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FIBERS OF CYCLIC COVERING FIBRATIONS OF A RULED SURFACE
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Abstract. We give an algorithm to classify singular fibers of finite cyclic covering
fibrations of a ruled surface by using singularity diagrams. As the first application, we classify
all fibers of 3-cyclic covering fibrations of genus 4 of a ruled surface and show that the signature
of a complex surface with this fibration is non-positive by computing the local signature for any
fiber. As the second application, we classify all fibers of hyperelliptic fibrations of genus 3 into
12 types according to the Horikawa index. We also prove that finite cyclic covering fibrations
of a ruled surface have no multiple fibers if the degree of the covering is greater than 3.

Introduction. Let f : S → B be a surjective morphism from a complex smooth pro-
jective surface S to a smooth projective curve B with connected fibers. The datum (S, f , B) or
simply f is called a fibered surface or a fibration. A fibered surface f is said to be relatively
minimal if there exist no (−1)-curves contained in a fiber of f . The genus g of a fibered surface
is defined to be the genus of a general fiber of f .

In the study of fibered surfaces, one of the central problems is the classification of singular
fibers. Any relatively minimal fibration of genus 0 is a holomorphic P1-bundle (hence, no
singular fibers). As is well known, all fibers of elliptic surfaces were classified by Kodaira in
[6]. As to fibrations of genus 2, the complete list of singular fibers was obtained by Namikawa
and Ueno in [7]. On the other hand, Horikawa [5] showed that fibers of genus 2 fibrations
fall into 6 types (0), (I), . . . , (V) according to the numerical invariant attached to singular
fiber germs, which is nowadays called the Horikawa index (cf. [2]). When g = 3, based
on Matsumoto-Montesinos’ theory, Ashikaga and Ishizaka [1] accomplished the topological
classification with a vast list, which is comparable to Namikawa-Ueno’s in genus 2 case.

In [4], we studied primitive cyclic covering fibrations of type (g, h, n). Roughly speaking,
it is a fibered surface of genus g obtained as the relatively minimal model of an n sheeted cyclic
branched covering of another fibered surface of genus h. Note that hyperelliptic fibrations are
nothing more than such fibrations of type (g, 0, 2). Our main concern in [4] was the slope
of such fibrations of type (g, h, n) and we established the lower bound of the slope for them.
Furthermore, we succeeded in giving even an upper bound. In this paper, we are interested
in singular fibers themselves appearing in primitive cyclic covering fibrations of type (g, 0, n),
and give the complete lists of fibers when (g, n) = (4, 3), (3, 2).

In §1, we recall basic results in [4] as the preliminaries. In §2, in order to extract detailed
information from the singular points of the branch locus, we introduce the notion of singularity
diagrams which is our main tool for studying fibers. Though it enables us to handle all the
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possible fibers in theory, it is rather tedious in practice to carry it over for large n and g. In §3,
we consider the case where n = 3 and g = 4, and show the following:

THEOREM 0.1. Fibers of primitive cyclic covering fibrations of type (4, 0, 3) fall into
32 classes of types (0i1,...,im ), (IIIi, j ), (IVk ), (Vi, j ), (VIk ), (VIIk ) and (VIII) listed in §3 plus 9
classes of types (Ii, j,l ) and (IIk,l ) up to (−2)-curves.

COROLLARY 0.2. Let f : S → B be a primitive cyclic covering fibration of type (4,0, 3).
Then we have

K2
f =

24
7
χ f + Ind

and Ind is given by

Ind =
∑
l≥0

3
7

(l + 1)ν(I∗,∗,l) +
∑
l≥0

3
7

(l + 2)ν(II∗,l) +
3
7
ν(III∗,∗) +

16
7
ν(IV∗)

+
16
7
ν(V∗,∗) +

16
7
ν(VI∗,∗) +

26
7
ν(VII∗) +

33
7
ν(VIII)

where ν(∗) denotes the number of fibers of type (∗) and ν(I∗,∗,l) :=
∑

i, j ν(Ii, j,l ), etc.

Recall that Ueno and Xiao showed independently that the signature of a complex surface
with a genus 2 fibration is non-positive, answering affirmatively to a conjecture by Persson.
If S is a complex surface with a primitive cyclic covering fibration of type (g, 0, n), then, as
shown in [4], the signature of S can be expressed as the total sum of the local signature for
fibers. We can compute the local signature for each type of fibers in the above theorem, and
find that it is negative for any singular fiber. Therefore, we obtain the following:

COROLLARY 0.3. The signature of a surface with a primitive cyclic covering fibration
of type (4, 0, 3) is not positive.

In §4, we turn our attention to hyperelliptic fibrations of genus 3 (i.e., the case where n =
2 and g = 3). We classify all fibers into 12 types (0), (I), . . . , (XI) according to the Horikawa
index and show the following:

THEOREM 0.4. Let f : S → B be a relatively minimal hyperelliptic fibration of genus
3. Then

K2
f =

8
3
χ f + Ind

and Ind is given by

Ind =
∑
i

2
3

iν(Ii,0,0) +
∑
i,k≥1

(
2
3

i +
5
3

k − 1
)
ν(Ii,0,k ) +

∑
i

(
2
3

i +
5
3

)
ν(Ii,0,∞)

+
∑

i, j≥1,k≥1

(
2
3

i +
5
3

( j + k) − 2
)
ν(Ii, j,k ) +

∑
i, j≥1

(
2
3

i +
5
3

j +
2
3

)
ν(Ii, j,∞)
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+
∑
i

(
2
3

i +
10
3

)
ν(Ii,∞,∞) +

∑
i, j,k

(
2
3

i +
5
3

( j + k)

)
ν(IIi, j,k )

+
∑
i, j

(
2
3

i +
5
3

j +
8
3

)
ν(IIIi, j ) +

∑
i, j

(
2
3

i +
5
3

j +
4
3

)
ν(IVi, j )

+
∑
j

(
5
3

j +
4
3

)
ν(Vj ) +

∑
j

(
5
3

j +
5
3

)
ν(VIj )

+
4
3
ν(VII0) +

∑
j≥1

(
5
3

j +
1
3

)
ν(VIIj ) +

∑
j≥1

(
5
3

j +
2
3

)
ν(VIIIj )

+
4
3
ν(IX) +

7
3
ν(X) +

10
3
ν(XI) ,

where ν(∗) denotes the number of fibers of type (∗).
This is comparable to Horikawa’s result [5] in genus 2. We remark that Horikawa himself

obtained a similar list, but never published.
Multiple fibers are among interesting singular fibers. It is known that there exists a

hyperelliptic fibration f with a double fiber for any odd g (for example, any fiber of type (III)
listed in §4 is a double fiber). Moreover, we can construct an example of primitive cyclic
covering fibrations of type (g, 0, 3) with a triple fiber for any g ≥ 4 satisfying g ≡ 1 (mod 3),
g � 7. However, we have the following assertion which imposes an unexpected limitation for
the existence of multiple fibers.

PROPOSITION 0.5. Let f : S → B be a primitive cyclic covering fibration of type
(g, 0, n). If n ≤ 3, then any multiple fiber of f is an n-fold fiber. If n ≥ 4, then f has no
multiple fibers.

Acknowledgment. The author expresses his sincere gratitude to his supervisor Professor Kazuhiro
Konno for many suggestions and warm encouragement.

1. Preliminaries. In this section, we recall and state without proofs basic results
obtained in [4] in order to fix notation.

1.1. Definition. Let Y be a smooth projective surface and R an effective divisor on Y
which is divisible by n in the Picard group Pic(Y ), that is, R is linearly equivalent to nd for
some divisor d ∈ Pic(Y ). Then we can construct a finite n-sheeted covering of Y with branch
locus R as follows. Put A =⊕n−1

j=0 OY (− jd) and introduce a graded OY -algebra structure on
A by multiplying the section of OY (nd) defining R. We call Z := SpecY (A) equipped with
the natural surjective morphism ϕ : Z → Y a classical n-cyclic covering of Y branched over
R, according to [3]. Locally, Z is defined by zn = r (x, y ), where r (x, y ) denotes the local
analytic equation of R. From this, one sees that Z is normal if and only if R is reduced, and Z
is smooth if and only if so is R. When Z is smooth, we have

(1.1) ϕ∗R = nR0, KZ = ϕ
∗KY + (n − 1)R0, Aut(Z/Y ) 	 Z/nZ
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where R0 is the effective divisor (usually called the ramification divisor) on Z defined locally
by z = 0, and Aut(Z/Y ) is the covering transformation group for ϕ.

