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CANCELLATION OF FLUCTUATION IN STOCHASTIC RANKING
PROCESS WITH SPACE-TIME DEPENDENT INTENSITIES
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Abstract. We consider the stochastic ranking process with space-time dependent un-
bounded jump rates for the particles. We prove that the joint empirical distribution of jump rate
and scaled position converges almost surely to a deterministic distribution in the infinite particle
limit. We assume topology of weak convergence for the space of distributions, which implies
that the fluctuations among particles with different jump rates cancel in the limit. The results
are proved by first finding an auxiliary stochastic ranking process, for which a strong law of
large numbers is applied, and then applying a multi time recursive Gronwall’s inequality. The
limit has a representation in terms of non-Markovian processes which we call point processes
with last-arrival-time dependent intensities. We also prove the propagation of chaos, i.e., the
tagged particle processes also converge almost surely.

1. Introduction. Let N be a positive integer and T > 0. T is an arbitrary constant
fixed throughout the paper, and we are interested in the limit N → ∞. A stochastic ranking
process is a stochastic system of N particles on a line segment [0,1] for a time interval [0,T ],
defined as follows. Let W be a set of non-negativevalued continuous functions in two variables,
continuously differentiable in the first variable, and let w1, w2, . . . be an infinite sequence in
W .

Let y(N)

1 , y(N)

2 , . . . , y(N)

N be a permutation of { i
N | i = 0,1, . . . ,N − 1}. Then a stochastic

ranking process is a system of stochastic processes {Y (N)

i | i = 1,2, . . . ,N} defined on a
probability space (Ω,F ,P) by

(1)

Y (N)

i (t) = y(N)

i

+
1
N

N∑

j=1

∫

s∈(0,t]

∫

ξ ∈[0,∞)

1Y (N )

j (s−)>Y
(N )

i (s−) 1ξ ∈[0,wj (Y
(N )

j (s−),s))
ν
(N)

j (dξds)

−

∫

s∈(0,t]

∫

ξ ∈[0,∞)

Y (N)

i (s−) 1ξ ∈[0,wi (Y
(N )

i (s−),s))
ν
(N)

i (dξds),

i = 1,2, . . . ,N, t � 0.

Here, 1A is the indicator function of an event A, and for each N , ν(N)

i , i = 1,2, . . . ,N , are
independent Poisson random measures on [0,∞)×[0,∞)with uniform unit intensity measures,
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i.e., E[ ν(N)

i ([a, b] × [c, d]) ] = (b − a)(d − c) for b > a � 0 and d > c � 0, and ν(N)

i (A) and
ν
(N)

i (B) are independent Poisson variables if A ∩ B = ∅.
If we put

(2) ν̃
(N)

i (t) =
∫

s∈(0,t]

∫

ξ ∈[0,∞)

1ξ ∈[0,wi (Y
(N )

i (s−),s))
ν
(N)

i (dξds) ,

then (1), the position of the particle i at time t, is expressed as

Y (N)

i (t) = y(N)

i +
1
N

N∑

j=1

∫ t

0
1Y(N )

j (s−)>Y
(N )

i (s−)
ν̃
(N)

j (ds) −
∫ t

0
Y (N)

i (s−)ν̃(N)

i (ds) .

We then see that the time development of {Y (N)

i } is determined by the move-to-front rules
[18] driven by the point processes {ν̃(N)

i } with space-time dependent intensities given by the
‘density functions’ {wi}. If wi is constant then the process ν̃(N)

i is the Poisson process, while
in general, its increments depend on past and is dependent on other particles. The move-to-
front rule in particular implies that the particle system {Y (N)

i } as a whole takes values in the
rearrangement of i

N , i = 0,1, . . . ,N − 1. Each particle either increases its position by 1
N , or

else takes the value 0, i.e. jumps to the top position, as t increases.
A starting point for our study is the joint empirical distribution of wi and the position,

given by

(3) μ
(N)

t =
1
N

N∑

i=1
δ
(wi ,Y

(N )

i (t))
.

Here δc is a unit measure concentrated at c. (We will use this notation for a unit measure on
any probability space.) μ(N)

t , t ∈ [0,T ], is regarded as a stochastic process taking values in
the set of Borel probability measures on C1,0

([0,1] × [0,T ]) × [0,1]. Here C1,0
([0,1] × [0,T ])

is the total set of functions f ∈ C([0,1] × [0,T ]) such that ∂ f
∂y ∈ C([0,1] × [0,T ]). Since

C1,0
([0,1] × [0,T ]) is a Polish space with norm

sup
(y,t)∈[0,1]×[0,T ]

max
{
|w(y, t)|,

����
∂ w

∂y
(y, t)

����
}
,

so is C1,0
([0,1] × [0,T ]) × [0,1] (see [1, Example 26.2]). We assume a standard topology of

weak convergence of probability measures on C0,1
([0,1] × [0,T ]) × [0,1]. In particular, the

initial distribution is

(4) μ
(N)

0 =
1
N

N∑

i=1
δ
(wi ,y

(N )

i )

.

By considering a process X (N)

i (t) = NY (N)

i (t) + 1 taking values in positive integers, we
see that a stochastic ranking process is a model of ranking system, such as the sales ranks
found at online bookstores [6, 7, 5, 8, 10, 9, 16, 17, 14]. As a model of popularity ranks
of an online bookstore, the move-to-front rule defines the rank as a stochastic number with
the ‘latest purchased book as most popular’ rule. That the intensity wi differs for different
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book i represents that there are popular books and less popular ones. (Many books on
mathematics perhaps provide examples of the latter.) See also [14] and references therein for
more background.

We will prove existence of hydrodynamic limit, that assuming convergence of μ(N)

0 as
N → ∞ we have convergence of μ(N)

t for all t ∈ [0,T ]. The common standard quantities
effective for the move-to-front rules are the characteristic curves Y (N)

C
defined by

Y (N)

C
(γ, t) = y0 +

1
N

N∑

j=1

∫

s∈(t0 ,t]

∫

ξ ∈[0,∞)

1Y (N )

j (s−)�Y(N )

C
(γ,s−)

× 1ξ ∈[0,wj (Y
(N )

j (s−),s))
ν
(N)

j (dξds) ,

γ = (y0, t0) ∈ [0,1] × [0,T ], t � t0 ,

(5)

and a set of spatial distribution functions ϕ(N) of μ(N)

t defined by

(6) ϕ(N)

(dw, γ, t) = μ(N)

t (dw × [Y (N)

C
(γ, t),1]) ,

γ = (y0, t0) ∈ [0,1] × [0,T ], t � t0, w ∈ W .

The latter is a refinement of the former in the sense that (3) and (6) imply

(7) Y (N)

C
(γ, t) = y0 +

[N(1 − y0)]

N
− ϕ(N)

(W, γ, t) ,

γ = (y0, t0) ∈ [0,1] × [0,T ], t � t0 .

Since ϕ(N) determines μ(N)

t , the convergence problem of μ(N)

t is reduced to that of ϕ(N).
If the intensity densities w ∈ W are independent of y, then ϕ(N) is an arithmetic mean

of independent stochastic processes, so that a strong law of large numbers for a sum of
independent processes can be applied to prove existence of almost sure N → ∞ limit under
reasonable assumptions [5]. In contrast, when the intensity densities depend on y, the problem
is a more involved one of law of large numbers for dependent processes. The case of spatially
varying intensity densities was first studied in [14], where we found the existence of the limit
under restricting assumptions. Firstly, we assumed in [14] that w ∈ W is bounded as well as
the derivative in the first variable. We keep the latter assumption

(8) CW := sup
w∈W

sup
(y,t)∈[0,1]×[0,T ]

����
∂ w

∂y
(y, t)

���� < ∞

in the present study, but replace the assumptoin of boundedness of w in [14] by a milder
(and natural, in view of the previous study [5] for simpler cases) assumption (24). This
improvement in the choice of assumption in particular allows Pareto (power law) distributions
for λ in (24) (which was excluded in [14]), which may be of interest in applying stochastic
ranking processes to social studies [9, 10]. Secondly, we adopted the total variation norm for
the topology of the space of Borel measures in [14]. This means that, among other points, the
law of large numbers proved in [14] is a cancellation of fluctuations among processes {Y (N)

i }

having the same associated intensity densities wi = w. This assumption is to be compared
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with the results in [5], where we proved a corresponding convergence theorem (for the easier
case of spatially constant intensity densities) with topology of the space of Borel measures
induced by weak convergence, which, for example, allows all the wi’s to be different and the
cancellation of fluctuation is still implied. It would be mathematically interesting to see how
this law of large numbers (fluctuation cancellation) mechanism, which escaped from our hands
in [14], would be stable against introduction of the spatial dependence of w ∈ W .

The essential ingredient of the proof of this paper may be summarized as follows:
• Discovery of the point process with last-arrival-time dependent intensity [11, 12].

The hydrodynamic limit turned out to have an expression in terms of probabilities
of the process. This expression was absent in [14], which was a partial cause of a
technical boundedness assumptions on W . The process lack independent increment
properties, which is a remnant of stochastic dependence among the particles through
the position dependence of w ∈ W . This is to be compared with the earlier studies for
position independent w, where the corresponding quantities have explicit formulas
using exponentials of integration of w, related to the probabilities of the Poisson
process [6, 5].

• Discovery of an intermediate model, defined in § 3, which we call the flow driven
stochastic ranking process. The ‘intensity densities’ for the flow driven stochastic
ranking process are involved but without position dependence, hence the distribution
function ϕ for this model is a sum of independent processes, and a standard law of
large numbers has a chance of explaining the fluctuation cancellation mechanism.
(Introductionof an intermediate model resembles a notion of local equilibrium which
appears in the hydrodynamic limit for diffusions. The limit of the stochastic ranking
process is, in terms of fluid dynamics, a one-sided flow with evaporation from upper
stream y = 0 to the down stream y = 1, and the correspondence to diffusion is only
a kind of metaphor.)

Since the stochastic dependence among the particles induced by the move-to-
front rule is handled by introduction of distribution functions ϕ, the real challenge
from a viewpoint of mathematical analysis is the stochastic dependence through
position dependence of w ∈ W , which was first studied in [14]. In the reference we
adopted a sophisticated method (than adopted in this paper) based on submartingale
inequalities, which worked well with the restricting assumptions in the reference, and
enabled a relatively quick proof without introducing intermediate models.

• Development and application of a uniform strong complete law of large numbers for
independent monotone function valued random variables.

Since the flow driven stochastic ranking process is stochastically similar to
the stochastic ranking process with position independent intensities, a strong law
of large numbers for independent processes is applicable. Since, however, we later
need to compare this intermediate model with the original model, we apply uniform
convergence results stronger than in earlier works [5], where the law of large numbers
for the independent processes was practically the final goal.
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• Application of a hierarchy of multi time Gronwall type inequalities. The last step
is to prove that the original stochastic ranking process has the same limit with
the (appropriately chosen) flow driven stochastic ranking process. To evaluate the
difference, we couple the two models, and resort to a multi time variable recursive
version of Gronwall type inequality which we develop in § 4.

In [14], we also proved the occurrence of propagation of chaos. Namely, for each integer
L, the tagged particle system

(Y (N)

1 (t),Y (N)

2 (t), . . . ,Y (N)

L (t))

converges to a limit process uniformly in t ∈ [0,T ] as N → ∞, if the system of the initial
positions (y(N)

1 , y
(N)

2 , . . . , y
(N)

L ) converges, and the components of the limit are independent of
each other. A corresponding result is also proved in this paper.

The plan of the present paper is as follows. In § 2 we state the main results, that the
stochastic ranking process with space-time dependent intensities has a limit characterized by
the point processes with last-arrival-time dependent intensities. For convenience, we will
summarize the definition and relevant results of the point processes in § A. In § 3 we formulate
the flow driven stochastic ranking process and prove the existence of the strong uniform law
of large numbers (the large particle number limit). In § 4 we formulate and prove a hierarchy
of a multi time version of the Gronwall’s inequality, which we use in § 5 to complete a proof
of the main theorem stated in § 2.

