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Abstract. We investigate the automorphism group of a plane curve, introducing the
notion of a quasi-Galois point. We show that the automorphism group of several curves, for
example, Klein quartic, Wiman sextic and Fermat curves, is generated by the groups associated
with quasi-Galois points.

1. Introduction. The automorphism group Aut(C) of an algebraic curve C over an
algebraically closed field K of characteristic p ≥ 0 is a classical subject in algebraic geometry,
and has been studied by many mathematicians. However, determining Aut(C) in general is
difficult. In this article, we introduce the notion of a quasi-Galois point so that we represent
Aut(C). We infer that quasi-Galois points play an important role for investigating Aut(C).

Let C ⊂ P2 be an irreducible plane curve of degree d ≥ 4. Consider a point P ∈ P2 and
let πP : C � P1 be the projection from P. We define the set

G[P] := {τ ∈ Bir(C) | πP ◦ τ = πP}

of all birational transformations of C preserving the fibers of the projection πP.

DEFINITION 1.1. If |G[P]| ≥ 2, then we say that P is a quasi-Galois point.

This is a generalization of the Galois point, which was introduced by Hisao Yoshihara in
1996 (see [5, 12, 15]).

We show that Aut(C) is generated by associated groups G[P] with quasi-Galois points
P, in the case where Aut(C) of a smooth plane curve C is simple and of even order (Theorem
2.7). The Klein quartic and the Wiman sextic are examples of this kind. For the Fermat curve,
we prove a similar result (Theorem 3.5). For these results, we determine the defining equation
of a curve with a quasi-Galois point (Theorem 2.3), and describe the number of quasi-Galois
points for the Fermat curve (Theorem 3.3).

2. A representation of Aut(C). We introduce the system (X : Y : Z) of homogeneous
coordinates on P2 with local coordinates x = X/Z, y = Y/Z for the affine open set Z � 0. The
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line passing through points P and Q is denoted by PQ, when P � Q. Let G0[P] ⊂ G[P] be
the set of all elements of G[P] which are the restrictions of some linear transformations of P2.

DEFINITION 2.1. A point P is said to be extendable quasi-Galois if |G0[P]| ≥ 2.

REMARK 2.2. If C is smooth, then any automorphism is the restriction of a linear
transformation (see [1, Appendix A, 17 and 18] or [3]). Therefore, every quasi-Galois point
is extendable and G[P] = G0[P].

THEOREM 2.3 (cf. [10, 15, 16]). If p = 0 or p does not divide the order |G0[P]|, then
the group G0[P] is a cyclic group. Furthermore, for an integer n ≥ 2, n divides |G0[P]| if and
only if there exists a linear transformation φ such that

(1) φ(P) = (1 : 0 : 0),
(2) there exists an element σ ∈ G0[φ(P)] ⊂ Bir(φ(C)) which is represented by the matrix

Aσ =
���
�

ζ 0 0
0 1 0
0 0 1

���
�
,

where ζ is a primitive n-th roof of unity, and
(3) φ(C) is given by

∑

i

Gd−ni(Y, Z)X
ni = 0 ,

where Gd−ni is a homogeneous polynomial of degree d − ni in variables Y, Z .

PROOF. We can assume that P = (1 : 0 : 0). The projection πP is given by (x : y :
1) �→ (y : 1). We have a field extension K(x, y)/K(y). Let σ ∈ G0[P] and Aσ = (aij ) a
matrix representing σ, as σ : (X : Y : Z) �→ (X : Y : Z) t Aσ. Since σ∗(y) = y,

(a21x + a22y + a23) − (a31x + a32y + a33)y = 0

in K(C) = K(x, y). Since d ≥ 4, a21 = a23 = a31 = a32 = 0 and a22 = a33. We take the
representative matrix with a22 = a33 = 1. Let N = |G0[P]|. If a11 = 1, then, by AN

σ = 1, it
follows that Na12 = Na13 = 0. Since N is not divisible by p if p > 0, a12 = a13 = 0. Then,
there exists an injective homomorphism

G0[P] ↪→ K \ {0}; σ �→ a11(σ) ,

where a11(σ) is the (1,1)-element of Aσ. Therefore, G0[P] is a cyclic group.
By the assumption, the order of any element of |G0[P]| is not divisible by p if p > 0.