DEFINITION 1.1. A relatively minimal fibration f : S → B of genus g ≥ 2 is called a
primitive cyclic covering fibration of type (g, h, n), if there exist a (not necessarily relatively
minimal) fibration ϕ̃ : W̃ → B of genus h ≥ 0, and a classical n-cyclic covering

θ̃ : S̃ = SpecW̃
��
�

n−1⊕
j=0
OW̃ (− jd̃)��

�
→ W̃

branched over a smooth curve R̃ ∈ |ñd | for n ≥ 2 and d̃ ∈ Pic(W̃ ) such that f is the relatively
minimal model of f̃ := ϕ̃ ◦ θ̃.

In this paper, f : S → B denotes a primitive cyclic covering fibration of type (g, 0, n)
and we freely use the notation in Definition 1.1. Let F̃ and Γ̃ be general fibers of f̃ and ϕ̃,
respectively. Then the restriction map θ̃ |F̃ : F̃ → Γ̃ is a classical n-cyclic covering branched
over R̃ ∩ Γ̃ . Since the genera of F̃ and Γ̃ are g and 0, respectively, the Hurwitz formula gives
us

(1.2) r := R̃Γ̃ =
2g

n − 1
+ 2 .

Note that r is a multiple of n. Let τ̃ be a generator of Aut(S̃/W̃ ) 	 Z/nZ and ρ : S̃ → S
the natural birational morphism. By assumption, Fix(τ̃) is a disjoint union of smooth curves
and θ̃(Fix(τ̃)) = R̃. Let ϕ : W → B be a relatively minimal model of ϕ̃ and ψ̃ : W̃ → W the
natural birational morphism. Since ψ̃ is a succession of blow-ups, we can write ψ̃ = ψ1 ◦
· · · ◦ ψN , where ψi : Wi → Wi−1 denotes the blow-up at xi ∈ Wi−1 (i = 1, . . . , N ) with W0 =

W and WN = W̃ . We define reduced curves Ri on Wi inductively as Ri−1 = (ψi )∗Ri starting
from RN = R̃ down to R0 =: R. We also put Ei = ψ

−1
i (xi ) and mi = multxi (Ri−1) for i =

1, 2, . . . , N .

LEMMA 1.2. With the above notation, the following hold for any i = 1, . . . , N .
(1) Either mi ∈ nZ or mi ∈ nZ + 1. Moreover, mi ∈ nZ holds if and only if Ei is not

contained in Ri .
(2) Ri = ψ

∗
i Ri−1 − n[mi/n]Ei , where [t] is the greatest integer not exceeding t.

(3) There exists di ∈ Pic(Wi) such that di = ψ∗i di−1 − [mi/n]Ei and Ri ∼ ndi, dN = d̃.

Let E be a (−1)-curve on a fiber of f̃ . If E is not contained in Fix(τ̃), then one can see
easily that L := θ̃ (E) is a (−1)-curve and θ̃∗L is a sum of n disjoint (−1)-curves containing
E. Contracting them and L, we may assume that any (−1)-curve on a fiber of f̃ is contained
in Fix(τ̃). Then, it follows that τ̃ induces an automorphism τ of S over B and ρ is the blow-up
of all isolated fixed points of τ (cf. [4, Lemma 1.9]). One sees easily that there is a one-to-one
correspondence between (−k)-curves contained in Fix(τ̃) and (−kn)-curves contained in R̃
via θ̃. Since ρ does not blow up at any infinitely near point, the number of blow-ups in ρ

coincides with that of vertical (−n)-curves contained in R̃. Since ϕ̃ : W̃ → B is a ruled surface,
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a relatively minimal model of it is not unique. By performing elementary transformations, we
can choose a standard one:

LEMMA 1.3 ([4, Lemma 3.1]). There exists a relatively minimal model ϕ : W → B of
ϕ̃ such that if n = 2 and g is even, then

multx (R) ≤ r
2
= g + 1

for all x ∈ R, and otherwise,

multx (Rh ) ≤ r
2
=

g

n − 1
+ 1

for all x ∈ Rh , where Rh denotes the horizontal part of R, that is, the sum of all ϕ-horizontal
components of R.

In the sequel, we will tacitly assume that our relatively minimal model ϕ : W → B of ϕ̃
enjoys the property of Lemma 1.3.

1.2. Slope equality, singularity indices and local signature. Let f : S → B be a
primitive cyclic covering fibration of type (g, 0, n).

DEFINITION 1.4 (Singularity index α). (i) Let k be a positive integer. For p ∈ B, we
consider all the singular points (including infinitely near ones) of R on the fiber Γp of ϕ : W →
B over p. We let αk (Fp) be the number of singular points of multiplicity either kn or kn + 1
among them, and call it the k-th singularity index of Fp, the fiber of f : S → B over p. Clearly,
we have αk (Fp) = 0 except for a finite number of p ∈ B. We put αk =

∑
p∈B αk (Fp) and call

it the k-th singularity index of f .
(ii) We also define 0-th singularity index α0 (Fp) as follows. Let D1 be the sum of all

ϕ̃-vertical (−n)-curves contained in R̃ and put R̃0 = R̃ − D1. Then, α0(Fp) is the sum of the
ramification indices of ϕ̃|R̃0

: R̃0 → B over p, that is, the sum of the ramification indices of
the restriction ϕ̃|(R̃0 )h

: (R̃0)h → B over p minus the sum of the topological Euler number of
irreducible components of the vertical part (R̃0)v over p. Then α0 (Fp) = 0 except for a finite
number of p ∈ B, and we have ∑

p∈B
α0 (Fp) = (Kϕ̃ + R̃0)R̃0

by definition. We put α0 =
∑

p∈B α0(Fp) and call it the 0-th singularity index of f .
(iii) Let ε(Fp) be the number of (−1)-curves contained in Fp, and put ε =

∑
p∈B ε(Fp).

This is no more than the number of blow-ups appearing in ρ : S̃ → S.

Let Ag,0,n be the set of all fiber germs of primitive cyclic covering fibrations of type
(g, 0, n). Then the singularity indices αk , ε can be regarded as Z-valued functions on Ag,0,n
naturally. Recall that the following slope equality holds, which is a generalization of the
hyperelliptic case (cf. [8]):
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THEOREM 1.5 ([4, Theorem 4.3]). Let f : S → B be a primitive cyclic covering
fibration of type (g, 0, n). Then

K2
f =

24(g − 1)(n − 1)
2(2n − 1)(g − 1) + n(n + 1)

χ f +
∑
p∈B

Ind(Fp) ,

where Ind: Ag,0,n → Q≥0 is defined by

Ind(Fp) = n
∑
k≥1

(
(n + 1)(n − 1)(r − nk)k

(2n − 1)r − 3n
− 1

)
αk (Fp) + ε(Fp) ,

which is called the Horikawa index of Fp.

Now, we state a topological application of the slope equality. For an oriented compact
real 4-dimensional manifold X , the signature Sign(X ) is defined to be the number of positive
eigenvalues minus the number of negative eigenvalues of the intersection form on H2(X ).
Using the singularity indices, we observe the local concentration of Sign(S) on a finite number
of fiber germs.

COROLLARY 1.6 ([4, Corollary 4.5]). Let f : S → B be a primitive cyclic covering
fibration of type (g, 0, n). Then,

Sign(S) =
∑
p∈B

σ(Fp ) ,

where σ : Ag,0,n → Q is defined by

σ(Fp ) =
−(n − 1)(n + 1)r

3n(r − 1)
α0 (Fp) +

∑
k≥1

(
(n − 1)(n + 1)(−nk2 + rk)

3(r − 1)
− n

)
αk (Fp)

+
1

3n(r − 1)
((n + 2)(2n − 1)r − 3n)ε(Fp) ,

which is called the local signature of Fp .