Acknowledgements. The author would like to thank Professor Seiichiro Kusuoka, Professor Kazu-
masa Kuwada, and Professor Naoto Miyoshi, for their interest in the present work and for giving the
author opportunities for seminar talks at Okayama University, University of Tokyo, and Tokyo Insti-
tute of Technology, respectively. The author in particular thanks Prof. Kusuoka for discussions and
collaborations.

2. Formulation and the main results. To state the main results precisely, we first
formulate the quantities which appear in the infinite particle limit of the stochastic ranking
process. Denote the sets of initial (t = 0) points in the space-time [0,1] × [0,T ], the set of
upper stream boundary (y = 0) points, and their union, the set of initial/boundary points,
respectively by

(9)
Γb = {(0, s) | 0 � s � T } ,
Γi = {(z,0) | 0 � z � 1} ,
Γ = Γb ∪ Γi .

For t ∈ [0,T ], denote the set of initial/boundary points up to time t by

(10) Γt = {(z, t0) ∈ Γ | t0 � t} = Γi ∪ {(0, t0) ∈ Γb | 0 � t0 � t} ,

and the set of admissible pairs of the initial/boundary point γ and time t by

(11) ΔT = {(γ, t) ∈ ΓT × [0,T ] | γ ∈ Γt } .
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Define the set of flowsΘT on [0,1] × [0,T ] by

(12)
ΘT = {θ : ΔT → [0,1] | continuous, θ((y0, t0), t0) = y0, (y0, t0) ∈ ΓT ,

surjective and non-increasing in γ for each t,
non-decreasing in t for each γ } ,

where, we define a total order 	 on the initial/boundary set ΓT by

(13) s � t, z � y ⇔ (0,T ) 	 (0, t) 	 (0, s) 	 (0,0) 	 (z,0) 	 (y,0) 	 (1,0) .

For example,

(14) θ((1,0), t) = 1 , t ∈ [0,T ] , θ ∈ ΘT .

For each θ ∈ ΘT , w ∈ W , and z ∈ [0,1], define w̃θ,w,z , a non-negative valued continuous
function of (s, t) satisfying 0 � s � t � T , by

(15) w̃θ,w,z(s, t) =

{
w(θ((z,0), t), t) , if s = 0 ,
w(θ((0, s), t), t) , if s > 0 .

Note that w̃θ,w,z is independent of z if s > 0. Let θ ∈ ΘT , and put

(16)
ϕθ (dw, γ, t) =

∫

z∈[y0,1]
P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ] μ0(dw × dz) ,

γ = (y0, t0) ∈ Γt, (γ, t) ∈ ΔT ,

where ν̃θ,w,z is the point process with last-arrival-time dependent intensity, denoted by N in
§ A, with the ‘intensity density’ω(s, t) in the definition (141) of the process given by w̃θ,w,z(s, t)
of (15), and μ0 is a Borel probability measure on the direct product space W × [0,1].

The following is proved in [11].

THEOREM 2.1 ([11, Theorem 9, (89)]). There exists a unique flow yC ∈ ΘT such that

(17) θ(γ, t) = 1 − ϕθ (W, γ, t), γ = (y0, t0) ∈ Γ, (γ, t) ∈ ΔT ,

holds for θ = yC .

In [11] below the theorem it is remarked that there exists μt , taking values in the space
of Borel probability measures on W × [0,1], such that

(18) ϕyC (dw, (y0, t0), t) = μt (dw × [yC((y0, t0), t),1]) ,
((y0, t0), t) ∈ ΔT ,

and below Theorem 1 in [11] it is also remarked that μt and yC satisfy

(19) yC(γ, t) = y0 +
∫ t

t0

∫

W×[yC (γ,s),1)
w(z, s)μs(dw × dz) ds .

Next we state our assumptions on the infinite particle limit N → ∞ of initial (t = 0)
conditions. We will assume a standard supremum norm on the space of continuous functions
on the closed interval [0,1] × [0,T ], with which we define the weak convergence of Borel
probability measures on W in the standard way [2]. For the initial distribution μ(N)

0 in (4),
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we assume the following weak convergence with additional uniform bounds on the order of
convergence to μ0 in (16):

(20)

For any set H ⊂ C0
(W × [0,1];R) of uniformly bounded,

equicontinuous functions, ∃δ ∈ (0, 12 ), ∃C > 0;
(∀N ∈ N) (∀h̃ ∈ H) (∀y ∈ [0,1])����
∫

W×[y,1]
h̃(w, z) μ(N)

0 (dw × dy) −
∫

W×[y,1]
h̃(w, z) μ0(dw × dy)

���� �
C
Nδ
.

Denote the marginal distribution of μ0 on W by λ;

(21) λ(dw) = μ0(dw × [0,1]) ,

and put

(22) λ(N) =
1
N

N∑

i=1
δwi .

Comparing with (3), we see that λ(N) is the marginal distribution of μ(N)

t on W for all t;

(23) λ(N)

(dw) = μ(N)

t (dw × [0,1]) , t ∈ [0,T ] .

For λ we assume

(24) MW :=
∫

W
‖w‖T λ(dw) < ∞ ,

where, and hereafter, we put

(25) ‖ f ‖T = sup
(z,s)∈[0,1]×[0,T ]

| f (z, s)| .

The assumption (20) implies, with (23) and (21),

(26) λ(N)

→ λ , weakly as. N → ∞ .

In addition we assume convergence of the average of ‖w‖T:

(27) lim
N→∞

∫

W
‖w‖T λ

(N)

(dw) = MW .

REMARK 2.2. In (20) we assume uniform order of convergenceO(N−δ
), while Ascoli–

Arzelà type theorem implies uniform convergence but has no control in general on the order
of convergence.

We are ready to state the main results of this paper.

THEOREM 2.3 (Main Theorem). Under the assumptions (8), (20), (24), and (27), with
probability 1, μ(N)

t → μt , weakly as N → ∞, uniformly in t, where μt is as in (18). Explicitly,
we prove

(28) lim
N→∞

sup
t ∈[0,T ]

����
∫

W

h(w)μ(N)

t (dw × [y,1]) −
∫

W

h(w)μt (dw × [y,1])
���� = 0, a.s.,

for all y ∈ [0,1] and bounded continuous function h : W → R.
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Assume in addition that for a positive integer L and yi ∈ [0,1), i = 1,2, . . . , L,

(29) ν
(N)

i = νi, N ∈ N, and lim
N→∞

y
(N)

i = yi , for i = 1,2, . . . , L .

Then, with probability 1, the tagged particle system

(Y (N)

1 (t),Y (N)

2 (t), . . . ,Y (N)

L (t))

converges as N → ∞, uniformly in t ∈ [0,T ] to a limit (Y1(t),Y2(t), . . . , YL(t)). Here, for each
i = 1,2, . . . , L, Yi is the unique solution to

(30)

Yi(t) = yi +
∫

s∈(0,t]

∫

(w,z)∈W×[Yi (s−).1]
w(z, s) μs(dw × dz) ds

−

∫

s∈(0,t]

∫

ξ ∈[0,∞)

Yi(s−) 1ξ ∈[0,wi (Yi (s−),s)) νi(dξds) ,

i = 1,2, . . . , L, t ∈ [0,T ] .

Theorem 2.3 implies propagation of chaos for the stochastic ranking processes. For each
N all of {Y (N)

i } are random and interact with each other and μ(N)

t is also random. However,
the limit μt is deterministic. Furthermore, the randomness of the limit process Yi of a tagged
particle depends only on its associated Poisson random measure νi, and is independent of Yj

or νj with j � i.
Incidentally, we proved almost sure convergence for μ(N)

t in (28), while we made no
assumptions on the relation between the set of measures {ν

(N)

i | i = 1,2, . . . ,N} for differ-
ent N . This is stronger than the law of large numbers appearing in the context of random
walks 1

N

∑N
i=1 Xi , where each Xi is fixed for all N , while (28) corresponds to considering

1
N

∑N
i=1 X (N)

i , where we assume no relation among X (N)

i for different N . Such a type of con-
vergence is known for sums of real valued random variables as complete convergence [15, 3, 4].
In this context, (18) is an example of complete convergence for a sequence of measure valued
random variables.

3. Infinite particle limit of flow driven stochastic ranking process.
3.1. Flow driven stochastic ranking process. In this section, we introduce an inter-

mediate model which we use to prove convergence of μ(N)

t in Theorem 2.3.
Let {wi}, {y(N)

i }, and {ν
(N)

i } be as in the stochastic ranking process (5). Let θ ∈ ΘT be
a flow, and for each i = 1,2, . . . ,N , let ν̃(N ,θ)

i be a point process of N in (147), with ν = ν(N)

i

and ω = w̃
θ,wi ,y

(N )

i
, where the last notation is as in (15) with w = wi and z = y(N)

i . Define a

system of stochastic processes Y (N ,θ)
i , i = 1,2, . . . ,N , by

(31)
Y (N ,θ)
i (t) = y(N)

i +
1
N

N∑

j=1

∫

s∈(0,t]
1Y(N ,θ )

j (s−)>Y
(N ,θ )
i (s−)

ν̃
(N ,θ)
j (ds)

−

∫

s∈(0,t]
Y (N ,θ)
i (s−)ν̃(N ,θ)

i (ds) , i = 1,2, . . . ,N, t � 0 .

We will call this system, the stochastic ranking process driven by the flow θ.
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The fluctuation of (31) is coupled to those of the stochastic ranking process of (1) via
the set of Poisson random measures {ν(N)

i }. Using (144) and (147), we have an expression of
ν̃
(N ,θ)
i using ν(N)

i . Define a sequence of stopping times, 0 = τ(N ,θ)
i,0 < τ

(N ,θ)
i,1 < · · · , by

(32)

τ
(N ,θ)
i,0 = 0 ,

τ
(N ,θ)
i,k+1 = inf{t > τ(N ,θ)

i,k
| ν

(N)

i ({(s, ξ) ∈ (τ
(N ,θ)
i,k
,T ] × [0,∞) |

0 � ξ � wi(Y (N ,θ)
i (s−), s)}) > 0}, k ∈ Z+ .

τ
(N ,θ)
i,k

is the time that the particle i in the flow driven stochastic ranking process jumps to the
top for the k-th time. Put

(33) γ
(N ,θ)
i (t) =

{
(y

(N)

i ,0) , 0 � t < τ(N ,θ)
i,1 ,

(0, τ(N ,θ)
i,k

) , τ
(N ,θ)
i,k

� t < τ(N ,θ)
i,k+1 , k = 1,2, . . . .

Using γ(N ,θ)
i (t), we have an expression

(34) ν̃
(N ,θ)
i (t) =

∫

s∈(0,t]

∫

ξ ∈[0,∞)

1ξ ∈[0,wi (θ(γ
(N ,θ )
i (s−),s−),s))

ν
(N)

i (dξ ds) ,

and substituting (34) in (31) we further have

(35)

Y (N ,θ)
i (t) = y(N)

i +
1
N

N∑

j=1

∫

s∈(0,t]

∫

ξ ∈[0,∞)

1Y(N ,θ )
j (s−)>Y

(N ,θ )
i (s−)

× 1ξ ∈[0,wj (θ(γ
(N ,θ )
j (s−),s−),s))

ν
(N)

j (dξ ds)

−

∫

s∈(0,t]

∫

ξ ∈[0,∞)

Y (N ,θ)
i (s−) 1ξ ∈[0,wi (θ(γ

(N ,θ )
i (s−),s−),s))

ν
(N)

i (dξ ds) ,

i = 1,2, . . . ,N , t � 0 .

This is to be compared with the (original) stochastic ranking process (1). We see that (35) is
obtained from (1) by replacing Y (N)

j (s) appearing as a variable for wj by θ(γ(N ,θ)
j (s), s), and

otherwise, by Y (N ,θ)
j (s).

3.2. Characteristic curve and distribution function. For each i = 1,2, . . . ,N and
0 � t0 � t, define an event J(N ,θ)

i (t0, t) ⊂ Ω by

(36) J(N ,θ)
i (t0, t) = {ω ∈ Ω | ν̃

(N ,θ)
i (t)(ω) > ν̃(N ,θ)

i (t0)(ω)} .

