] M. OBRO, An algorithm for the classification of smooth Fano polytopes, arXiv:0704.0049 (2007).
[32] Y. ODAKA, The Calabi conjecture and K-stability, Int. Math. Res. Not. IMRN 2012, 2272–2288.
[33] H. ONO, A necessary condition for Chow semistability of polarized toric manifolds, J. Math. Soc. Japan. 63

(2011), 1377–1389.
[34] H. ONO, Algebro-geometric semistability of polarized toric manifolds, Asian J. Math. 17 (2013), 609–616.
[35] H. ONO, Y. SANO AND N. YOTSUTANI, An example of an asymptotically Chow unstable manifold with

constant scalar curvature, Ann. Inst. Fourier (Grenoble) 62 (2012), 1265–1287.
[36] J. ROSS AND R. THOMAS, A study of the Hilbert-Mumford criterion for the stability of projective varieties, J.

Alg. Geom. 16 (2007), 201–255.
[37] R. SEYYEDALI, Relative Chow stability and extremal metrics, Adv. Math. 316 (2017), 770–805.
[38] Y. L. SHI AND H. X. ZHU, Kähler-Ricci solitons on toric Fano orbifolds, Math. Zeit. 271 (2012), 1241–1251.
[39] G. SZÉKELYHIDI, Extremal metrics and K-stability, Dissertation, Imperial college, London, 2006.

arXiv:0611002.
[40] G. SZÉKELYHIDI, Extremal metrics and K-stability, Bull. London Math. Soc. 39 (2007), 76–84.
[41] G. TIAN, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1–39.
[42] G. TIAN AND X. H. ZHU, A new holomorphic invariant and uniqueness of Kahler-Ricci solitons, Comm.

Math. Helv. 77 (2002), 297–325.
[43] A. D. VEDOVA AND F. ZUDDAS, Scalar curvature and asymptotic Chow stability of projective bundles and

blowups, Trans. Amer. Math. Soc. 364 (2012), 6495–6511.
[44] K. WATANABE AND M. WATANABE, The classification of Fano 3-folds with torus embeddings, Tokyo J. Math.

5 (1982), 37–48.
[45] X. J. WANG AND B. ZHOU, Existence and nonexistence of extremal metrics on toric Kähler manifolds, Adv.

Math. 226 (2011), 4429–4455.
[46] X. J. WANG AND H. X. ZHU, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv.

Math. 188 (2004), 87–103.
[47] N. YOTSUTANI, Facets of secondary polytopes and Chow stability of toric varieties, Osaka J. Math 53, (2016),

751–765.
[48] B. ZHOU AND X. H. ZHU, Relative K-stability and modified K-energy on toric manifolds, Adv. Math. 219

(2008), 1327–1362.
[49] B. ZHOU AND X. H. ZHU, K-stability on toric manifolds, Proc. Amer. Math. Soc. 136 (2008), 3301–3307.
[50] Graded Ring Database, http://grdb.lboro.ac.uk/forms/toricsmooth.



524 N. YOTSUTANI AND B. ZHOU

GRADUATE SCHOOL OF MATHEMATICS

NAGOYA UNIVERSITY

NAGOYA, 464–8602
JAPAN

E-mail address: naoto.yotsutani@gmail.com

SCHOOL OF MATHEMATICAL SCIENCES

PEKING UNIVERSITY

BEIJING, 100871
P. R. CHINA

AND

MATHEMATICAL SCIENCES INSTITUTE

THE AUSTRALIAN NATIONAL UNIVERSITY

CANBERRA, ACT 2601
AUSTRALIA

E-mail addresses: bzhou@pku.edu.cn; bin.zhou@anu.edu.au



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF005b002756fd969b6587732eff30ff24ff26516c958b7528002d0031002e00300031002d004c0065007300730020002800320030003100330030003300310030002900270020306b57fa3065304f005d0020005b002756fd969b6587732eff30ff24ff26516c958b7528002d0031002e003000310020002800320030003100330030003300310030002900270020306b57fa3065304f005d0020ff08682aff0956fd969b6587732e53705237793e306e30a430f330bf30fc30cd30c330c8516c958b306b90693057305f002000410064006f0062006500200050004400460020658766f830924f5c62103057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200037002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