2. Singularity diagrams. Let f : S → B be a primitive cyclic covering fibration of
type (g, 0, n) and we freely use the notations in the previous section. Let C stand for a fiber Γ
of ϕ or an exceptional curve Ei of ψi for some i. In the latter case, for the time being, we drop
the index and set R = Ri for simplicity. Let R′ be the closure of R\C, that is, R′ = R−C when
C is contained in R, or R′ = R when C is not contained in R. Put C ∩ R′ = {x1, x2, . . . , xl }.
We consider a local analytic branch D of R′ around xi which has multiplicity m ≥ 2 at xi (i.e.
D has a cusp xi). Then we have one of the following:

(i) D is not tangent to C at xi . If we blow up at xi , then the proper transform of D does
not meet that of C. Hence, we have (DC)xi = m, where (DC)xi denotes the local intersection
number of D and C at xi .
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(ii) D is tangent to C at xi . If we blow up at xi , then one of the following three cases
occurs.

(ii.1) The proper transform of D is tangent to neither that of C nor the exceptional curve.

�

(ii.2) The proper transform of D is tangent to the exceptional curve. Then, the multiplicity
m′ of the proper transform of D at the singular point is less than m and we have (DC)xi = m+
m′.

�

(ii.3) The proper transform of D is still tangent to that of C.

�

We perform blowing-ups at xi and points infinitely near to it. Then the case (ii.3) may occur
repeatedly, but at most a finite number of times. Suppose that the proper transform of D
becomes not tangent to that of C just after k-th blow-up. If the proper transform of D is as in
(ii.1) after k-th blow-up (or D is as in (i) when k = 0), then we have (DC)xi = (k + 1)m. If
the proper transform of D is as in (ii.2) after k-th blow-up, then we have (DC)xi = km + m′.
In either case, it is convenient to consider as if D consists of m local branches D1, . . . , Dm

smooth at xi and such that (DjC)xi = k + 1 for j = 1, . . . ,m in the former case and

(DjC)xi =

{
k, for j = 1, . . . ,m − m′ ,

k + 1, for j = m − m′ + 1, . . . ,m

in the latter case. We call Dj a virtual local branch of D.

NOTATION 2.1. For a positive integer k, we let si,k be the number of such virtual local
branches D• satisfying (D•C)xi = k, among those of all local analytic branches of R − C
around xi . Here, when multxi (D) = 1, we regard D itself as a virtual local branch. We let
imax be the biggest integer k satisfying si,k � 0. By the definition of si,k , we have

(R′C)xi =
imax∑
k=1

ksi,k .

We put xi,1 = xi and mi,1 = mi . If mi,1 > 1, we define ψi,1 : Wi,1 → W to be the blow-up
at xi,1 and put Ei,1 = ψ

−1
i,1 (xi,1) and Ri,1 = ψ

∗
i,1 R − n[mi,1/n]Ei,1. Inductively, we define xi, j ,
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mi, j to be the intersection point of the proper transform of C and Ei, j−1, the multiplicity of
Ri, j−1 at xi, j . If mi, j > 1, we define ψi, j : Wi, j → Wi, j−1, Ei, j and Ri, j to be the blow-up at
xi, j , the exceptional curve for ψi, j and Ri, j = ψ

∗
i, j Ri, j−1 − n[mi, j/n]Ei, j , respectively. Let

ibm = max{ j | mi, j > 1} ,
be the number of blowing-ups occuring over xi . We may assume that ibm ≥ (i + 1)bm for i =
1, . . . , l − 1 after changing the order of the index if necessary.

Then the following two lemmas hold.

LEMMA 2.2. If C is contained in R, then the following hold.
(1) If n ≥ 3, then ibm = imax for all i. If n = 2, then ibm = imax (resp. ibm = imax + 1) if

and only if mi,imax ∈ 2Z (resp. mi,imax ∈ 2Z + 1).
(2) mi,1 =

∑imax
k=1 si,k + 1 and mi,ibm ∈ nZ.

(3) mi, j ∈ nZ (resp. nZ + 1) if and only if mi, j+1 =
∑imax

k=j+1 si,k + 1 (resp.
∑imax

k=j+1 si,k +
2).

PROOF. (1) is clear from the definitions of imax and ibm. Since mi, j is the number of
virtual local branches of Ri, j−1 through xi, j and Lemma 1.2, we have mi,1 =

∑imax
k=1 si,k + 1 and

(3). If mi,imax ∈ nZ + 1, then xi,imax +1 is a double point, which is not allowed when n ≥ 3 by
Lemma 1.2. Thus we have shown (2). �

LEMMA 2.3. If C is not contained in R, then the following hold.
(1) ibm ≤ imax. If ibm < imax, then mi,ibm ∈ nZ, and si,k = 0 for ibm < k < imax, and

si,imax = 1.
(2) mi,1 =

∑imax
k=1 si,k .

(3) mi, j ∈ nZ (resp. nZ + 1) if and only if mi, j+1 =
∑imax

k=j+1 si,k (resp.
∑imax

k=j+1 si,k + 1).

PROOF. By the same argument as in the proof of Lemma 2.2, we have (2), (3). Suppose
that ibm < imax. (1) follows from the definition of ibm and (3). �

Put t = R′C and c =
∑l

i=1 ibm. If C is a fiber Γ of ϕ, then t coincides with the number
of branch points r. If C is an exceptional curve, then t coincides with the multiplicity of R at
the point to which C is contracted. Clearly, c coincides with the number of blow-ups occuring
over C and t =

∑l
i=1

∑imax
k=1 ksi,k . When C is contained in R (resp. not contained in R), let ci be

the number of j = 1, . . . , ibm satisfying mi, j =
∑imax

k=j+1 si,k + 2 (resp. mi, j =
∑imax

k=j+1 si,k + 1).
From Lemmas 2.2 and 2.3, ci can be regarded as the number of j = 1, . . . , ibm − 1 such that
mi, j ∈ nZ + 1. Set di, j = [mi, j/n].

PROPOSITION 2.4. If C is contained in R, the following equalities hold:

t + c +
l∑

i=1
ci =

l∑
i=1

ibm∑
j=1

mi, j ,

t + c
n
=

l∑
i=1

ibm∑
j=1

di, j .(2.1)
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PROOF. From Lemma 2.2, we get
∑imax

k=1 ksi,k =
∑ibm

j=1 mi, j − ibm − ci, which gives us the
desired two equalities. �

PROPOSITION 2.5. If C is not contained in R, the following equalities hold:

t +
l∑

i=1
ci =

l∑
i=1

ibm∑
j=1

mi, j +

l∑
i=1

(imax − ibm) ,

t
n
=

l∑
i=1

ibm∑
j=1

di, j +
1
n

l∑
i=1

(imax − ibm + mi,ibm − ndi,ibm ) .(2.2)

PROOF. From Lemma 2.3, we get
∑imax

k=1 ksi,k =
∑ibm

j=1 mi, j + imax − ibm − ci , which gives
us the desired two equalities. �

We collect some properties of mi, j .

LEMMA 2.6. The following hold:
(1) If n ≥ 3, then mi, j ≥ mi, j+1. If n = 2, then mi, j + 1 ≥ mi, j+1 with equality holding

only if mi, j−1 is even (when j > 1) and mi, j is odd.
(2) If mi, j−1 ∈ nZ + 1 and mi, j ∈ nZ, then mi, j > mi, j+1.

PROOF. If mi, j < mi, j+1, then si, j = 0 and mi, j + 1 = mi, j+1, since mi, j − mi, j+1 =

si, j − 1, si, j , or si, j + 1. Moreover, we have mi, j ∈ nZ + 1 from Lemmas 2.2 and 2.3, and then
mi, j+1 ∈ nZ + 2, which is impossible when n ≥ 3 from Lemma 1.2. If n = 2 and mi, j + 1 =
mi, j+1, then mi, j−1 is even since si, j = 0.