Since ν̃(N ,θ) is increasing, the complement is

(37) J(N ,θ)
i (t0, t)

c = {ω ∈ Ω | ν̃
(N ,θ)
i (t)(ω) = ν̃(N ,θ)

i (t0)(ω)} .

On the event J(N ,θ)
i (t0, t)c, the contribution of the last term on the right hand side of (31) to

the difference Y (N ,θ)
i (t) − Y (N ,θ)

i (t0) is 0, hence Y (N ,θ)
i is non-decreasing in the interval [t0, t].

In other words, J(N ,θ)
i (t0, t) of (36) is the event that the particle i jumps to the top y = 0 during

(t0, t].
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Define the characteristic curve for the stochastic ranking process driven by the flow θ by

(38) Y (N ,θ)
C

((y0, t0), t) = y0 +
1
N

∑

j∈[1,N]; Y (N ,θ )
j (t0)�y0

1J (N ,θ )
j (t0 ,t)

,

for (y0, t0) ∈ [0,1] × [0,T ] and t � t0. For example,

(39) Y (N ,θ)
C

((1, t0), t) = 1 , t � t0 � 0 .

Since NY (N ,θ)
j takes integer values, we can write (38) using (37) as

(40) Y (N ,θ)
C

((y0, t0), t) = y0 +
[N (1 − y0)]

N
−

1
N

∑

j; Y (N ,θ )
j (t0)�y0

1J (N ,θ )
j (t0 ,t)

c ,

where [x] is the largest integer not exceeding x.
We note the following expression corresponding to (5).

LEMMA 3.1. (i) For t � t0 � 0 and 0 � y0 � 1, it holds that

(41)
Y (N ,θ)
C

((y0, t0), t) = y0 +
1
N

N∑

j=1

∫

s∈(t0 ,t]

∫

ξ ∈[0,∞)

1Y(N ,θ )
j (s−)�Y(N ,θ )

C
((y0,t0),s−)

1ξ ∈[0,wj (θ(γ
(N ,θ )
j (s−),s),s))

ν
(N)

j (dξds) .

(ii) It holds that

(42) Y (N ,θ)
i (t) = Y (N ,θ)

C (γ
(N ,θ)
i (t), t) , t ∈ [0,T ] ,

where γ(N ,θ)
i is as in (33).

PROOF. Since on the event J(N ,θ)
i (t0, t)c, the contribution of the last term on the right

hand side of (31) to the difference Y (N ,θ)
i (t) −Y (N ,θ)

i (t0) disappears, Y (N ,θ)
i (t) −Y (N ,θ)

i (t0) and

Y (N ,θ)
C

((Y (N ,θ)
i (t0), t0), t) − Y (N ,θ)

i (t0)

should satisfy the same equation for [t0, t] on J(N ,θ)
i (t0, t)c. This implies (41).

By definition (33), J(N ,θ)
i (t0, t)c holds if γ(N ,θ)

i (t) = (y0, t0). Hence (42) follows. �

In analogy to (3), for each positive integer N define a joint empirical distribution of jump
rate and position of particles on W × [0,1] by

(43) μ
(N ,θ)
t =

1
N

N∑

i=1
δ
(wi ,Y

(N ,θ )
i (t))

t ∈ [0,T ] .

When integrated over position, we recover the distribution λ(N) of jump rates for the (original)
stochastic ranking process (22), independently of t and θ;

(44) μ
(N ,θ)
t (dw × [0,1]) = λ(N)

(dw) .
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The initial distribution of μ(N ,θ)
t , found by substituting (31) at t = 0 to (43), coincide with

that of the original model μ(N)

0 in (4):

(45) μ
(N ,θ)
0 = μ

(N)

0 .

A set of spatial distribution functions ϕ(N ,θ) is defined analogously to (6),by a convolution
of (38) and (43);

(46) ϕ(N ,θ)
(dw, γ, t) = μ(N ,θ)

t (dw × [Y (N ,θ)
C

(γ, t),1]) ,
γ = (y0, t0) ∈ [0,1] × [0,T ], t � t0 .

ϕ(N ,θ)
(dw, γ, t) denotes the empirical distribution of jump rates (intensity densities) of those

particles which was in a downstream of y0 at time t0 that have not jumped to the top in the
time period (t0, t]. For t = t0 we have

(47) ϕ(N ,θ)
(dw, (y0, t0), t0) = μ

(N ,θ)
t0

(dw × [y0,1]) , (y0, t0) ∈ [0,1] × [0,T ] .

ϕ(N ,θ) is a refinement of Y (N ,θ)
C in the following sense. First, (46) and (43) imply

ϕ(N ,θ)
(dw, γ, t) =

1
N

N∑

j=1
1Y (N ,θ )

j (t)�Y(N ,θ )
C

(γ,t)
δwj (dw) .

Next, Y (N ,θ)
j (t) � Y (N ,θ)

C
(γ, t) occurs if and only if the inequality holds at t = t0 and j does not

jump to the top in the interval (t0, t]. Hence (36) implies

(48) ϕ(N ,θ)
(dw, (y0, t0), t) =

1
N

∑

j; Y (N ,θ )
j (t0)�y0

1J (N ,θ )
j (t0 ,t)c

δwj (dw) .

Comparing (48) with (40), we have

(49) Y (N ,θ)
C

(γ, t) = y0 +
[N(1 − y0)]

N
− ϕ(N ,θ)

(W, γ, t) ,

γ = (y0, t0) ∈ [0,1] × [0,T ], t � t0 .

The spatial distribution function ϕ(N ,θ)
(dw, γ, t) is defined for any γ = (y0, t0) ∈ [0,1] ×

[0,T ] satisfying t � t0, but is particularly important when γ ∈ Γt . In fact, both for the case
γ = (y0,0) ∈ Γi and the case γ = (0, t0) ∈ Γt we have

(50)
ϕ(N ,θ)

(dw, (y0, t0), t) =
1
N

∑

j; y(N )

j �y0

1J (N ,θ )
j (t0 ,t)c

δwj (dw) ,

γ = (y0, t0) ∈ Γt, t ∈ [0,T ] .
Note the conditions of the summation, which is non-random in (50), while is random in
(48). Since J(N ,θ)

j (t0, t) is independent of ν(N)

i , i � j, (50) implies that ϕ(N ,θ)
(dw, γ, t) is an

arithmetic average of independent random variables, if γ ∈ Γt . With this fact, we restrict the
domain of definition to ΔT of (11) in § 3.3.
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3.3. Convergence of distribution function.
3.3.1. Statement of the theorem. Here we will state a strong law of large numbers for

the spatial distribution function ϕ(N ,θ) of the flow driven stochastic ranking process, uniform
in initial point γ and time t.

For a bounded continuous function h : W → R, we put

(51) Ch = sup
w∈W

|h(w)| < ∞ ,

and use a notation

(52) ϕ(N ,θ)
(h, γ, t) =

∫

W
h(w) ϕ(N ,θ)

(dw, γ, t) .

With (48) we have

(53) ϕ(N ,θ)
(h, γ, t) =

1
N

∑

j; Y(N ,θ )
j (t0)�y0

h(wj) 1J (N ,θ )
j (t0 ,t)c

, γ = (y0, t0) .

As in (52) we also use a notation

(54) ϕθ (h, γ, t) =
∫

W
h(w) ϕθ(dw, γ, t)

for ϕθ in (16).

THEOREM 3.2. Assume (8), (20), (24), and (27). Then for any p > 0 there exists a
positive constant C depending only on p and δ, (and is independent of N , θ, and h,) such that
for any bounded continuous h : W → R,

(55) E
[

sup
(γ,t)∈ΔT

����ϕ(N ,θ)
(h, γ, t) − ϕθ (h, γ, t)

����
2p ]
�

C C2p
h

N2pδ , N ∈ N,

holds, where Ch is as in (51).

Theorem 2.1, Theorem 3.2 with h = 1W and θ = yC , and (49) imply the following.

COROLLARY 3.3. Under the assumptions of T heorem 3.2, for any p > 0 there exists
a positive constant C depending only on p and δ, such that

(56) E
[

sup
(γ,t)∈ΔT

����Y
(N ,yC )

C
(γ, t) − yC(γ, t)

����
2p ]
�

C

N2pδ , N ∈ N .

Among θ ∈ Θ, θ = yC is the only flow that satisfies (56).

We can take p > 1
2δ in Theorem 3.2, from which we have

E
[

∞∑

N=1
sup

(γ,t)∈ΔT

����ϕ(N ,θ)
(h, γ, t) − ϕθ (h, γ, t)

����
2p ]
� C

∞∑

N=1

1
N2pδ < ∞ ,

which implies
∞∑

N=1
sup

(γ,t)∈ΔT

����ϕ(N ,θ)
(h, γ, t) − ϕθ (h, γ, t)

����
2p
< ∞
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for almost all ω ∈ Ω. For such ω we then have (by continuity and increasing property of
x �→ x2p for x � 0),

lim
N→∞

sup
(γ,t)∈ΔT

����ϕ(N ,θ)
(h, γ, t) − ϕθ (h, γ, t)

����

=

(
lim
N→∞

sup
(γ,t)∈ΔT

����ϕ(N ,θ)
(h, γ, t) − ϕθ (h, γ, t)

����
2p)1/(2p)

= 0 ,

hence

lim
N→∞

sup
(γ,t)∈ΔT

����ϕ(N ,θ)
(h, γ, t) − ϕθ (h, γ, t)

���� = 0, a.e.

This implies convergence of joint empirical distribution μ(N ,θ)
t to μyC ,t , a deterministic dis-

tribution determined by ϕyC (h, γ, t). Similarly, we have convergence of characteristic curves
from Corollary 3.3.

For θ � yC , the stochastic ranking process driven by the flow θ converges to a limit with
deterministic distribution, but the resulting trajectories of particles are different from the given
flow θ, due to the uniqueness result of Theorem 2.1. Only when θ = yC we have the limit
trajectoies equal to the given flow yC .

A proof of Theorem 3.2 is composed of 2 parts. In § 3.3.2 we prove that ϕ(N ,θ)
−E[ ϕ(N ,θ)

]

converges to 0, using a strong uniform law of large numbers in [13]. In § 3.3.3 we prove that
E[ ϕ(N ,θ)

] converges to ϕθ, using the estimates in [11]. Relevant results of [11] are summarized
in § A for convenience.

3.3.2. Strong uniform law of large numbers. Here we will prove the following.

PROPOSITION 3.4. Assume (8), (20), (24), and (27). Then for any p and δ satisfying

(57) p > 0 , 0 < δ <
1
2
,

there exists a positive constant C (independent of N , θ, and h, ) such that for any bounded
continuous h : W → R

(58) E
[

sup
(γ,t)∈ΔT

����ϕ(N ,θ)
(h, γ, t) − E[ ϕ(N ,θ)

(h, γ, t) ]

����
2p ]
�

C C2p
h

N2pδ , N ∈ N ,

where Ch is as in (51).
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PROOF. Put h
±
= (±h) ∨ 0, so that h = h+ − h

−
decomposes the function h to positive

and negative parts. Applying (48), (11), (10), and triangular inequality in the form

(a + b)q � (2q−1
∨ 1)(aq + bq), a � 0, b � 0, q > 0 ,

we have, with γ = (y0, t0) ∈ Γt ,

(59)

E
[

sup
((y0 ,t0),t)∈ΔT

����ϕ(N ,θ)
(h, γ, t) − E[ ϕ(N ,θ)

(h, γ, t) ]

����
q ]

= E
[

sup
((y0 ,t0),t)

����
1
N

∑

Y
(N ,θ )
j (t0)�y0

(h+(wj ) − h
−
(wj ))

× (1J (N ,θ )
j (t0,t)c

−E[ 1J (N ,θ )
j (t0 ,t)c

])

����
q ]

� (2q−1
∨ 1)E

[
sup

((y0,t0),t)

����
1
N

∑

Y
(N ,θ )
j (t0)�y0

h+(wj )

× (1J (N ,θ )
j (t0 ,t)c

−E[ 1J (N ,θ )
j (t0,t)c

])

����
q ]

+ (2q−1
∨ 1)E

[
sup

((y0 ,t0),t)

����
1
N

∑

Y
(N ,θ )
j (t0)�y0

h
−
(wj )

× (1J (N ,θ )
j (t0 ,t)c

−E[ 1J (N ,θ )
j (t0,t)c

])

����
q ]

� (2q−1
∨ 1) (R(N)

q,1,+ + R(N)

q,1,− + R(N)

q,2,+ + R(N)

q,2,−) ,

where

(60) R(N)

q,1,± = E
[

sup
t ∈[0,T ]

sup
0�y0<1

����
1
N

∑

i; y(N )

i �y0

h
±
(wi) (1J (N ,θ )

i (0,t)c −E[ 1J (N ,θ )
i (0,t)c ])

����
q ]

and

(61) R(N)

q,2,± = E
[

sup
t ∈[0,T ]

sup
0�t0<t

����
1
N

N∑

i=1
h
±
(wi) (1J (N ,θ )

i (t0 ,t)c
−E[ 1J (N ,θ )

i (t0 ,t)c
])

����
q ]
.