Assume that n ≥ 2 divides |G0[P]|. Since G0[P] is a cyclic group, there exists an element
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σ ∈ G0[P] of order n and σ is represented by the matrix

Aσ =
���
�

ζ a b
0 1 0
0 0 1

���
�
,

where a, b ∈ K and ζ is a primitive n-th root of unity. If we take

B =
���
�

1 a b
0 1 − ζ 0
0 0 1 − ζ

���
�
,

then

B−1AσB =
���
�

ζ 0 0
0 1 0
0 0 1

���
�
.

We take the linear transformation given by (X : Y : Z) �→ (X : Y : Z) tB−1, so that assertion
(2) follows. Let f (x, y) =

∑
i ai(y)xi be a defining polynomial with a0(y) � 0. Then,

σ∗ f =
∑

i ai(y)ζ ixi . There exists c ∈ K such that c f = σ∗ f . Since a0(y) � 0, it follows that
c = 1. For all i, ai(y) = ai(y)ζ i. If ai(y) � 0, then ζ i = 1. This implies that n divides i.
Assertion (3) follows.

The if-part is obvious. �

COROLLARY 2.4. For σ ∈ G0[P] \ {1}, we define F[P] := {Q ∈ P2 | σ(Q) = Q}. If
we use the standard form as in Theorem 2.3, F[P] = {P} ∪ {X = 0}. In particular, the set
F[P] does not depend on σ.

If C is smooth, we define

Gn(C) = 〈G[P] | P : quasi-Galois with |G[P]| = n〉 ⊂ Aut(C)

after Kanazawa–Takahashi–Yoshihara [8] and Miura–Ohbuchi [11]. Similar to [11, Theorem
1], we have the following.

THEOREM 2.5. Let C be smooth. Then, Gn(C) is a normal subgroup of Aut(C).

On the other hand, we have the following.

PROPOSITION 2.6. Let p � 2, and let C be smooth. The following conditions are
equivalent.

(1) The order |Aut(C)| is even.
(2) The group Aut(C) contains an involution.
(3) There exists a quasi-Galois point P such that |G[P]| is even.

PROOF. If |Aut(C)| is even, then a Sylow 2-group contains an element of order two.
Therefore, assertion (1) ⇒ (2) follows. Since G[P] is a subgroup of Aut(C), the assertion (3)
⇒ (1) is obvious.
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We prove (2) ⇒ (3). Let σ ∈ Aut(C) be an involution and Aσ a matrix representing σ.
Since A2

σ = λI3 for some λ � 0, where I3 is the identity matrix, we can assume that A2
σ = I3.

The eigenvalues of Aσ are 1 or −1. For any vector x ∈ K3, (A − E)x and (A + E)x are
contained in the direct sum of eigenspaces, since (A+E)(A−E) = (A−E)(A+E) = 0. Then,
2x = −(A−E)x+ (A+E)x also. By the assumption p � 2, the direct sum of eigenspaces spans
the vector space K3. We find that Aσ is diagonalizable. For a suitable system of coordinates,
we can assume that Aσ is one of the following matrices:

±
���
�

−1 0 0
0 1 0
0 0 1

���
�
, ±

���
�

1 0 0
0 −1 0
0 0 1

���
�
, ±

���
�

1 0 0
0 1 0
0 0 −1

���
�
.

It follows from Theorem 2.3 that (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) are quasi-Galois, for
each case. Then, |G[P]| is even. �

Combining Theorem 2.5 and Proposition 2.6, we have the following.