If mi, j−1 ∈ nZ + 1 and mi, j ∈ nZ, then mi, j − mi, j+1 = si, j + 1 > 0 by Lemmas 2.2 and
2.3. Hence (2) follows. �

In particular, we have non-trivial αk only when k ≤ [r/2n] by Lemma 1.3.

DEFINITION 2.7. By using the datum {mi, j }, one can construct a diagram with entries
(xi, j,mi, j ) as in Table 1. We call it the singularity diagram of C.

Table 1. Singularity diagram.

#
(x1,1bm,m1,1bm )

#
· · · (xl,lbm,ml,lbm )

· · · · · ·
(x1,1,m1,1) · · · (xl,1,ml,1)
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On the top of the i-th column (indicated by # in Table 1), we write (imax − ibm) when ibm <

imax and leave it blank when ibm = imax. We say that the singularity diagram of C is of type 0
(resp. of type 1) if C � R (resp. C ⊂ R).

DEFINITION 2.8. Let ψ̃ = ψ1 ◦ · · · ◦ ψN : W̃ → W be a decomposition of the natural
birational morphism into a succession of blow-ups. We may assume that ψ1, . . . , ψNp are all
blow-ups at points over p ∈ B for simplicity. Let C1 be the fiber Γp of ϕ over p and Ck the
exceptional curve for ψk−1 for k = 2, . . . , Np + 1. Let Dk be the singularity diagram of Ck .
We call D1,D2, . . . ,DNp+1 a sequence of singularity diagrams associated with Γp.

Put tk := R′Ck , lk := #(R′ ∩ Ck ) and let (xki, j,m
k
i, j ), i = 1, . . . , lk , j = 1, . . . , ibm denote

entries of Dk . For any 1 ≤ k ≤ Np + 1 and 1 ≤ i ≤ lk for which ibm > 0, there exists a
uniquely determined index k ′ such that Ck′ is the exceptional curve for the blow-up at xki,1.
That is, if we put I := {(k, i) | 1 ≤ k ≤ Np + 1, 1 ≤ i ≤ lk and ibm > 0} then we get a
well-defined mapΦ : I → {2, . . . , Np + 1} that sends (k, i) to k ′. It is clear thatΦ is bijective
and k < k ′. When ν = Φ(μ, i) for some (μ, i) ∈ I , we say that Dμ forks to Dν and write
Dμ

i
� Dν .

From the definition of sequences of singularity diagrams, we clearly have the following:

LEMMA 2.9. With the above notation, let Dμ
i
� Dν . Then, tν = mμ

i,1 and Dν is of
type k if tν ≡ k (mod n). Moreover, the following hold.

(1) For every 1 ≤ μ′ ≤ μ, i′, j ′ satisfying (xμ
′

i′, j′,m
μ′
i′, j′ ) = (xμ

i,1,m
μ
i,1), one of the following

holds:

(a) If j ′ < i′bm, then Dν has (xμ
′

i′, j′+1,m
μ′
i′, j′+1) as an entry in the bottom row.

(b) If j ′ = i′bm and Dμ′ is of type 1, then Dν has (1) = (îmax − îbm) as an entry in the
bottom row for some î.

(c) If j ′ = i′bm, Dμ′ is of type 0 and i′max − i′bm ≥ 2, then Dν has (1) = (îmax − îbm) as an
entry in the bottom row for some î.

(d) If j ′ = i′bm, Dμ′ is of type 0 and i′max − i′bm = 1, then Dν has (s) = (îmax − îbm) for
some s ≥ 1 as an entry in the bottom row for some î.

(2) In (1), distinct Dμ′’s produce distinct bottom entries of Dν .
(3) In (1), Dμ′ and Dν have no entries in common except the entry appeared in the

case (a).

DEFINITION 2.10. Fix n ≥ 2 and t ∈ nZ>0 ∪ (nZ>0 + 1). Suppose that we are given
the following datum.

(i) Non-negative integers c, l and ibm for i = 1, . . . , l satisfying l > 0, c =
∑l

i=1 ibm and
ibm ≥ (i + 1)bm for i = 1, . . . , l − 1.

(ii) A non-empty set S and c pairs (xi, j,mi, j ) ∈ S × (nZ>0 ∪ (nZ>0 + 1)) for i =
1, . . . , l, j = 1, . . . , ibm such that xi, j � xi′, j′ if (i, j) � (i′, j ′), and {mi, j } satisfies Lemma 2.6.
Moreover, one of the following holds.
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(ii,0) There are integers imax satisfying imax ≥ ibm for i = 1, . . . , l such that imax and
di, j := [mi, j/n] satisfy (2.2).

(ii,1) mi,ibm ∈ nZ and (2.1) holds.
Then we can construct a diagram D as in Table 1. We call it an abstract singularity diagram
for (n, t). For k = 0, 1, the diagramD is said to be of type k when (ii,k) holds.

DEFINITION 2.11. A sequenceD1,D2, . . . ,DN of abstract singularity diagrams is said
to be admissible if there exists a bijection Φ : I → {2, . . . , N } such that μ and ν := Φ(μ, i)
satisfy μ < Φ(μ, i) and (1), (2), (3) of Lemma 2.9 for any (μ, i) ∈ I , where I := {(μ, i) |1 ≤
μ ≤ N, 1 ≤ i ≤ lμ and ibm > 0}.

DEFINITION 2.12. Two abstract singularity diagrams D and D′ are equivalent if D
and D′ are the same up to elements xi, j ∈ S and a replacement of columns with the same
height. Two admissible sequences D1, . . . , DN and D′1, . . . , D′N of abstract singularity
diagrams are equivalent, if there exists a bijectionΨ : {1, . . . , N } → {1, . . . , N } withΨ (1) = 1
such thatDk is equivalent toDΨ (k) for any 1 ≤ k ≤ N andDμ

i
� Dν if and only ifDΨ (μ)

i
�

DΨ (ν) for any μ < ν and 1 ≤ i ≤ lμ (after a suitable replacement of columns of Dμ with the
same height).

It is clear that any singularity diagram is an abstract singularity diagram, and any sequence
D1, . . . ,DN of singularity diagrams associated with Γp is an admissible sequence of abstract
singularity diagrams with t1 = r. We are able to classify all fibers of primitive cyclic covering
fibrations of type (g, 0, n) by classifying equivalent classes of admissible sequences of abstract
singularity diagrams with t1 = r. Indeed, any fiber Fp of a primitive cyclic covering fibration
f of type (g, 0, n) can be reconstructed by a sequence of singularity diagrams associated with
Γp via the n-cyclic covering θ̃ : S̃ → W̃ .

3. Fibers of primitive cyclic covering fibrations of type (4, 0, 3). In this section, we
prove that all fibers of primitive cyclic covering fibrations of type (4, 0, 3) are classified into 9
types as listed in Table 2.

In Table 2, a double line (resp. a triple line) stands for a component of Fp along which
Fp has multiplicity 2 (resp. 3). The symbol • stands for a point on a 1-dimensional fixed
component of the automorphism τ of f , while the symbol ◦ stands for an isolated fixed point
of τ. Note that the fibers given in the tables are the most typical (generic) ones and we will
obtain the whole list by degenerating them, that is, some of •’s can overlap one another to
give different topological types of fibers. A fiber of type (0) is a non-singular curve of genus
4 in the generic case and, it will have a cusp when two •’s overlap, etc. A component with
three • or ◦ in total is an elliptic curve when the three are distinct, or a rational curve with
one smooth point (• or ◦) and one cusp • when two of • overlap, or three smooth rational
curves intersecting in one point • when three of • overlap. A component with no fixed point
is a smooth rational curve. The indices i, j, etc. are determined as follows: For (Ii, j,l ) and
(Vi, j ), the index i (resp. j) counts the number of • lost by overlapping on the curve I (resp.
J), 0 ≤ i, j ≤ 2. For (IIIi, j ), the index i counts the number of • lost by overlapping with •
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Table 2. List of fibers of primitive cyclic covering fibrations of type (4, 0, 3).