To bound (60) and (61), we refer to the last theorem in [13, §2]. We reproduce the theorem
in a specific form of

Z (N)

i (s, t) = a(N)

i 1ν(N )

i (t)>ν
(N )

i (s)

in place of Z (N)

i (s, t) in the reference.

PROPOSITION 3.5 ([13, Theorem 7]). Let T > 0, and for each N ∈ N, let ν(N)

i ,
i = 1, . . . ,N , be a sequence of independent random variables taking values in a space of
non-negative valued non-decreasing right continuous functions on [0,T ] with left limit. Let
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r > 0, and for N ∈ N, let M(N) > 0 and let a(N)

i and w(N)

i , i = 1, . . . ,N , be non-negative
sequences. Assume that a(N)

i � M(N), i = 1, . . . ,N , and that

|P[ ν(N)

i (t2) > ν
(N)

i (t1) ] − P[ ν(N)

i (s2) > ν
(N)

i (s1) ]|

� w(N)

i (|t1 − s1 |
r + |t2 − s2 |

r
) ,

for 0 � t1 � t2 � T and 0 � s1 � s2 � T . Then for any δ ∈ (0, 12 ) and p > 0,

(62)

E
[

sup
t2∈[0,T ]

sup
0�t1<t2

����
1
N

N∑

i=1
a(N)

i (1ν(N )

i (t2)>ν
(N )

i (t1)
−P[ ν(N)

i (t2) > ν
(N)

i (t1) ])

����
p ]1/p

�
M(N)

Nδ
21−1/q

(Cq
q (2T (w(N)

)
1/r + 1) + 22q

)
1/q ,

N = N0,N0 + 1, . . . .

Here q = q(p, δ) = 3 ∨
r+1
r

2δ
1−2δ ∨ p, N0 is the smallest integer satisfying Nrq/(2rq+2r+2)

0 � 2,
w(N) = 1

N

∑N
i=1 w

(N)

i , and Cq = (
1
2 (4k)q + 2k

2k−q (8k)q)1/q with k the smallest integer greater
than 1

2 q, (In particular, q and N0 are independent of N , M(N), and w(N).)

To bound R(N)

q,2,± in (61), we apply Proposition 3.5 with ν(N)

i = ν̃
(N ,θ)
i and a(N)

i = h
±
(wi).

Note that (152) and (15) with w = wi and z = y(N)

i , and (25) imply

(63)
0 � −

∂

∂t
P[ ν̃(N ,θ)

i (t) = ν̃(N ,θ)
i (s) ] �

w̃
θ,wi ,y

(N )

i

 � ‖wi ‖T ,

0 �
∂

∂s
P[ ν̃(N ,θ)

i (t) = ν̃(N ,θ)
i (s) ] �

w̃
θ,wi ,y

(N )

i

 � ‖wi ‖T .

Recall (36) and (37). Comparing the left hand side of (62) with the right hand side of (61)
with q = 2p, we see that we can apply Proposition 3.5 to R(N)

2p,2,± with

(64) M(N) = Ch , r = 1 , w(N)

i = ‖wi ‖T .

Proposition 3.5 then implies that for any δ ∈ (0, 12 ) and p > 0,

(65) R(N)

2p,2,± �
C2p
h

N2pδ 22p−1
(
Cq
q (2Tw(N) + 1) + 22q

)2p/q
, N > 22+(4/q) ,

where

q = q(p, δ) = 3 ∨

4δ
1 − 2δ

∨ (2p) ,

w(N) =
1
N

N∑

i=1
‖wi ‖T =

∫

W
‖w‖T λ

(N)

(dw) ,

and Cq is a positive constant depending only on q.
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Combining (64), (65), and (27), we see that there exists a positive constant Cp,δ indepen-
dent of N , θ, and h, such that

(66) R(N)

2p,2,± �
Cp,δ C2p

h

N2pδ , N ∈ N .

To bound R(N)

q,1,± in (60), we first note that

(67)

R(N)

q,1,±

�
N∑

j=1
E
[

sup
t ∈[0,T ]

����
1
N

∑

i; N y
(N )

i � j−1

h
±
(wi) (1J (N ,θ )

i (0,t)c −E[ 1J (N ,θ )
i (0,t)c ])

����
q ]

�
N∑

j=1
E
[

sup
t ∈[0,T ]

sup
0�t0<t

����
1
N

∑

i; N y
(N )

i � j−1

h
±
(wi) (1J (N ,θ )

i (t0 ,t)c
−E[ 1J (N ,θ )

i (t0,t)c
])

����
q ]
.

Comparing (67) with (61), we see that we can apply Proposition 3.5 with ν(N)

i = ν̃
(N ,θ)
i and

a(N)

i = h
±
(wi) 1N y

(N )

i � j−1 ,

and (64), to the j-th term of the summation in the right hand side of (67), in a similar way
as we did to R(N)

2p,2,±. Using monotonicity of Lp norms with respect to p before applying
Proposition 3.5, we have, for q0 � 2p and δ′ ∈ (0, 12 ),

R2p,1,± � R2p/q0
q0,1,± �

(Cq0/2,δ′ Cq0
h
)
2p/q0

N2pδ′−2p/q0
, N ∈ N ,

in place of (66). (The extra factor N compared to (66) is from the summation with respect to
j in (67).) Now choose δ′ and q0 to satisfy δ < δ′ < 1

2 and 0 < 1
q0
< δ′ − δ to find

(68) R2p,1,± � R2p/q0
q0,1,± �

(Cq0/2,δ′ Cq0
h
)
2p/q0

N2pδ , N ∈ N .

Proposition 3.4 finally follows from (59), (68), and (66). �

3.3.3. Convergence of expectation. Here we complete a proof of Theorem 3.2.

LEMMA 3.6. Assume (27). Then, if h : W → R is bounded and continuous,

(69) lim
N→∞

∫

W
h(w) ‖w‖T λ

(N)

(dw) =
∫

W
h(w) ‖w‖T λ(dw) .
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PROOF. Note first that for M > 0

(70) a = (a ∧ M) + (a − M)+

holds. Since w �→ ‖w‖T ∧ M is bounded and continuous, (26) (weak convergence) implies

(71)
lim
N→∞

∫

W
h(w) (‖w‖T ∧ M) λ(N)

(dw) =
∫

W
h(w) (‖w‖T ∧ M) λ(dw) ,

lim
N→∞

∫

W
‖w‖T ∧ M λ(N)

(dw) =
∫

W
‖w‖T ∧ M λ(dw) ,

which, with convergence of expectation in (27), further implies

(72) lim
N→∞

∫

W
(‖w‖T − M)+ λ

(N)

(dw) =
∫

W
(‖w‖T − M)+ λ(dw) .

On the other hand, dominated convergence theorem, 0 � (‖w‖T − M)+ � ‖w‖T, and (24)
imply

lim
M→∞

∫

W

(‖w‖T − M)+λ(dw) = 0 .

Hence, for any ε > 0 there exists M > 0 such that
∫

W
(‖w‖T − M)+λ(dw) < ε. This and (72)

further imply that there exists N0 > 0 such that
∫

W
(‖w‖T − M)+λ

(N)

(dw) < 2ε , N � N0 .

Put C = supw∈W |h(w)| < ∞. Then
����
∫

W

h(w) ‖w‖T λ
(N)

(dw) −
∫

W

h(w) ‖w‖T λ(dw)

����

�

����
∫

W

h(w) (‖w‖T ∧ M) λ(N)

(dw) −
∫

W

h(w) (‖w‖T ∧ M) λ(dw)

����

+ C
∫

W
(‖w‖T − M)+λ

(N)

(dw) + C
∫

W
(‖w‖T − M)+λ(dw)

�

����
∫

W
h(w) (‖w‖T ∧ M) λ(N)

(dw) −
∫

W
h(w) (‖w‖T ∧ M) λ(dw)

���� + 3Cε .

This and (71) imply

lim
N→∞

|

∫

W
h(w) ‖w‖T λ

(N)

(dw) −
∫

W
h(w) ‖w‖T λ(dw)| � 3Cε .

Since the left hand side is independent of N , M, and ε, it must be 0. �
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PROOF OF THEOREM 3.2. Let h : W → R be a bounded continuous function, and put
Ch = sup w∈W |h(w)| as in (51). Proposition 3.4 implies that to prove Theorem 3.2, it suffices
to prove

(73) sup
(γ,t)∈ΔT

����E[ ϕ(N ,θ)
(h, γ, t) ] − ϕθ (h, γ, t)

���� �
C Ch

Nδ
, N ∈ N,

for C depending only on p and δ (independent of N , θ, and h).
Comparing the definition of ν̃(N ,θ)

i given above (31) with that of ν̃θ,w,z given below (16),
we see that ν̃(N ,θ)

i and ν̃
θ,wi ,y

(N )

i
have identical distribution. Therefore, using (37) and (4) in

(53), we have, for t � t0,

(74) E[ ϕ(N ,θ)
(h, (y0, t0), t) ] =

∫

W×[y0,1]
h(w) P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ]μ

(N)

0 (dw × dz) .

Let γ = (y0, t0) ∈ Γ and (γ, t) ∈ ΔT . (74) and (16) imply

E[ ϕ(N ,θ)
(h, γ, t) ] − ϕθ (h, γ, t)

=

∫

W×[y0,1]
h(w) P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ] (μ

(N)

0 (dw × dz) − μ0(dw × dz)) .

Hence,

(75)

sup
(γ,t)∈ΔT

|E[ ϕ(N ,θ)
(h, γ, t) ] − ϕθ (h, γ, t)|

� sup
((y0 ,t0),t)∈ΔT

����
∫

W×[y0,1]
h̃t0,t (w, z)(μ

(N)

0 (dw × dz) − μ0(dw × dz)

����,

where

(76) h̃t0,t (w, z) = h(w) P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ] .

Choose the set H in (20) as the set of the functions h̃t0,t in (76):

(77) H = {h̃t0 ,t : W × [0,1] → R | 0 � t0 � t � T }.

Uniform boundedness of the functions in H is obvious. If we prove that H is also equicontin-
uous, then by the assumption of Theorem 3.2 the consequence of (20) holds, which implies

sup
y0∈[0,1]

sup
0�t0�t�T

����
∫

W×[y0,1]
h̃t0,t (w, z)(μ

(N)

0 (dw × dz) − μ0(dw × dz)

���� �
C Ch

Nδ
,

N ∈ N .