THEOREM 2.7. Let p � 2, and let C be smooth. If Aut(C) is simple and |Aut(C)| is
even, then Aut(C) = Gn(C) for some even integer n ≥ 2. For example, if p = 0, and C is the
Klein quartic or the Wiman sextic (see [4, 14] and [7, Remark 2.4]), then Aut(C) = G2(C).

PROOF. By Proposition 2.6, if |Aut(C)| is even, then there exists a quasi-Galois point
P with |G[P]| = n, where n is an even integer. Since Gn(C) � {1} is a normal subgroup by
Theorem 2.5, by the assumption that Aut(C) is simple, it follows that Gn(C) = Aut(C).

For the Klein quartic and the Wiman sextic, Aut(C) is a simple group of even order (see
[2, Section 232], [6, pp.348–349], [9] for the Klein quartic and see [14] for the Wiman sextic).
Since if Gn(C) � {1} then the number n must divide d = 4 (resp., d = 6), n is equal to two
or four (resp., two or six) for the Klein quartic (resp., the Wiman sextic). It follows from [12,
Example 4.8] that there does not exist a point P with |G[P]| = 4 for the Klein quartic. For the
Wiman sextic, if there exists a point P with |G[P]| = 6, then there exists an element of order
six, by Theorem 2.3. Since Aut(C) � A6 for the Wiman sextic, there does not exist an element
of order six. Therefore, n = 2. �

3. Fermat curves. In this section, we assume that C is the Fermat curve Xd+Yd+Zd =

0 of degree d ≥ 4 in p = 0. Let P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), and let P3 = (0 : 0 : 1). It
follows from Yoshihara–Miura’s theorem [12, 15] that |G[Pi]| = d (i.e. Pi is outer Galois) for
each i, and the number of points P ∈ P2 \ C with |G[P]| = d is three.

PROPOSITION 3.1. (1) Let d = 2n, and let ζ satisfy ζ2n = 1. Then, points
(ζ : 0 : 1), (1 : ζ : 0) and (0 : 1 : ζ) are quasi-Galois points in P2 \ C.

(2) Let d = 2n + 1, and let η satisfy η2n+1 = −1. Then, points (η : 0 : 1), (1 : η : 0) and
(0 : 1 : η) are quasi-Galois points in C.

PROOF. Let P be one of the points given in (1). Since C is invariant under the linear
transformations (X : Y : Z) �→ (Z : X : Y ) and (X : Y : Z) �→ (ζ−1X : Y : Z), we can assume
that P = (1 : 0 : 1). We take the linear transformation φ : (X : Y : Z) �→ (X + Z : Y : X − Z).
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Then, φ−1(P) = (1 : 0 : 0) and φ−1(C) is given by

(X + Z)2n + (X − Z)2n + Y2n = 2
n∑

k=0

(
2n
2k

)
X2n−2k Z2k + Y2n = 0 .

By Theorem 2.3, φ−1(P) is quasi-Galois. Therefore, P is quasi-Galois.
Let P be one of the points given in (2). Since C is invariant under the linear transformations

(X : Y : Z) �→ (Z : X : Y) and (X : Y : Z) �→ (−η−1X : Y : Z), we can assume that
P = (−1 : 0 : 1). We take the linear transformation φ : (X : Y : Z) �→ (X + Z : Y : X − Z).
Then, φ−1(P) = (0 : 0 : 1) and φ−1(C) is given by

(X + Z)2n+1 + (X − Z)2n+1 + Y2n+1 = 2
n∑

k=0

(
2n
2k

)
X2n+1−2k Z2k + Y2n+1 = 0 .

By Theorem 2.3, φ−1(P) is quasi-Galois. Therefore, P is quasi-Galois. �

PROPOSITION 3.2. If a point P satisfies 1 < |G[P]| < d, then |G[P]| = 2 and
P ∈ {XY Z = 0}. Furthermore, the number of such points is at most 3d.