(0i1,...,im ) (Ii, j,l ) (IIk,l )

The
shape
of Fp

(k = 0)
••
•

•••

��
��
��

��
��
��

��
��
��

��
��
��

••• •••

· · ·· · ·
· · ·

I J

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

•••

· · ·· · ·
· · ·

K

α0(Fp) k (k = 0, . . . , 5) k (k = 0, . . . , 4) 3 + k (k = 0, 1, 2)
α1(Fp) 0 l + 1 (l ≥ 0) l + 2 (l ≥ 0)
ε(Fp) 0 0 0

Ind(Fp) 0 3
7 (l + 1) 3

7 (l + 2)
σ(Fp ) − 16

15 k − 16
15 k − 7

5 l − 7
5 − 16

15 k − 7
5 l − 6

(IIIi, j ) (IVk ) (Vi, j )

The
shape
of Fp

(k = 0) • •••• x ◦
• •
•

•
• • ◦••• •

I

J

α0(Fp) 1 + k (k = 0, 1, 2, 3) k (k = 0, 1, 2, 3) 2 + k (k = 0, 1, 2)
α1(Fp) 1 3 3
ε(Fp) 0 1 1

Ind(Fp) 3
7

16
7

16
7

σ(Fp ) − 16
15 k − 37

15 − 16
15 k − 16

15 − 16
15 k − 16

5

(VIk ) (VIIk ) (VIII)

The
shape
of Fp

(k = 0)
���������

���������

���������

◦••

◦

◦
•
••

••
◦ ◦◦
••

α0(Fp) 4 + k (k = 0, 1) 1 + k (k = 0, 1, 2) 4
α1(Fp) 3 4 4
ε(Fp) 1 2 3

Ind(Fp) 16
7

26
7

33
7

σ(Fp ) − 16
15 k − 16

3 − 16
15 k − 2

5 − 7
15
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at x and the index j counts the number of • lost by overlapping not with • at x, leaving the
original • at x untouched (that is, the number of cusps lying only on one of two components).
We remark that such overlappings at x can occur only on one of two components meeting at
x. Hence we have (i, j) = (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0) and (2, 1) when (IIIi, j ). For
(0i1,...,im ), the indices i j are positive integers with

∑m
j=1 i j = 6 and i1 ≥ i2 ≥ · · · ≥ im; when

i j > 1, one can understand that i j − 1 •’s out of 6 − m overlap with the j-th •. There are 11
such sequences {i j }mj=1. The integer k is the total number of • lost by overlapping, and then
k =

∑m
j=1(i j − 1) for (0i1,...,im ), k = i + j for (Ii, j,l ), (IIIi, j ) or (Vi, j ). The index l counts the

number of (−2)-curves in one chain connecting the curve I with J for (Ii, j,l ), or the number
of 2-fold (−2)-curves in one chain intersecting with the curve K for (IIk,l ). The number of
topologically different fibers of types (0i1,...,im ), (IIIi, j ), (IVk ), (Vi, j ), (VIk ), (VIIk ) and (VIII)
is 11, 7, 4, 4, 2, 3 and 1, respectively. The number of topologically different fibers of types
(Ii, j,l ) and (IIk,l) up to the number l is 6 and 3, respectively .

In order to classify fibers of primitive cyclic covering fibrations of genus 4 of type
(4, 0, 3), it is sufficient to classify admissible sequencesD1,D2, . . . ,DN of abstract singularity
diagrams with n = 3, t1 = r = 6 and m1

i,1 ≤ 3 + k if D1 is of type k from Lemma 1.3. We
proceed with the following steps.

(i) Classify abstract singularity diagrams of type k for (3, 6) with mi,1 ≤ 3 + k for k =
0, 1.

(ii) Classify admissible sequences of abstract singularity diagrams with n = 3, t1 = 3+ k
and D1 is of type k for k = 0, 1.

(iii) Classify admissible sequences of abstract singularity diagrams with n = 3, t1 = r =
6 and m1

i,1 ≤ 3 + k if D1 is of type k for k = 0, 1.
(i) From (2.1), (2.2) and Lemma 2.6, it is easy to classify all abstract singularity diagrams for
(3, 6).

All abstract singularity diagrams of type 0 for (3, 6) with mi,1 ≤ 3 are as follows.
• c = 0

(6) (5, 1) (4, 2) (4, 1, 1) · · · (2, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1)

• c = 1

3 (3) 3 (2, 1) 3 (1, 1, 1)
(1)
3 (2)

(1)
3 (1, 1)

(2)
3 (1)

(3)
3
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• c = 2

3 3 3
3

Here we use the symbol (i1, i2, . . . , im) instead of (i1), (i2), . . . , (im) for simplicity.
All abstract singularity diagrams of type 1 for (3, 6) with mi,1 ≤ 4 are as follows.

3 3 3 3
3 3

3
4 3

3
3
3

3
4
4

(ii) All admissible sequences of abstract singularity diagrams with n = 3, t1 = 3 andD1 being
of type 0 are as follows.

(x1, 3)

D0

(x2, 3)

D0
x1

· · · (xk, 3)

D0
xk−1

(1, 1, 1) or (2, 1) or (3)

D0
xk

Here and in the sequel,Dk∗ means the diagramD∗ is of type k.
All admissible sequences of abstract singularity diagrams with n = 3, t1 = 4 and D1

being of type 1 are the following 3 classes.

(x, 3) (y, 3)

D1

(1, 1, 1) or (2, 1)

D0
x

(1, 1, 1) or (2, 1)

D0
y

(y, 3)
(x, 3)

D1

(y, 3)

D0
x

(1, 1, 1) or (2, 1)

D0
y

(y, 3)
(x, 4)

D1

(y, 3) (z, 3)

D1
x

(1, 1, 1)

D0
y

(1, 1, 1) or (2, 1)

D0
z
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(iii) In order to classify admissible sequences of abstract singularity diagrams with n = 3,
t1 = r = 6 and m1

i,1 ≤ 3 + k if D1 is of type k, we may consider admissible sequences to be
continued from each column of diagrams classified in (i). Using the classification in (ii), we
can classify them as follows.

(1) (x1, 3)

D0

(x2, 3)

D0
x1

· · · (xk, 3)

D0
xk−1

(1, 1, 1) or (2, 1) or (3)

D0
xk

x1

· · ·k
��

x1

· · ·k
��

x1

· · ·k
��

(2)
(1∗)

(x, 3)

D0

(1∗, 1, 1) or (2∗, 1) or (2, 1∗) or (3∗)

D0
x

x
�

x
�

x
�

x
�

Here asterisks are sometimes attached to both i′max − i′bm and îmax − îbm in entries of
diagrams if the condition of Lemma 2.9 (c), (d) holds for i′ and î.
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(3)
(2)

(x, 3)

D0

(1, 1, 1) or (2, 1)

D0
x

x
�

x
�

(4)
(3)

(x, 3)

D0

(1, 1, 1) or (2, 1)

D0
x

x
�

x
�

(5)
(y1, 3)
(x, 3)

D0

(y1, 3)

D0
x

· · · (yk, 3)

D0
yk−1

(1, 1, 1) or (2, 1) or (3)

D0
yk

x y1

· · ·k
� ��

x y1

· · ·k
� ��

x y1

· · ·k
� ��
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(6) (x, 3)

D1

(1, 1, 1) or (2, 1)

D0
x

x
�

x
�

(7)
(y, 3)
(x, 3)

D1

(y, 3)

D0
x

(1, 1, 1) or (2, 1)

D0
y

x y
� �

x y
� �

(8)
(y, 3)
(x, 4)

D1

(y, 3) (z, 3)

D1
x

(1, 1, 1)

D0
y

(1, 1, 1) or (2, 1)

D0
z

x y

z
z

� � �

x y

z z

� � �
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(9)
(z, 3)
(y, 3)
(x, 3)

D1

(y, 3)

D0
x

(z, 3)

D0
y

(1, 1, 1) or (2, 1)

D0
z

x y z
� � �

x y z
� � �

(10)
(z, 3)
(y, 4)
(x, 4)

D1

(w, 3)
(y, 4)

D1
x

(z, 3) (w, 3)

D1
y

(1, 1, 1)

D0
z

(1, 1, 1)

D0
w

x y z

w w

� � � �

For example, we consider the following sequence of singularity diagrams associated with
Γp .