Applying this estimate to (75), we have (73), which proves Theorem 3.2.
We are left with proving equicontinuity of H.
First, for (w, z) ∈ W × [0,1] and w̃θ,w,z as in (15) (i.e., the ‘intensity density’ for ν̃θ,w,z),

and 0 � s � t � T , put

(78) Ωθ,w,z(s, t) =
∫ t

s

w̃θ,w,z(s,u) du and Ω̃w(s, t) =
∫ t

s

w(1,u) du .
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Then (8) and a mean value theorem imply

(79) w(1, t) − CW � w̃θ,w,z(s, t) � w(1, t) + CW ,

and

(80) e−Ω̃w (s,t)−CW (t−s) � e−Ωθ ,w,z (s,t) � e−Ω̃w (s,t)+CW (t−s).

Note also an elementary formula in [11, (53)]

(81)
∫

0�u1�u2� · · ·�uk�s

k∏

i=1
f (ui)du1 du2 · · · duk =

1
k!

(∫ s

0
f (v)dv

)k
,

valid for any integrable function f : R→ R, s � 0, and k = 1,2, . . . .
A proof of equicontinuity of H now goes in a similar way as that of [11, Lemma 12].

Applying (151) to (76), we have

(82)

h̃t0,t (w, z) = h(w)
∑

k�0

∫

0=:uk<uk−1<uk−2< · · ·<u1<u0�t0

× e−
∑k−1

i=0 Ωθ ,w,z (ui+1 ,ui )−Ωθ ,w,z (u0 ,t)

(k−1∏

i=0
w̃θ,w,z(ui+1,ui) dui

)
.

Using (79), (80), and (78) to (82), while noting that (15) implies that w̃θ,w,z(s, t) andΩθ,w,z(s, t)
is independent of z if s > 0, we have

| h̃t0,t (w, z
′

) − h̃t0,t (w, z)| � I11(z, z
′

) + I12(z, z
′

) ,

where

I11(z, z
′

) = Che−Ω̃w (0,t)+CW t
∑

k�1

∫

0=:uk<uk−1<uk−2< · · ·<u1<u0�t0

×

(k−2∏

i=0
(w(1,ui) + CW )dui

)

× |w̃θ,w,z′ (0,uk−1) − w̃θ,w,z(0,uk−1)|duk−1 ,

and

I12(z, z
′

) = Ch

∑

k�0

∫

0=:uk<uk−1<uk−2< · · ·<u1<u0�t0
e−Ω̃w (uk−1 ,t)+CW (t−uk−1)

×

(k−1∏

i=0
(w(1,ui) + CW )dui

)

× |e−Ωθ ,w,z′ (0,uk−1 )
− e−Ωθ ,w,z (0,uk−1 )

|duk−1 .

Using (15), (8), (81), and (78), we have

I11(z, z
′

) � ChCW e−Ω̃w (t0 ,t)+CW (t+t0)

∫ t0

0
|θ((z′,0), v) − θ((z,0), v)|dv

� ChCW e2CWT

∫ T

0
|θ((z′,0), v) − θ((z,0), v)|dv .
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Using in addition

(83) |e−x
′

− e−x | = e−(x
′
∧x)

− e−(x
′
∨x) = e−(x

′
∧x)

(1 − e−|x
′
−x |

)

� e−(x
′
∧x)

|x′ − x | � e−xe |x′−x |
|x′ − x | ,

which follows from |x′ − x | = (x′ ∨ x) − (x′ ∧ x) � x − (x ∧ x′), we similarly have

I12(z, z
′

) � ChCW e−Ω̃w (t0 ,t)+CW (t+t0)

∫ t0

0
|θ((z′,0), v) − θ((z,0), v)|dv

× eCW

∫ t0
0 |θ((z′ ,0),v)−θ((z,0),v) |dv

� ChCW e2CWT

∫ T

0
|θ((z′,0), v) − θ((z,0), v)|dv

× eCW

∫ T

0 |θ((z′ ,0),v)−θ((z,0),v) |dv .

Since the right hand sides of the bounds for I11 and I12 are uniform in t0 and t, these prove
equicontinuity in the variable z ∈ [0,1] of functions h̃t0,t (w, z) in H.

In a similar way as the proof of equicontinuity with respect to z, we have

| h̃t0,t (w
′, z) − h̃t0,t (w, z)| � I21(w,w

′

) + I22(w,w
′

) ,

where

I21(w,w
′

) = Ch

∑

k�0

∫

0=:uk<uk−1<uk−2< · · ·<u1<u0�t0

× |e−X(w′
)

− e−X(w)
|

(k−1∏

i=0
(w′(1,ui) + CW )dui

)
duk−1 ,

with

X(w) =
k−1∑

i=0
Ωθ,w,z(ui+1,ui) + Ωθ,w,z(u0, t) ,

and

I22(w,w
′

) = Che−Ω̃w (0,t)+CW t
∑

k�1

∫

0=:uk<uk−1<uk−2< · · ·<u1<u0�t0

×

����
k−1∏

i=0
w̃θ,w′,z(ui+1,ui) −

k−1∏

i=0
w̃θ,w,z(ui+1,ui)

����
k−1∏

i=0
dui .

Note that (78) with (25) implies

|Ωθ,w′,z(u, v) − Ωθ,w,z(u, v)| � ‖w′ − w‖T (v − u), 0 � u � T .

Using this, (83), and (81) in I21(w,w
′

), we further have

I21(w,w
′

) � Che−Ω̃w (0,t)+CW t e‖w
′

− w‖T t
‖w′ − w‖T t eΩ̃w′ (0,t0)+CW t0

� Che2CWT e‖w
′

− w‖T T
‖w′ − w‖T T .
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With a similar argument, we also have

I22(w,w
′

) � Che−Ω̃w (0,t)+CW t
∑

k�1

k−1∑

j=0

∫

0=:uk<uk−1<uk−2< · · ·<u1<u0�t0

×

( j−1∏

i=0
w̃θ,w′,z(ui+1,ui)

)
|w̃θ,w′,z(uj+1,uj) − w̃θ,w,z(uj+1,uj)|

×

( k−1∏

i=j+1
w̃θ,w,z(ui+1,ui)

) k−1∏

i=0
dui

� Che−Ω̃w (0,t)+CW t
‖w′ − w‖T

∫ t0

0
eΩ̃w (0,v)+CW veΩ̃w′ (v,t0)+CW (t0−v) dv

� Che−Ω̃w (0,t)+CW t
‖w′ − w‖T

×

(
eΩ̃w (0,t0)t0 +

∫ t0

0
eΩ̃w′ (0,v)

|eΩ̃w′ (v,t0)
− eΩ̃w (v,t0)

| dv

)

� Che2CWT
‖w′ − w‖T T (1 + e‖w

′

− w‖T T
‖w′ − w‖T T ) .

Since the right hand sides of the bounds for I21 and I22 are uniform in t0 and t, these prove
equicontinuity of H in w ∈ W .

This completes a proof of equicontinuity of H, hence a proof of Theorem 3.2. �

4. Hierarchy of multi time Gronwall inequality. The following is a simple form of
Gronwall’s inequality.

PROPOSITION 4.1. Let T be a positive constant, and a and c be non-negative constants.
If x : [0,T ] → R is an integrable function, satisfying

x(t) � a + c
∫ t

0
x(s) ds , t ∈ [0,T ] ,

then

(84) x(t) � a ect , t ∈ [0,T ] ,

holds.

The following is a generalization of Proposition 4.1 to functions of more than 1 variables,
where the case q = 1 is Proposition 4.1.

PROPOSITION 4.2. Let T be a positive constant, q a positive integer, and a and c
non-negative constants. If x : [0,T ]q → R is an integrable function of q variables, satisfying

x(t1, . . . , tq) � a ec (t1+· · ·+tq )
1
q

q∑

i=1
e−cti

+
c
q

q∑

i=1

∫ ti

0
(x(t1, . . . , tq)|ti=u) du, (t1, . . . , tq) ∈ [0,T ]q ,
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then

(85) x(t1, . . . , tq) � a ec (t1+· · ·+tq ), (t1, . . . , tq) ∈ [0,T ]q ,

holds.

To prove Proposition 4.2, we start with the homogeneous case.

PROPOSITION 4.3. Let T be a positive constant, q a positive integer, and c a non-
negative constant. If x : [0,T ]q → R is an integrable function of q variables, satisfying

(86) x(t1, . . . , tq) � c
q∑

i=1

∫ ti

0
(x(t1, . . . , tq)|ti=s) ds, (t1, . . . , tq) ∈ [0,T ]q ,

then

(87) x(t1, . . . , tq) � 0, (t1, . . . , tq) ∈ [0,T ]q ,

holds.

To prove Proposition 4.3, we introduce a notation

(88)

(Ai,k y)(t1, . . . , tq)

=

⎧⎪⎪⎨
⎪⎪⎩

1
(k − 1)!

∫ ti

0
(ti − s)k−1

(y(t1, . . . , tq))|ti=s ds , k = 1,2,3, . . . ,

y(t1, . . . , tq) (i.e., Ai,0 = id) , k = 0 ,

for integrable function y : [0,T ]q → R in q variables and i = 1, . . . ,q. Ai,k , k ∈ Z+, i =
1,2, . . . ,q, are commutative operators on the set of integrable functions. In fact, commutativity
is obvious for k = 0, and by induction in k we have

(89) Ai,k Ai,
 = Ak+

i,1 = Ai,k+
 = Ai,
 Ai,k ,

and Fubini’s theorem implies for k� > 0 and i � j

(Ai,k Aj ,
 y)(t1, . . . , tq)

=
1

(k − 1)!
1

(� − 1)!

∫ ti

0
ds

∫ tj

0
du (ti − s)k−1

×

(
(tj − u)
−1

(y(t1, . . . , tq))|tj=u
)
|ti=s

= (Aj ,
 Ai,k y)(t1, . . . , tq) ,

which prove

(90) Ai,k Aj ,
 = Aj ,
 Ai,k, k, � ∈ Z+, i, j ∈ {1, . . . ,q} .

LEMMA 4.4. Under the assumptions of Proposition 4.3,

(91) x(t1, . . . , tq) � cN
∑

(k1 , ... ,kq )∈Z
q
+ ;

k1+···+kq =N

(Aq,kq Aq−1,kq−1 · · · A1,k1 x)(t1, . . . , tq), N ∈ Z+ ,

holds.
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PROOF. The case N = 1 of (91) is the assumption (86) itself. Assume that (91) holds
for some N . Substituting (86) in (91), and noting that sums, integrations, and multiplication
of non-negative reals have monotonicity, we have

x(t1, . . . , tq) � cN+1
q∑

i=1

∑

(k1 , ... ,kq )∈Z
q
+ ;

k1+···+kq =N

(Aq,kq Aq−1,kq−1 · · · A1,k1 Ai,1x)(t1, . . . , tq) .

Using (89) in the form Ai,ki Ai,1 = Ai,ki+1, we have (91) for N replaced by N + 1. �

PROOF OF PROPOSITION 4.3. For notational simplicity, put −→t = (t1, . . . , tq) in this
proof. The operator Ai,k in (88) satisfies

(Ai,k y)(
−→t ) �

tki
k!

sup
−→

t ∈[0,T ]
q

y(
−→t ) , −→t ∈ [0,T ]q ,

for a integrable function y, hence (91) implies

(92) x(
−→

t ) � cN
∑

(k1 , ... ,kq )∈Z
q
+ ;

k1+···+kq =N

q∏

i=1

tkii
ki!

sup
−→

t ∈[0,T ]
q

x(
−→

t ),
−→

t ∈ [0,T ]q, N ∈ N .

For an arbitrary ε > 0, let −→t 0 = (t0,1, . . . , t0,q) ∈ [0,T ]q be a vector (independent of N) such
that x(

−→

t 0) � sup −→

t ∈[0,T ]
q x(

−→

t ) − ε holds. Put

aN = cN
∑

(k1 , ... ,kq )∈Z
q
+ ;

k1+···+kq =N

q∏

i=1

tki0,i

ki!
.