PROOF. We prove that P ∈ {XY Z = 0}. Assume for contradiction that P � {XY Z = 0}.
Let σ ∈ G[P]\{1}. The point P1 is the only outer Galois point on the line PP1. It follows from
Theorem 2.3 that σ(PP1) = PP1. Then, σ(P1) = P1. Similarly, σ(P2) = P2 and σ(P3) = P3.
By Corollary 2.4, σ(P) = P. Since σ fixes non-collinear three points P1,P2,P3 and the point
P �

⋃
i�j PiPj , σ is identity on P2. This is a contradiction.

We can assume that P ∈ P1P2. Let σ ∈ G[P] be a generator. Since P1 and P2 are the
only outer Galois points on the line P1P2, σ acts on the set {P1,P2}. Note that σ(P) = P.
Then, the restriction σ |P1P2

is of order two. By Theorem 2.3, the order of σ is equal to the
order of σ |� for each line 
  P. Therefore, |G[P]| = 2.

We prove the latter assertion. Since the fixed field K(C)G[P] is an intermediate field of
K(C)/π∗PK(P1), if d is odd (resp., d is even), then P ∈ C (resp., P ∈ P2 \ C). If d is odd, then
the assertion is obvious, since the number of points in C ∩ {XY Z = 0} is 3d. Assume that d
is even. Then, P ∈ P2 \ C. Let P ∈ P1P2 with |G[P]| = 2 and σ ∈ G[P] a generator. Since
σ2 = 1, σ(P3) = P3 and σ acts on the set {P1,P2}, σ is represented by the matrix

���
�

0 ξ 0
ξ−1 0 0
0 0 1

���
�

for some ξ ∈ K . Considering the action on the defining equation Xd + Y d + Zd = 0, ξd = 1
follows. Assume that

���
�

x
1
0

���
�
=
���
�

0 ξ 0
ξ−1 0 0
0 0 1

���
�

���
�

x
1
0

���
�
=
���
�

ξ

ξ−1x
0

���
�
,

up to a constant. Then, x = ±ξ. The only fixed points of σ on the line P1P2 are (ξ : 1 : 0) and
(−ξ : 1 : 0) ∈ P2 \ C. It follows from Corollary 2.4 that P must be (ξ : 1 : 0) or (−ξ : 1 : 0),
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and hence, P ∈ {(ζ : 1 : 0) | ζd = 1}. Therefore, there exist at most d quasi-Galois points on
the line P1P2. �

The number of quasi-Galois points P ∈ C with |G[P]| = n (resp., |G[P]| ≥ n) is denoted
by δ[n] (resp., δ[≥ n]). Similarly, we define δ′[n] and δ′[≥ n], when we consider the case
P ∈ P2 \ C.

THEOREM 3.3. Let C be the Fermat curve of degree d. Then:
(1) δ′[d] = 3.
(2) If d is even, then δ′[≥ 2] = δ′[d] + δ′[2] = 3 + 3d and δ[≥ 2] = 0.
(3) If d is odd, then δ′[≥ 2] = δ′[d] = 3 and δ[≥ 2] = δ[2] = 3d.

PROOF. Assertion (1) is nothing but Yoshihara–Miura’s theorem [12, 15]. By Proposi-
tions 3.1 and 3.2, assertions (2) and (3) follow. �

REMARK 3.4. For d = 4,5, this theorem was obtained by Miura–Yoshihara [12, 13, 15].

THEOREM 3.5. Let C be the Fermat curve of degree d. Then:
(1)

〈G2(C),Gd(C)〉 = Aut(C) .

(2) The assertion G2(C) � 〈G2(C),Gd(C)〉 holds if and only if d is divisible by 3. In this
case, there exists a split exact sequence

0 → (Z/(d/3)Z) ⊕ (Z/dZ) → G2(C) → S3 → 1

of groups, where S3 is the symmetric group of degree three, and |G2(C)| = 2d2.