(x, 3) (y, 3) (z, 3)

Γ1
p

(1, 1, 1)

E0
x

(1, 1, 1)

E0
y

(1, 1, 1)

E0
z

After blowing-ups at x, y , z, the branch locus R̃ near the fiber Γ̃p of ϕ̃ over p is as follows.
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Γ̂p

Ê1 Ê2 Ê3

where Γ̂p and Êkrespectively denote the proper transforms of Γp and Ek , and then Γ̃p = Γ̂p +
Ê1 + Ê2 + Ê3. Taking 3-cyclic covering and contracting (−1)-curve in a fiber of f̃ , the fibers
F̃p , Fp of f̃ , f over p respectively are as follows.

E

Â1 Â2 Â3

•

•

•

•

•

•
�

A1

A2

A3◦
• •
•

•
• •

where Âk = θ̃
∗ Êk , 3E = θ̃∗Γ̂p , Ak = ρ( Âk ), F̃p = 3E + Â1 + Â2 + Â3, Fp = A1 + A2 + A3,

the symbol • and ◦ respectively denote a point on a 1-dimensional fixed component of the
automorphisms τ, τ̃ of f , f̃ and an isolated fixed point of τ. Similarly, we can determine the
shape of Fp from other admissible sequences of abstract singularity diagrams. Thus, we can
classify all fibers of primitive cyclic covering fibrations of type (4, 0, 3) as follows:

By computing αk (Fp), ε(Fp), Ind(Fp ) and σ(Fp), we get the following theorem:

THEOREM 3.1. All fibers of primitive cyclic covering fibrations of type (4, 0, 3) are
classified into 32 classes of types (0i1,...,im ), (IIIi, j ), (IVk ), (Vi, j ), (VIk ), (VIIk ) and (VIII) plus
9 classes of types (Ii, j,l ) and (IIk,l) up to (−2)-curves, as listed in Table 2.

COROLLARY 3.2. Let f : S → B be a primitive cyclic covering fibration of type (4,0, 3).
Then we have

K2
f =

24
7
χ f + Ind

and Ind is given by

Ind =
∑
l≥0

3
7

(l + 1)ν(I∗,∗,l) +
∑
l≥0

3
7

(l + 2)ν(II∗,l) +
3
7
ν(III∗,∗) +

16
7
ν(IV∗)

+
16
7
ν(V∗,∗) +

16
7
ν(VI∗,∗) +

26
7
ν(VII∗) +

33
7
ν(VIII)

where ν(∗) denotes the number of fibers of type (∗) and ν(I∗,∗,l) :=
∑

i, j ν(Ii, j,l ), etc.

Since we see that σ(Fp) ≤ 0 for any fiber Fp from the list, we have the following:
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Table 3. List of all singularity diagrams of Γp and corresponding types of Fp .

Γp ⊂ R

The
diagram
of Γp

3 3 3 3
3 3

3
4 3

The type
of Fp

(IVk ) (Vi, j ) (VIIk )

Γp ⊂ R Γp � R & c = 0

The
diagram
of Γp

3
3
3

3
4
4

(i1, . . . , im) etc.

The type
of Fp

(VIk ) (VIII) (0i1,...,im )

Γp � R & c = 1

The
diagram
of Γp

3 (1, 1, 1) etc.
(1)
3 (1, 1) etc.

(2)
3 (1)

The type
of Fp

(Ii, j,l ) (IIIi, j ) (III1, j )

Γp � R & c = 1 Γp � R & c = 2

The
diagram
of Γp

(3)
3 3 3 3

3

The type
of Fp

(III2, j ) (Ii, j,l ) (IIk,l )
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COROLLARY 3.3. The signature of a complex surface with a primitive cyclic covering
fibration of type (4, 0, 3) is not positive.

EXAMPLE 3.4. We can construct a primitive cyclic covering fibration of type (4, 0, 3)
having one singular fiber of any type. Indeed, we construct a fibration f with a multiple fiber
Fp of type (VIII) as follows. Let P := P1 × P1, B := P1 and ϕ := pr2 : P → B. Let h and Γ
respectively denote general fibers of pr1 and ϕ = pr2 and set d := 2h + mΓ . We fix p ∈ B
arbitrarily. For a sufficiently large m, we can take R ∈ |3d | such that Γp ⊂ R, R \Γp is smooth,
and the appearance of R and Γp is as follows (see (10) in the classification (iii)).

Γp

R ⊃ Γp

Let ψ̃ = ψw ◦ ψz ◦ ψy ◦ ψx : P̃ → P be the composite of 4 blow-ups at x, y, z, w as follows.

x y z

w w

� � � �

Then, the divisor R̃ := ψ̃∗R − 3(Ex + Ey + Ez + Ew) is smooth and 3-divisible in Pic(P̃),
where E• denotes the total transform of the exceptional curve E• for ψ•. Then, we can take a
3-cyclic covering θ̃ : S̃ → P̃ branched over R̃. Let f : S → B be the relatively minimal model
of f̃ := ϕ ◦ ψ̃ ◦ θ̃ : S̃ → B. Then the fiber Fp of f over p is clearly of type (VIII). We can
construct a fibration with another type of singular fiber in a similar way.

EXAMPLE 3.5. We can construct primitive cyclic covering fibrations of type (g, 0, 3)
with a triple fiber, except for g = 7. Note that all the possible genera g are 3k + 1, k ∈ Z>0.

Firstly, we consider the following admissible sequence of abstract singularity diagrams
for k > 0.

(z1, 3) · · · (zk, 3)
(y1, 4) · · · (yk, 4)
(x1, 4) · · · (xk, 4)

D1

(wi, 3)
(yi, 4)

D1
xi

(zi, 3) (wi, 3)

D1
yi

(1, 1, 1)

D0
zi

(1, 1, 1)

D0
wi
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One can check that the sequence gives us a triple fiber Fp . By an argument similar to that in
Example 3.4, we obtain a primitive cyclic covering fibration f of type (6k − 2, 0, 3) which has
such a triple fiber for k > 0.

Next, we consider the following admissible sequence of abstract singularity diagrams for
k ≥ 0.

(z, 6) (z1, 3) · · · (zk, 3)
(y, 7) (y1, 4) · · · (yk, 4)
(x, 7) (x1, 4) · · · (xk, 4)

D1

(w, 3)
(y, 7)

D1
x

(z, 6) (w, 3)

D1
y

(1, 1, 1, 1, 1, 1)

D0
z

(1, 1, 1)

D0
w

(wi, 3)
(yi, 4)

D1
xi

(zi, 3) (wi, 3)

D1
yi

(1, 1, 1)

D0
zi

(1, 1, 1)

D0
wi

One can check that the sequence gives us a triple fiber Fp . Similarly as in Example 3.4, we
obtain a primitive cyclic covering fibration f of type (6k + 15, 0, 3) with such a triple fiber for
k ≥ 0.

4. Fibers of hyperelliptic fibrations of genus 3. Let f : S → B be a hyperelliptic
fibration of genus g, that is, a primitive cyclic covering fibration of type (g, 0, 2). We use
freely the notation in the previous sections. In order to classify fibers of hyperelliptic fibration
of genus g, it is sufficient to classify admissible sequences of abstract singularity diagrams
with n = 2 and t1 = r = 2g + 2. However, such sequences are too many to classify them
all, and from the point of view of invariants, it seems that we do not have to find out all
fibers explicitly, because there are singularities of R which do not affect important invariants
in the hyperelliptic case. Indeed, the blow-ups at the singularities of multiplicity 2 or 3 of the
branch curves contribute nothing to the Horikawa index when n = 2. If a singular point x
with multiplicity 2 or 3 has no singular points with multiplicity greater than 4 infinitely near
it, we call it a negligible singularity. If a singular point x is not a negligible singularity, we
call it an essential singularity. We decompose ψ̃ : W̃ → W into ψ : W̃ → Ŵ , the composite of
blow-ups at negligible singularities and ψ̂ : Ŵ → W , the composite of blow-ups at essential
singularities. We call ψ̂ : Ŵ → W the even resolution of essential singularities.