Then (92) implies

sup
−→

t ∈[0,T ]
q

x(
−→

t ) � x(
−→

t 0) + ε � aN sup
−→

t ∈[0,T ]
q

x(
−→

t ) + ε ,

hence

sup
−→

t ∈[0,T ]
q

x(
−→

t ) (1 − aN ) � ε

holds. We see
∞∑

N=0
aN �

∞∑

N=0

∑

(k1 , ... ,kq )∈Z
q
+ ;

k1+···+kq =N

q∏

i=1

(ct0,i)ki

ki!
=

q∏

i=1
ect0,i < ∞ ,

so that, in particular, limN→∞
aN = 0, which implies 1 − aN � 1

2 for large N . Hence

sup
−→

t ∈[0,T ]
q

x(
−→

t ) � 2ε ,

which proves (87). �
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PROOF OF PROPOSITION 4.2. Note that

(93) x1(s1, . . . , sq) = a ec (s1+· · ·+sq )

satisfies

(94)
x1(s1, . . . , sq) = e−csi x1(s1, . . . , sq) + c

∫ si

0
(x1(s1, . . . , sq)|si=u) du ,

(s1, . . . , sq) ∈ [0, t]q, i = 1,2, . . . ,q .

Subtracting x1(s1, . . . , sq) from (85), and then using (94), we have

x(t1, . . . , tq) − x1(t1, . . . , tq) �
c
q

q∑

i=1

∫ ti

0
(x(t1, . . . , tq) − x1(t1, . . . , tq))|ti=s ds ,

(t1, . . . , tq) ∈ [0,T ]q ,

which, with Proposition 4.3 and (93) implies (85). �

Finally, we give a result to be used in the proof of the main theorem in § 5 which contains
recursion with respect to the number of variables q and a nonlinear term.

THEOREM 4.5. Let T be a positive constant, d be a non-negative constant satisfying
d � 1, and for each positive integer q let aq, bq, and cq be non-negative constants. Assume
that, for a series of non-negative valued integrable functions xq : [0,T ]q → [0,∞), q ∈ Z+,

(95)

x0 = 1 ,

xq(t1, . . . , tq) � aq

q∑

i=1
xq−1(t1, . . . , t/i, . . . , tq)

d

+ bq

q∑

i=1
xq−1(t1, . . . , t/i, . . . , tq)

+ cq

q∑

i=1

∫ ti

0
(xq(t1, . . . , tq)|ti=s) ds,

(t1, . . . , tq) ∈ [0,T ]q , q ∈ N ,

hold. Here, for a function xq−1 in q − 1 variables and q − 1 variables

t1, t2, . . . , ti−1, ti+1, . . . , tq ,

we wrote

xq−1(t1, . . . , t/i, . . . , tq) = xq−1(t1, . . . , ti−1, ti+1, . . . , tq) .

Put

c̃q = max
1�k�q

kck , q ∈ N ,

and define a sequence of non-negative constants gq , q = 0,1,2, . . . , recursively by

g0 = 1 , gq = q (aq g
d
q−1 + bq gq−1), q ∈ N .
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Then

(96) xq(t1, . . . , tq) � gq ec̃q (t1+· · ·+tq ) , (t1, . . . , tq) ∈ [0,T ]q , q ∈ N ,

holds.

PROOF. If q = 1, (95) reads x1(t1) � (a1 + b1) + c1

∫ t1

0
x1(s) ds, hence Proposition 4.1

implies x1(t1) � g1ec1t1 , which proves (96) for q = 1.
Let q � 2 and assume that (96) holds for xq−1 , as

xq−1(t1, . . . , tq−1) � gq−1ec̃q−1(t1+· · ·+tq−1) .

This and (95) for xq and d � 1 imply

xq(s1, . . . , sq) � q(aqg
d
q−1 + bqgq−1) ec̃q−1 (s1+· · ·+sq )

1
q

q∑

i=1
e−c̃q−1si

+ qcq
1
q

q∑

i=1

∫ si

0
(xq(s1, . . . , sq)|si=u) du ,

which, with Proposition 4.2, implies (96) for xq . �

5. Proof of the main theorem.
5.1. Convergence of the spatial distribution function. Here we will prove the es-

sential part of the infinite particle limit, the convergence of spatial distribution function.
In analogy to (36), define, for each i = 1,2, . . . ,N and 0 � t0 � t � T and 0 � y0 � 1,

(97) J(N)

i (t0, t) = {ω ∈ Ω | ν̃
(N)

i (t)(ω) > ν̃(N)

i (t0)(ω)} .

By similar arguments as for (48) and (38), ϕ(N) in (6) and Y (N)

C
in (7) respectively satisfies

(98) ϕ(N)

(dw, (y0, t0), t) =
1
N

∑

j; Y (N )

j (t0)�y0

1J (N )

j (t0,t)c
δwj (dw) ,

and

(99) Y (N)

C
((y0, t0), t) = y0 +

1
N

∑

j; Y(N )

j (t0)�y0

1J (N )

j (t0 ,t)
.

PROPOSITION 5.1. Assume (8), (20), (24), and (27). Then there exists δ′ > 0 and
an integer p0 satisfying 2p0δ

′ > 1, such that for any integer p � p0 there exists a positive
constant C depending only on p and δ′, (independent of N and h,) such that for any bounded
continuous h : W → R

(100) E
[

sup
(γ,t)∈ΔT

����ϕ(N)

(h, γ, t) − ϕyC (h, γ, t)

����
2p ]
�

C C2p
h

N2pδ′ , N ∈ N ,
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holds, where Ch is as in (51).

Note that (7) and (17) with θ = yC imply

Y (N)

C
(γ, t) − yC(γ, t) =

[N(1 − y0)]

N
− (1 − y0) + ϕyC (W, γ, t) − ϕ

(N)

(W, γ, t) .

Applying (a + b)2p � 22p−1
(a2p + b2p

), valid for a, b � 0 and 2p � 1, Proposition 5.1 with
h(w) = 1, w ∈ W , therefore implies

(101) E
[

sup
(γ,t)∈ΔT

����Y
(N)

C
(γ, t) − yC (γ, t)

����
2p ]
�

22p−1C

N2pδ′ +
22p−1

N2p , N ∈ N ,

with the assumptions and notations of the theorem.
5.1.1. Coupling of the original and the flow driven model. In view of Theorem 3.2,

it suffices to prove the following for Proposition 5.1 to hold.

PROPOSITION 5.2. Assume (8), (20), (24), and (27), and let δ be as in (20). Then there
exists δ′ > 0 and an integer p0 satisfying 2p0δ

′ > 1, such that for any integer p � p0 there
exists a positive constant C, (independent of N and h,) such that for any bounded continuous
h : W → R

(102) E
[

sup
((y0 ,t0),t)∈ΔT

����ϕ(N)

(h, γ, t) − ϕ(N ,yC )

(h, γ, t)

����
2p ]
�

C C2p
h

N2pδ′ , N ∈ N ,

where Ch is as in (51).

For t ∈ [0,T ] and i ∈ {1,2, . . . ,N}, put

(103) w̃
(N)

i,∧ (t) = wi(Y
(N)

i (t−), t) ∧ wi(yC(γ
(N ,yC )

i (t−), t), t) ,

and

(104) w̃
(N)

i,∨ (t) = wi(Y
(N)

i (t−), t) ∨ wi(yC(γ
(N ,yC )

i (t−), t), t) ,

and denote the event that the i-th particle Y (N)

i (s) of (1) and Y (N ,yC )

i (s) of (35) jump to top at
same times in the interval (t0, t] by

(105) K

(N)

i (t0, t) = {ω ∈ Ω | ν
(N)

i ({(s, ξ) | w̃(N)

i,∧ (s) < ξ � w̃(N)

i,∨ (s), s ∈ (t0, t] }) = 0} .

The definitions (98) and (53) of ϕ(N) and ϕ(N ,θ) are defined for (y0, t0) ∈ [0,1] × [0, t].
Note that if we restrict (y0, t0) to the initial/boundary points Γt of (10), then the summation
over j in these definitions are equivalent to the summation over j satisfying y(N)

j � y0. In
particular, the summations are deterministic and same for both ϕ(N) and ϕ(N ,θ), if (y0, t0) ∈ Γt .
This is because (y0, t0) ∈ Γt implies y0 = 0 or t0 = 0, by (10), and if y0 = 0 then the condition
Y (N)

j (t0) � y0 (or Y (N ,θ)
j (t0) � y0) in (98) ((53), respectively), implies summation over all j,

while if t0 = 0 then (1) and (31) imply Y (N)

j (t0) = Y (N ,θ)
j (t0) = y

(N)

j . This proves that for all
the cases of ϕ(N) and ϕ(N ,θ) with (y0, t0) ∈ Γt the summation over j are equivalent to the the
summation over j satisfying y(N)

j � y0.
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Fix a bounded continuous function h : W → R, and let Ch be as in (51). Using the
definitions (98) and (53), put

(106)

Δϕ(N)

(γ, t) = ϕ(N)

(h, γ, t) − ϕ(N ,θ)
(h, γ, t)

=
1
N

∑

j; y(N )

j �y0

h(wj)(1J (N )

j (t0,t)c
− 1J (N ,θ )

j (t0,t)c
) ,

γ = (y0, t0) ∈ Γt, t ∈ [0,T ] .

Then (105) and (51) imply,

|Δϕ(N)

(γ, t)| �
Ch

N

N∑

j=1
1
K

(N )

j (t0 ,t)c
, γ = (y0, t0) ∈ Γt , t ∈ [0,T ] .

The monotonicity of K(N)

j (t0, t)c with respect to t and t0 further implies

(107) sup
(γ,t)∈ΔT

|Δϕ(N)

(γ, t)| �
Ch

N

N∑

i=1
1
K

(N )

i (0,T )
c ,

Proof of Proposition 5.2 therefore reduces to evaluation of the event K(N)

i (0,T ).
5.1.2. Event with different jumps to top. As an analog of (32), define a sequence of

stopping times, 0 = τ(N)

i,0 < τ
(N)

i,1 < · · · , by

(108)
τ
(N)

i,0 = 0,
τ
(N)

i,k+1 = inf{t > τ(N)

i,k
| ν

(N)

i ({(s, ξ) ∈ (τ
(N)

i,k
,T ] × [0,∞) |

0 � ξ � wi(Y (N)

i (s−), s)}) > 0}, k ∈ Z+ .

τ
(N)

i,k
is the time that the particle i in the (original) stochastic ranking process jumps to the top

for the k-th time. A corresponding analog of (33) is

(109) γ
(N)

i (t) =

{
(y

(N)

i ,0) , 0 � t < τ(N)

i,1 ,

(0, τ(N)

i,k
) , τ

(N)

i,k
� t < τ(N)

i,k+1 , k = 1,2, . . . .

A property corresponding to (42) then is

(110) Y (N)

i (t) = Y (N)

C
(γ

(N)

i (t), t) , t ∈ [0,T ] ,

which can be proved in a similar way as a proof of (42) in Lemma 3.1. This decomposition
in particular decomposes the dependence as random variables; if we temporarily denote by
X ∈ F , a fact that a random variable X : Ω → R is F -measurable, and denote by σ[Z] a
sigma algebra generated by a random variable Z , we have

(111)
Y (N)

C
((y0, t0), t) ∈ σ[{ν

(N)

j | Y (N)

j (t0) > y0}] ,

γ
(N)

i ∈ σ[{τ
(N)

i,k
∧ t | k ∈ N}] .
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Define an analog of the stopping times (108) using (103) by

(112)

τ
(N)

i,∧,0 = 0 ,

τ
(N)

i,∧,k
= inf{t > τ(N)

i,∧,k−1 | ν
(N)

i ({(ξ, s) | 0 � ξ � w̃(N)

i,∧ (s) , 0 � s � t}) > 0} ,

k ∈ N ,

and denote by σ(N)

i , the time that the particle pair with label i of the original model and the
flow driven model have different jumps to the top for the first time;

(113) σ
(N)

i (ω) = inf{t ∈ [0,T ] | ω ∈ K

(N)

i (0, t)c} , ω ∈ Ω .

The definition implies

(114) τ
(N)

i,k
< σ

(N)

i ⇒ τ
(N)

i,∧,k
= τ

(N)

i,k
= τ

(N ,yC )

i,k
,

where τ(N ,yC )

i,k
is defined in (32), with θ = yC . Indepndence of ν(N)

i (A) and ν(N)

i (B) for the
exclusive events A and B implies

(115) {τ
(N)

i,∧,k
| k ∈ Z+} ⊥ σ

(N)

i .