PROOF. We consider (1). Let σ ∈ Aut(C) ⊂ Aut(P2). Then, σ acts on the set
{P1,P2,P3} of outer Galois points. If σ(P1) = P2, then there exists φ1 ∈ G2(C) such that
φ1σ(P1) = P1, by using an action associated with a quasi-Galois point on the line P1P2. If
φ1σ(P2) = P3, then we take φ2 ∈ G2(C) such that φ2(P1) = P1 and φ2(P3) = P2, which comes
from an action associated with a quasi-Galois point on the line P2P3. Therefore, there exists
φ ∈ G2(C) such that φσ(Pi) = Pi for i = 1,2,3. Then, φσ is represented by the matrix of the
form

���
�

α 0 0
0 β 0
0 0 1

���
�

for some α, β ∈ K . By considering the action on the defining equation Xd + Y d + Zd = 0, it
follows that αd = 1 and βd = 1. If we take

φ3 =
���
�

α−1 0 0
0 1 0
0 0 1

���
�
∈ G[P1], φ4 =

���
�

1 0 0
0 β−1 0
0 0 1

���
�
∈ G[P2] ,

then φ4φ3φσ = 1 on P2. Therefore, σ = φ−1φ−1
3 φ

−1
4 ∈ 〈G2(C),Gd(C)〉.
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We consider (2). Let ζ be a primitive d-th root of unity. Note that 3d involutions of the
form

���
�

1 0 0
0 0 ζ i

0 ζ−i 0

���
�
(=: σi),

���
�

0 0 ζ−i

0 1 0
ζ i 0 0

���
�
,
���
�

0 ζ i 0
ζ−i 0 0
0 0 1

���
�

for i = 1, . . . , d act on C. By Proposition 2.6 and Theorem 3.3, they generate G2(C). Let τ1
(resp., τ2) be the involution given by (X : Y : Z) �→ (X : Z : Y ) (resp., (X : Y : Z) �→ (Z : Y :
X)). It follows that

η1 := σ1τ1 =
���
�

1 0 0
0 ζ 0
0 0 ζ−1

���
�

and η2 := τ−1
2 η1τ2 =

���
�

ζ−1 0 0
0 ζ 0
0 0 1

���
�
∼
���
�

1 0 0
0 ζ2 0
0 0 ζ

���
�
,

and η1, η2 ∈ G2(C). Then,

η1η2 =
���
�

1 0 0
0 ζ3 0
0 0 1

���
�
∈ G[P2].

If d is not divisible by 3, then η1η2 generates G[P2] and hence, G[P2] ⊂ G2(C). Considering
actions of τ1, τ2 ∈ G2(C), it follows that Gd(C) ⊂ G2(C). The only-if part of (2) follows.
Assume that d is divisible by 3. Let H1 := 〈η1, η1η2〉 and H2 := 〈τ1, τ2〉. Then, 〈H1,H2〉 =

G2(C), H1 is an abelian group isomorphic to (Z/(d/3)Z) ⊕ Z/dZ, and H2 � S3. Since
τ−1
i ηjτi ∈ H1 for i, j = 1,2 (for example, τ−1

1 η2τ1 = η2η
−1
1 ∈ H1), H1 is a normal subgroup of

G2(C). Note that any element of G2(C) is given by ητ for some η ∈ H1 and τ ∈ H2. Then,
there exists a split exact sequence

0 → (Z/(d/3)Z) ⊕ (Z/dZ) → G2(C) → S3 → 1

of groups, and |G2(C)| = (d/3)d × 6 = 2d2. Since

���
�

1 0 0
0 ζ 0
0 0 1

���
�
∈ G[P2] − G2(C),

it follows that G2(C) � 〈G2(C),Gd(C)〉. �

REMARK 3.6. According to [11, Example 2], Gd(C) � Aut(C).
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