In this section, we first introduce abstract essential singularities and admissible sequences
of them in order to classify fibers of hyperelliptic fibrations of genus g according to the
Horikawa index. Next, we classify all fibers of hyperelliptic fibrations of genus 3 into 12 types
and compute the Horikawa index for any types by classifying admissible sequences of abstract
essential singularities.
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4.1. Abstract essential singularity diagrams.

DEFINITION 4.1. Let D be an abstract singularity diagram with n = 2 and (xi, j,mi, j )
an entry of D. Then (xi, j,mi, j ) is strictly negligible if one of the following holds:

(i) mi, j = 2.
(ii) mi, j = 3, j < ibm and mi, j+1 � 4.
(iii) mi, j = 3, j = ibm and D is of type 1.
(iv) mi, j = 3, j = ibm > 1 and mi, j−1 = 3.

REMARK 4.2. If D is a singularity diagram and (xi, j,mi, j ) is strictly negligible, then
xi, j is a negligible singularity. However, the inverse is not true.

DEFINITION 4.3. Let t ≥ 2 be an integer. We define an abstract essential singularity
diagram D for t to be an abbreviation of an abstract singularity diagram for (2, t) by the
following rule:

(i) We denote a strictly negligible entry (xi, j,mi, j ) by (xi, j, II) if mi, j = 2, or (xi, j, III) if
mi, j = 3.

(ii) We leave it blank for a strictly negligible entry.

DEFINITION 4.4. Let D1,D2, . . . ,DN be a sequence of abstract essential singularity
diagrams. Let I := {(μ, i) |1 ≤ μ ≤ N, 1 ≤ i ≤ lμ and ibm > 0} and Ik := {(μ, i) ∈ I |mμ

i,1 ≥
k}. Then D1,D2, . . . ,DN is said to be admissible if there exist a subset I4 ⊂ Iess ⊂ I3 and a
bijectionΦ : Iess → {2, . . . , N } such that μ and ν := Φ(μ, i) satisfy μ < Φ(μ, i) and Lemma 2.9
(1), (2), (3) and if mμ

i,1 = 3, then Dν has no strictly negligible entries for any (μ, i) ∈ Iess.
Let D1,D2, . . . ,DN be an admissible sequence of abstract essential singularity diagrams.
Then, (xμ

i,1,m
μ
i,1) is said to be negligible (resp. essential ) if (μ, i) � Iess (resp. (μ, i) ∈ Iess).

Clearly, a strictly negligible entry (xμ
i,1,m

μ
i,1) is negligible. We also denote a negligible entry

(xμ
i,1, 3) by (xμ

i,1, III).

DEFINITION 4.5. Two admissible sequencesD1, . . . ,DN andD′1, . . . ,D′N of abstract
essential singularity diagrams are equivalent, if there exists a bijection Ψ : {1, . . . , N } →
{1, . . . , N } with Ψ (1) = 1 such that the essential part of Dk is equivalent to that of DΨ (k)

for any 1 ≤ k ≤ N , and Dμ
i
� Dν if and only if DΨ (μ)

i
� DΨ (ν) for any μ < ν and 1 ≤

i ≤ lμ (after a suitable replacement of columns of Dμ), where the essential part of Dk is
the diagram which consists of essential entries of Dk only, and the definition of equivalence
of essential parts of abstract essential singularity diagrams is the same as that of abstract
singularity diagrams.

In order to classify all fibers of hyperelliptic fibrations with genus g according to the
Horikawa index, it suffices to classify admissible sequences of abstract essential singularity
diagrams with t1 = r = 2g + 2 and m1

i,1 ≤ g + 1+ k ifD1 is of type k for k = 0, 1. We proceed
with the following steps.

(i) Classify abstract essential singularity diagrams of type k for 2g + 2 with mi,1 ≤ g +
1 + k for k = 0, 1.
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Table 4. List of all essential parts of abstract essential singularity diagrams of type 0 for t1 = r = 8 with mi,1 ≤ 4.

(0,a) (0,b) (0,c)

(•), II, III
only 3 4

0 0, II
(0) (II) (II)

(0,d) (0,e) (0,f)

4
3

3
4

4
4

0, II 0 0
(VI) (VIII) (IV)

(0,g) (0,h) (0,i)

3 3 4 3 4 4

(0, 0) (0, 0) (0, 0)
(II) (II) (II)

(ii) Classify admissible sequences of abstract essential singularity diagrams with t1 =

3, 4, . . . , g + 2 and D1 is of type k if t1 ≡ k (mod 2).
(iii) Classify admissible sequences of abstract essential singularity diagrams with t1 = r =

2g + 2 and m1
i,1 ≤ g + 1 + k if D1 is of type k for k = 0, 1.

4.2. Classification: genus 3 case.
(i) All essential parts of abstract essential singularity diagrams of type 0 for t1 = r = 8

with mi,1 ≤ 4 are as in Table 4.
All essential parts of abstract essential singularity diagrams of type 1 for t1 = r = 8 with

mi,1 ≤ 5 are as in Table 5, where 0, II, III in the second row from the bottom are all possible
strictly negligible entries on the top of the column of the diagram and 0 means no strictly
negligible entries, and the entry (•) in the bottom row is the type of a fiber corresponding to
the diagram which is defined as:

DEFINITION 4.6. Let f : S → B be a hyperelliptic fibered surface of genus 3. We say
a fiber Fp of f (resp. F̃p of f̃ , Γp of ϕ, Γ̃p of ϕ̃) is a fiber of type (0) if the essential part of the
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Table 5. List of all essential parts of abstract essential singularity diagrams of type 1 for t1 = r = 8 with mi,1 ≤ 5.

(1,a) (1,b) (1,c) (1,d)

II, III
only 4 5 4

3

0, II, III II, III 0, II, III
(0) (I) (I) (I)

(1,e) (1,f) (1,g) (1,h)

4
4

4
5

5
5

4
3
4

0, II, III 0, II, III II, III 0, II
(V) (IX) (VII) (X)

(1,i) (1,j) (1,k) (1,l)

4
3
4
3

6
5 4 4 5 4

0 0 (0, 0), (II, 0),
(III, 0), (II, II)

(II, 0), (III, 0),
(II, II)

(XI) (III) (I) (I)

(1,m) (1,n) (1,o) (1,p)

5 5 4
3 4

4
3 5

4 4
3 3

(II, II) (0, 0), (II, 0),
(0, II) (0, II) (0, 0)

(I) (I) (I) (I)
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singularity diagram of Γp is (0,a) or (1,a), a fiber of type (I) if that is (1,b), (1,c), (1,d), (1,k),
(1,l), (1,m), (1,n), (1,o) or (1,p), a fiber of type (II) if that is (0,b), (0,c), (0,g), (0,h) or (0,i), a
fiber of type (III) if that is (1,j), a fiber of type (IV) if that is (0,f), a fiber of type (V) if that is
(1,e), a fiber of type (VI) if that is (0,d), a fiber of type (VII) if that is (1,g), a fiber of type (VIII)
if that is (0,e), a fiber of type (IX) if that is (1,f), a fiber of type (X) if that is (1,h), a fiber of
type (XI) if that is (1,i).

(ii) All admissible sequences of abstract essential singularity diagrams with t1 = 3 and
D1 is of type 1 (i.e. arising from an entry (x1, 3)) are as follows.

(
(x1, 3)

)
(y1, 4)

D1
x1

· · · (xk, 3)

D0
yk−1

(yk, 4)

D1
xk

Then, (x1, 3) is said to be of type (3-4)k. An entry of type (3-4)0 is nothing more than a
negligible entry.

All admissible sequences of abstract essential singularity diagrams with t1 = 4 and D1
being of type 0 (i.e. arising from an entry (x1, 4)) are as follows.

(
(x1, 4)

)
(x2, 4)

D0
x1

· · · (xk, 4)

D0
xk−1

(xk+1, 3) is of type (3-4)l

D1
xk

Then, (x1, 4) is said to be of type 4k-(3-4)l.
All admissible sequences of abstract essential singularity diagrams with t1 = 5 and D1

is of type 1 (i.e. arising from an entry (x1, 5)) such that no entries with multiplicity 6 appear
are the following 3 cases.