Using (104), (103), (8), and a ∨ b = |a − b| + a ∧ b, we have

(116)

{(ξ, s) ∈ R2
| w̃

(N)

i,∧ (s) < ξ � w̃(N)

i,∨ (s), 0 < s � t}

⊂ {(ξ, s) ∈ R2
| 0 � ξ − w̃(N)

i,∧ (s) � CW |Y (N)

i (s) − yC(γ
(N ,yC )

i (s), s)| ,

0 < s � t}

⊂

∞⋃

k=1
{(ξ, s) ∈ R2

| 0 � ξ − w̃(N)

i,∧ (s) � CW |Y (N)

i (s) − yC(γ
(N ,yC )

i (s), s)| ,

t ∧ τ(N)

i,∧,k−1 < s � t ∧ τ(N)

i,∧,k
}.

Note that for each i

Y (N)

i (τ
(N)

i,k−1) = Y (N ,yC )

i (τ
(N)

i,k−1) = 0 , on τ(N)

i,k−1 < σ
(N)

i .

Note also that the definition (113) implies {ω ∈ Ω | σ
(N)

i (ω) > s} = K

(N)

i (0, s). Hence,
(110), (42), (99), and (38) imply, with similar arguments for deriving (107) from (105),

|Y (N)

i (s) − Y (N ,yC )

i (s)| = |Y (N)

C
(γ

(N)

i (s), s) − Y (N ,yC )

C
(γ

(N)

i (s), s)|

=
1
N

����
∑

j�i

(1
(J

(N )

j (τ
(N )

i ,k−1 ,s))
c − 1

(J
(N )

j (τ
(N , yC )

i ,k−1 ,s))c
)

����

�
1
N

∑

j�i
1
K

(N )

j (τ
(N )

i ,k−1 ,s)
c

on K

(N)

i (0, s), τ(N)

i,k−1 � s < τ(N)

i,k
.



SPACE-TIME DEPENDENT STOCHASTIC RANKING PROCESS 387

This with (116) then implies

(117)

K

(N)

i (0, t)c ⊂

∞⋃

k=1

(
{ω ∈ Ω | ν

(N)

i ({(s, ξ) | 0 � ξ − w̃(N)

i,∧ (s)

� CW |Y (N ,yC )

i (s) − yC(γ
(N ,yC )

i (s), s)|

+
CW

N

∑

j�i

1
K

(N )

j (τ
(N )

i ,k−1 ,s)
c ,

t ∧ τ(N)

i,∧,k−1 < s � t ∧ τ(N)

i,∧,k
}) > 0 }

∩ K

(N)

i (0, τ(N)

i,k−1)

)
.

5.1.3. Application of Gronwall hierarchy. For q = 1,2, . . . ,N and ti ∈ [0,T ], i =
1, . . . ,q, put

(118) X (N)

q (t1, . . . , tq) = max
{i1 ,...,iq }⊂{1,...,N }

E

[
q∏

α=1
1
K

(N )

iα
(0,tα )c

]

(106), (107), and (118) imply that to prove Proposition 5.2, it suffices to find δ′ > 0 and
integer p0 satisfying 2p0δ

′ > 1, such that for any integer p � p0,

(119)
1

N2p

2p∑

q=1

N!
q! (N − q)!

d(2p,q)X (N)

q (T, . . . ,T ) �
C

N2pδ′ ,

for some C > 0 independent of N . Here, d(r,q) is the number of surjections from a finite set
of size r to a set of size q, which is determined inductively by

(120) d(r,1) = 1, and d(r,q) = qr −
q−1∑

k=1

q!
k! (q − k)!

d(r,q − k), q = 2,3, . . . , r .

Fix q and {i1, . . . , iq} in the right hand side of (118). Let α ∈ {1, . . . ,q} be the suffix such
that y(N)

iα
is the smallest among y(N)

i1
, . . . , y(N)

iq
, and put i0 = iα. At times τ(N)

i0 ,k
, k ∈ Z+, the

particle i0 is at the top position, namely, for iα � i0,

Y (N)

i0
(τ

(N)

i0 ,k
) = 0 < Y (N)

iα
(τ

(N)

i0 ,k
), k = 1,2, . . . ,

Y (N)

i0
(τ

(N)

i0 ,0 ) = Y (N)

i0
(0) = y(N)

i0
< y

(N)

iα
= Y (N)

iα
(τ

(N)

i0 ,0 ).

Hence up to the first jump to the top, each Y (N)

iα
(t)with iα � i0 is independent of νi0 . Therefore,

E

[
q∏

α=1
1
K

(N )

iα
(0,tα )c

]

= E

[ ∏

α; iα�i0
1
(K

(N )

iα
(0,tα ))c

P[ (K(N)

i0
(0, t0))c | {νj, j � i0} ∪ {τ

(N)

i0 ,∧,k
} ]

]
,
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where P[ · | {νj, j � i0}∪ {τ
(N)

i0 ,∧,k
} ] denotes conditional probability conditioned on the sigma

algebra generated by νj , j � i0, and τ(N)

i0 ,∧,k
, k ∈ N. This with (115), (114), (117), and

P[ ν(A) > 0 ] = 1 − e−|A| � |A|

for a unit Poisson random measure ν, further leads to

(121)

E

[
q∏

α=1
1
K

(N )

iα
(0,tα )c

]

� E

[ ∏

α; iα�i0
1
(K

(N )

iα
(0,tα ))c

∞∑

k=1
1
K

(N )

i0
(0,t0∧τ(N )

i0 ,k−1)

×

(∫ t0∧τ
(N )

i0 ,∧,k

t0∧τ
(N )

i0 ,∧,k−1

CW |Y (N ,yC )

i0
(s) − yC(γ

(N ,yC )

i0
(s), s)| ds

+

∫ t0∧τ
(N )

i0 ,∧,k

t0∧τ
(N )

i0 ,∧,k−1

CW

N

∑

j�i0

1
K

(N )

j (t0∧τ
(N )

i ,k−1 ,s)
c ds

) ]

�
CW

N

N∑

j=1
E

[ ∏

α; iα�i0
1
(K

(N )

iα
(0,tα ))c

∞∑

k=1
1
K

(N )

i0
(0,t0∧τ(N )

i0 ,∧,k−1)

×

∫ t0∧τ
(N )

i0 ,∧,k

t0∧τ
(N )

i0 ,∧,k−1

1
K

(N )

j (t0∧τ
(N )

i0 ,k−1 ,s−)
c ds

]

+ CWE

[ ∏

α; iα�i0
1
(K

(N )

iα
(0,tα ))c

∞∑

k=1
1
K

(N )

i0
(0,t0∧τ(N )

i0 ,∧,k−1)

×

∫ t0∧τ
(N )

i0 ,∧,k

t0∧τ
(N )

i0 ,∧,k−1

|Y (N ,yC )

i0
(s) − yC(γ

(N ,yC )

i0
(s), s)| ds

]
.

Using 1
K

(N )

i0
(0,t0∧τ(N )

i0 ,k−1)
� 1 and 1

K

(N )

j (t0∧τ
(N )

i0 ,k−1 ,s−)
c � 1

K

(N )

j (0,s−)c , we see that for i, j =

1,2, . . . ,N ,

(122)
∑

k�1
1
K

(N )

i (0,t∧τ(N )

i ,k−1)

∫ t∧τ
(N )

i ,k

t∧τ
(N )

i ,k−1

1
K

(N )

j (t∧τ
(N )

i ,k−1 ,s−)
c ds �

∫ t

0
1
K

(N )

j (0,s−)c ds.

Substituting (122) in the first term of the right hand side of (121), and bounding the char-
acteristic function on the right hand side by 1 for j ∈ {i1, . . . , iq} \ {i0}, and bounding the
characteristic function for i0 also by 1 in the second term of the right hand side of (121), we
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have

(123)

X (N)

q (t1, . . . , tq) �
CWT (q − 1)

N

q∑

i0=1
X (N)

q−1(t1, . . . , t/i0, . . . , tq)

+ CW

q∑

i0=1

∫ ti0

0
X (N)

q (t1, . . . , s, . . . , tq) ds

+ CW max
{i1 ,...,iq }⊂{1,...,N }

∫ ti0

0
E

[ ∏

iα�i0

1Kiα (0,tα )c |Y (N ,yC )

ii0
(s)

− yC (γ
(N ,yC )

ii0
(s), s)|

]
ds .

Here, X (N)

q−1(t1, . . . , t/i0, . . . , tq) is the function in (118) with q replaced by q − 1 and with q − 1
variables obtained by excluding ti0 from t1, . . . , tq, and the variables for X (N)

q (t1, . . . , s, . . . , tq)
is t1, . . . , tq with ti0 replaced by s. Applying Hölder’s inequality in the form

E[ |X Y | ] � E[ |X |
2p/(2p−1)

]
1−(2p)−1

E[ |Y |
2p

]
1/(2p)

to the last term in the right hand side of (123), and using (42) and (56), we have

X (N)

q (t1, . . . , tq) �
CWT (q − 1)

N

q∑

i0=1
X (N)

q−1(t1, . . . , t/i0, . . . , tq)

+ CW

q∑

i0=1

∫ ti0

0
X (N)

q (t1, . . . , s, . . . , tq) ds

+
CWTC

Nδ

q∑

i0=1
(X (N)

q−1(t1, . . . , t/i0, . . . , tq))
(2p−1)/(2p) ,

q = 1,2, . . . ,

X (N)

0 = 1 .

�
Applying Theorem 4.5, with aq = CWTCN−δ , bq = CWT (q−1)N−1, cq = CW , d = 1−(2p)−1,
we have

(124)
X (N)

q (t1, . . . , tq) � gqeq
2CWT , ti ∈ [0,T ], i = 1, . . . ,q, q ∈ N ;

g0 = 1, gq = qCWT (CN−δgdq−1 + (q − 1)N−1gq−1), q ∈ N .

For large N we have gq−1 < 1, hence with d < 1, we further have gd
q−1 > gq−1, and also with

0 < δ < 1 for large N we have N−δ > (q − 1)N−1, so that

gq � qCWTgdq−1N−δ
(C + 1) , q ∈ N .
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By induction in q,

gq � q!(CWT ∨ 1)q(C + 1)q
1

N2pδ(1−(1−(2p)−1
)
q
)

, q ∈ N .

Since 1 − (1 −
1

2p )q is decreasing in q, we therefore have

(125) X (N)

q (t1, . . . , tq) � q!(CWT ∨ 1)q(C + 1)qeq
2CWT 1

N2pδ(1−(1−(2p)−1
)
2p

)

,

q = 1,2, . . . , p .

Choose δ′ to be any positive constant satisfying

0 < δ′ <

(
1 −

1
e

)
δ .

Since lim
p→∞

(1 −
1

2p )
2p = e−1 < 1, there exists an integer p0 >

1
2δ′ such that

δ′ <

(
1 −

(
1 −

1
2p

)2p)
δ , p = p0 , p0 + 1 , . . . .

With (125) we arrive at

X (N)

q (t1, . . . , tq) � q!(CWT ∨ 1)q(C + 1)qeq
2CWT 1

N2pδ′ , q = 1,2, . . . ,2p ,

for p = p0, p0 + 1, . . . . Since N!
q! (N−q)! �

Nq

q! �
N2p

q! , this proves (119).
This completes a proof of Proposition 5.2, and therefore, of Proposition 5.1. �
5.2. Proof of Theorem 2.3. Let y ∈ [0,1] and let h : W → R be a bounded continuous

function with Ch > 0 as in (51). For the flow yC ∈ ΘT in Theorem 2.1, the definition ofΘT in
(12) implies that for each t ∈ [0,T ], Γt � γ �→ yC (γ, t) ∈ [0,1] is surjective. Therefore there
exists γt : [0,1] → Γt such that

(126) yC (γt (y), t) = y , y ∈ [0,1] .
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We then have, using (18), (54), (126), (6), (17), (51), (3), and (126) in turn,
����
∫

W
h(w)μ(N)

t (dw × [y,1]) −
∫

W
h(w)μt (dw × [y,1])

����

=

����
∫

W
h(w)μ(N)

t (dw × [y,1]) − ϕyC (h, γt (y), t)
����

� sup
γ∈Γt

|ϕ(N)

(h, γ, t) − ϕyC (h, γ, t)|

+

����
∫

W
h(w)μ(N)

t (dw × [y,1]) −
∫

W
h(w)μ(N)

t (dw × [Y (N)

C
(γt (y), t),1])

����
� sup

γ∈Γt

|ϕ(N)

(h, γ, t) − ϕyC (h, γ, t)| + Ch |y − Y (N)

C
(γt (y), t)|

� sup
γ∈Γt

|ϕ(N)

(h, γ, t) − ϕyC (h, γ, t)| + Ch |yC (γt (y), t) − Y (N)

C
(γt (y), t)|

� sup
γ∈Γt

|ϕ(N)

(h, γ, t) − ϕyC (h, γ, t)| + Ch sup
γ∈Γt

|yC (γ, t) − Y (N)

C
(γ, t)| .

Proposition 5.1 and (101) then imply

(127)
E

[
sup

t ∈[0,T ]

����
∫

W
h(w)μ(N)

t (dw × [y,1]) −
∫

W
h(w)μt (dw × [y,1])

����
2p

]

�
(1 + 22p−1Ch)C

N2pδ′ +
22p−1Ch

N2p , N ∈ N ,

where the constants in the right hand side is as in Proposition 5.1. Since 2pδ′ > 1, we see that

E

[
∞∑

N=1
sup

t ∈[0,T ]

����
∫

W

h(w)μ(N)

t (dw × [y,1]) −
∫

W

h(w)μt (dw × [y,1])
����
2p

]
< ∞ ,

hence, in particular, we have, as in the argument below Corollary 3.3 for Theorem 3.2,

(128) lim
N→∞

sup
t ∈[0,T ]

����
∫

W
h(w)μ(N)

t (dw × [y,1]) −
∫

W
h(w)μt (dw × [y,1])

���� = 0 ,

with probability 1, which proves (28).
Next we prove uniform almost sure convergence of Y (N)

i to Yi for i = 1,2, . . . , L. As an
analogy to (32) and (33), define

(129)
τi,0 = 0 ,
τi,k+1 = inf{t > τi,k | νi({(s, ξ) ∈ (τi,k ,T ] × [0,∞) |

0 � ξ � wi(Yi(s−), s)}) > 0} , k ∈ Z+ ,

and

(130) γi(t) =

{
(yi,0) , 0 � t < τi,1 ,
(0, τi,k) , τi,k � t < τi,k+1 , k = 1,2, . . . .

Comparing (19) and (30), we have, with similar argument for (42),

(131) Yi(t) = yC(γi(t), t) , t ∈ [0,T ] .
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Quantities corresponding to (103), (104), (105), and (113) are

w̆
(N)

i,∧ (t) = wi(Y
(N)

i (t−), t) ∧ wi(Yi(t−), t), t) ,

w̆
(N)

i,∨ (t) = wi(Y
(N)

i (t−), t) ∨ wi(Yi(t−), t), t) ,

K̃

(N)

i (0, t) = {ω ∈ Ω | νi({(s, ξ) | w̆
(N)

i,∧ (s) < ξ � w̆(N)

i,∨ (s), s ∈ (0, t] }) = 0} ,

σ̃
(N)

i = inf{t ∈ [0,T ] | K̃(N)

i (0, t)c} .
A proof now proceeds with argument similar to that in § 5.1.2. An argument similar to

that for (116) leads to a bound

(132)
K̃

(N)

i (0, t)c

⊂ {ω ∈ Ω | νi({(s, ξ) | 0 � ξ − w̆(N)

i,∧ (s) � CW |Y (N)

i (s) − Yi(s)| ,

s ∈ (0, t] }) > 0} .

Since νi is a Poisson random measure, it holds with probability 1 that νi(A) < ∞ for a Borel
set A ⊂ [0,T ] × [0,∞) of finite area. Hence for almost all ω ∈ Ω there exists ε = ε(ω) > 0
such that

(133) νi({(s, ξ) | 0 � ξ − w̆(N)

i,∧ (s) � ε , s ∈ (0, t] }) = 0 .

On the other hand, applying the argument from (127) to (128), (101) implies

(134) lim
N→∞

sup
(γ,t)∈ΔT

|Y (N)

C
(γ, t) − yC(γ, t)| = 0 , a.s.

Therefore, for almost all ω ∈ Ω, there exists an integer N0 = N0(ω) such that for N � N0,

(135) sup
(γ,t)∈ΔT

|Y (N)

C
(γ, t) − yC(γ, t)| �

ε

CW
, N � N0 .

Combining (133), (135), (110), (131), and (132),

(136) K̃

(N)

i (0,T )c = ∅ , N � N0 .

Next, (110) and (131) imply

|Y (N)

i (t) − Yi(t)|

� |Y (N)

C
(γ

(N)

i (t), t) − yC(γ
(N)

i (t), t)| + |yC (γ
(N)

i (t), t) − yC(γi(t), t)|

� sup
γ∈Γt

|Y (N)

C
(γ, t) − yC (γ, t)| + |yC (γ

(N)

i (t), t) − yC(γi(t), t)| .

Comparing (109) and (130) we further have

(137)
|Y (N)

i (t) − Yi(t)| � sup
γ∈Γt

|Y (N)

C
(γ, t) − yC (γ, t)|

+ |yC((y
(N)

i ,0), t) − yC((yi,0), t)| 1t<τi ,1 + 1
K̃

(N )

i (0,t)c .

Substituting (136) in (137) ,

(138)
|Y (N)

i (t) − Yi(t)|

� sup
γ∈Γt

|Y (N)

C
(γ, t) − yC(γ, t)| + |yC((y

(N)

i ,0), t) − yC((yi,0), t)|, N � N0 .
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Since yC ∈ ΘT , lim
N→∞

y
(N)

i = yi implies

(139) lim
N→∞

sup
t ∈[0,T ]

|yC((y
(N)

i ,0), t) − yC((yi,0), t)| = 0 , a.s.

Combining (134), (138), (139) we have

lim
N→∞

sup
t ∈[0,T ]

|Y (N)

i (t) − Yi(t)| = 0 , a.s.

Therefore the almost sure uniform convergence of tagged particle system holds, which com-
pletes a proof of Theorem 2.3.

A. Point process with last-arrival-time dependent intensity. We will summarize
the definition and basic formulas of the point processes with last-arrival-time dependent
intensities. See [11, §3] and [12, §1.2] for a proof. In accordance with [11, 12], we will denote
the point process with last-arrival-time dependent intensity by N = N(t), while we wrote ν̃ in
the main body of the present paper to keep the symbol N for the particle number.

N = N(t), t � 0, is a non-decreasing, right-continuous, non-negative integer valued
stochastic process on a measurable space with N(0) = 0, satisfying the following. For each
non-negative integer k denote the k-th arrival time τk by

(140) τk = inf{t � 0 | N(t) � k} , k = 1,2, . . . , and τ0 = 0 .

The arrival times τk are non-decreasing in k, because N is non-decreasing, and since N is also
right-continuous, the arrival times are stopping times; if we denote the associated filtration
by Ft = σ[N(s), s � t], then {τk � t} ∈ Ft , t � 0. We call N a point process with last-
arrival-time dependent intensities, if for a non-negative valued bounded continuous function
ω of (s, t) for 0 � s � t, and for k = 1,2, . . .

(141) P[ t < τk | Fτk−1 ] = exp

(
−

∫ t

τk−1

ω(τk−1,u) du

)
on t � τk−1

holds.
In particular, (141) with k = 1 implies

(142) P[ N(t) = 0 ] = P[ τ1 > t ] = exp

(
−

∫ t

0
ω(0,u) du

)
, t � 0 .

If ω is independent of the first variable, then (141) implies that N is the (inhomogeneous)
Poisson process with intensity function ω. We are considering a generalization of the Poisson
process such that the intensity function depends on the latest arrival time.

A construction (existence proof) of the point process with last-arrival-time dependent
intensity goes as follows. Let ω : [0,∞)

2
→ [0,∞) be a non-negative valued bounded

continuous function of (s, t) for 0 � s � t, for which we aim to construct a process satisfying
(141). Let ν be a Poisson random measure on [0,∞)

2, with unit constant intensity

(143) E[ ν([a, b] × [c, d]) ] = (b − a)(d − c) b > a > 0, d > c > 0 , k ∈ N .



394 T. HATTORI

Define a sequence of hitting times τ̃k , k ∈ Z+, inductively by

(144)

τ̃0 = 0 , and
τ̃k = inf{t � τ̃k−1 | ν({(ξ,u) ∈ [0,∞)

2
|

0 � ξ � ω(τ̃k−1,u), τ̃k−1 < u � t}) > 0 } ,

k = 1,2, . . . .

Note that the definition is not equivalent to the wrong formula such as τ̃k = inf{t � 0 |

ν({(ξ,u) ∈ [0,∞)
2
| 0 � ξ � ω(τ̃k−1,u), 0 < u � t}) � k }. We are recursively adding 1 new

arrival after the last arrival using the renewed intensity ω(τ̃k−1, ·) in (144). Define a process
Ñ(t) by

(145) Ñ(t) = max{k ∈ Z+ | τ̃k � t} , t � 0 .

Since Ñ(t) and τ̃k are samplewise non-decreasing in t and k, respectively, Ñ(t) satisfies (140)
and (141) with N(t) = Ñ(t) and τk = τ̃k . {τ̃k � t} is in

(146) Ft := σ[ν(A) ; A ∈ B([0,∞)
2
) , A ⊂ [0,∞) × [0, t]] ,

and consequently Ñ is adapted to {Ft }.
In coupling the stochastic ranking process with the flow driven stochastic ranking process,

we will need a representation of N by the stochastic integration with respect to ν in (143) which
is,

(147) N(t) =
∫

s∈(0,t]

∫

ξ ∈[0,∞)

1ξ ∈[0,ω(τ∗(s−),s−)) ν(dξ ds) , t � 0 ,

where τ∗ : Ω × [0,∞) → [0,∞) is the last arrival time up to time t:

(148) τ∗(t) = τN(t) = inf{s � 0 | N(t) = N(s)} ∈ [0, t] ,

which satisfies a stochastic integration equation

(149) τ∗(t) =
∫

s∈(0,t]

∫

ξ ∈[0,∞)

(s − τ∗(s−)) 1ξ ∈[0,ω(τ∗ (s−),s−)) ν(dξ ds) ,

from which (147) follows.
For t � t0 put

(150) Ω(t0, t) =
∫ t

t0

ω(t0,u) du .

We have explicit formula

(151)

P[ N(t) = N(s) ] =
∑

k�0
P[ τk � s, t < τk+1 ]

=
∑

k�0

∫

0=:uk<uk−1<uk−2< · · ·<u1<u0�s
e−

∑k−1
i=0 Ω(ui+1 ,ui )−Ω(u0 ,t)

×

(k−1∏

i=0
ω(ui+1,ui) dui

)
,
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and for ‖ω‖ = sup
0�s�t�T

|ω(s, t)|,

(152)

0 � −

∂

∂t
P[ N(t) = N(s) ] � ‖ω‖ (P[ N(t) = N(s) ] − P[ N(t) = N(0) ]) � ‖ω‖ ,

0 �
∂

∂s
P[ N(t) = N(s) ]

=
∑

k�0

∫

0=:uk<uk−1< · · ·<u1<u0�s
w(u0, s)

× e−
∑k−1

i=0 Ω(ui+1 ,ui )−Ω(u0 ,t)

(
k−1∏

i=0
ω(ui+1,ui) dui

)

� ‖ω‖ P[ N(t) = N(s) ] � ‖ω‖ ,

0 � s < t.
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