(
(x1, 5)

)
(x2, 5)

D1
x1

· · · (xk, 5)

D1
xk−1

(
(x1, 5)

)
(x2, 5)

D1
x1

· · · (xk, 5)

D1
xk−1

(xk+1, 4)

D1
xk

(xk+2, 3) is of type (3-4)l

D0
xk+1

(
(x1, 5)

)
(x2, 5)

D1
x1

· · · (xk, 5)

D1
xk−1

(xk+2, 4)
(xk+1, 3)

D1
xk

Then, (x1, 5) is said to be of types 5k , 5k-4-(3-4)l and 5k-34, respectively.
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We remark no singular points with multiplicity 6 appear over Γp unless it is of type (III).
All admissible sequences of abstract essential singularity diagrams with D1 the diagram on a
fiber Γp of type (III) are as follows.

(x2, 6)
(x1, 5)

D1

(x2, 6)

D1
x1

(x3, 4) or (x3, 3) is of type 4k-(3-4)l

D0
x2

(iii) Let Γp be a fiber of type (I). First, if there exist singularities with multiplicity 5,
we blow up these singularities until there exist no singularities with multiplicity 5 on the total
transform of Γp. Let i be the number of singularities of multiplicity 5 (i.e. the number of these
blow-ups). Then the dual graph of the total transform of Γp is the Dynkin graph of type Ai+1,
and all possible essential singularities on both ends of the chain are of types 4-(3-4) j or 34.
We say Γp is of type (Ii,j,k) more precisely if there exists a singularity of type 4-(3-4) j−1 on
one end and there exists a singularity of type 4-(3-4)k−1 on another end, where j or k = 0
means there exists no essential singularity on the end. When there exists a singularity of type
34 on one end, we denote j or k = ∞.

Let Γp be a fiber of type (II). Similarly, if there exist singularities with multiplicity 4,
we blow up these singularities until there exist no singularities with multiplicity 4 on the total
transform of Γp. Let i be the number of these blow-ups. Then the dual graph of the total
transform of Γp is also the Dynkin graph of type Ai+1, and all possible essential singularities
on both ends of the chain are of type (3-4) j . We say Γp is of type (IIi,j,k) if there exists a
singularity of type (3-4) j on one end and there exists a singularity of type (3-4)k on another
end.

Let Γp be a fiber of type (III) (resp. a fiber of type (IV)). We say Γp is of type (IIIi,j) (resp.
(IVi,j)) if there exists a singularity of type 4i-(3-4) j on the exceptional curve for the blow-up
at the singularity with multiplicity 6 infinitely near to the singularity with multiplicity 5 on Γp
(resp. the singularity with multiplicity 4 infinitely near to the singularity with multiplicity 4
on Γp).

Let Γp be a fiber of type (V) (resp. (VI)). We say Γp is of type (Vj) (resp. (VIj))
if there exists a singularity of type (3-4) j on the exceptional curve for the blow-up at the
singularity with multiplicity 4 infinitely near to the singularity with multiplicity 4 on Γp (resp.
the singularity with multiplicity 4 infinitely near to the singularity with multiplicity 3 on Γp).

Let Γp be a fiber of type (VII) (resp. (VIII)). We say Γp is of type (VIIj) (resp. (VIIIj))
if there exists a singularity of type 4-(3-4) j−1 on the exceptional curve for the blow-up at the
singularity with multiplicity 5 infinitely near to the singularity with multiplicity 5 on Γp (resp.
the singularity of multiplicity 3 infinitely near to the singularity with multiplicity 4 on Γp),
where j = 0 means there exists no essential singularity on the exceptional curve.

Now, the following lemma is straightforward.
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LEMMA 4.7. Let ψ̂ : Ŵ → W be the resolution of essential singularities and R̂ the
branch locus on Ŵ . The total transform on Ŵ of each fiber Γ of types (I), . . . , (XI) has the
following configuration.

(Ii,j,k)
j
x • j − 1◦ • 1◦ 1

ω
2• i• i + 1

ω
1◦ • k − 1◦ • k

x

(when j = ∞) • x •′ 1
ω

2• · · ·

(IIi,j,k)
j
x • j − 1◦ • 1◦ 1

z
2◦ i◦ i + 1

z
1◦ • k − 1◦ • k

x

(IIIi,j)
•

•
1◦ 2◦ i◦ i + 1

z
1◦ • j − 1◦ • j

x

(IVi,j)
◦

◦
1◦ 2◦ i◦ i + 1

z
1◦ • j − 1◦ • j

x

(Vj)
ω

◦
◦ • 1◦ • j − 1◦ • j

x

(VIj)
z

•
◦ • 1◦ • j − 1◦ • j

x

(VIIj)
ω

ω
• 1◦ • j − 1◦ • j

x

(VIIIj)
z

z
• 1◦ • j − 1◦ • j

x

(IX) ω x ω (X) ω′ x • z (XI) •′′ x • ◦ •

where the symbol x is a (−1)-curve, the symbol • is a (−2)-curve which is contained in R̂
and is disjoint from other components of R̂, the symbol ◦ is a (−2)-curve disjoint from R̂, the
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symbol ω is a (−2)-curve which is contained in R̂ and intersects with other components of R̂,
the symbol z is a (−2)-curve which is not contained in R̂ and intersects with R̂, the symbol
•′ is a (−3)-curve which is contained in R̂ and is disjoint from other components of R̂, the
symbol ω′ is a (−3)-curve which is contained in R̂ and intersects with other components of R̂
and the symbol •′′ is a (−4)-curve contained in R̂ which is contained in R̂ and is disjoint from
other components of R̂.

Taking double covering, we get the following list:

THEOREM 4.8. Each fiber F of f of types (I), . . . , (XI) has the following configuration.

(I1,j,k) e
j − 1◦ 2◦ 1◦ •

◦
◦ • ◦ • ◦1 ◦2 ◦ k − 1◦ e

or e
j − 1◦ 2◦ 1◦ •

◦
◦ •
◦
◦1 ◦2 ◦ k − 1◦ e

(Ii,j,k) e
j − 1◦ 2◦ 1◦ 1•

◦
◦ 2• i• ◦ i + 1•

◦

1◦ 2◦ k − 1◦ e

(when j = ∞) e
1• ◦ 2• · · ·

(IIi,j,k) e
j − 1◦ 2◦ 1◦ 1◦′

2◦ 3◦ i − 1◦ i◦
i + 1◦′

2◦ 3◦ i − 1◦ i◦
1◦ 2◦ k − 1◦ e

(IIIi,j)
1◦

2◦ 3◦ i − 1◦ i◦
i + 1◦′

2◦ 3◦ i − 1◦ i◦
1◦ 2◦ j − 1◦ e

(IVi,j)

◦
◦

1◦ 2◦ 3◦ i − 1◦ i◦
i + 1◦′◦

◦
1◦ 2◦ 3◦ i − 1◦ i◦

1◦ 2◦ j − 1◦ e

(Vj)
◦

◦

e

◦′ 1◦ 2◦ j − 1◦ e (VIj)
e

e
◦ 1◦ 2◦ j − 1◦ e
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(VII0) e
◦
•◦
◦
•

◦
•
◦

or e
◦
•
◦

◦
•
◦

(VIIj) •
◦
•
◦

◦
•
◦

1◦′ 2◦ j − 1◦ e (VIIIj)
◦′
◦′

1◦ 2◦ j − 1◦ e

(IX) e e e (X) • ◦ ◦′ ◦′ or ◦ • e ◦′

(XI) • e ◦

where the symbol • is a (−2)-curve contained in Fix(τ̃), the symbol ◦ is a (−2)-curve not
contained in Fix(τ̃), the symbol ◦′ is a (−3)-curve not contained in Fix(τ̃), and the symbol e
is an effective divisor.

Let f : S → B be a hyperelliptic fibered surface of genus 3. Recall the slope equality in
Theorem 1.5 for g = 3 and n = 2:

K f =
8
3
χ f + Ind ,

where Ind =
∑

p∈B Ind(Fp) is defined by Ind(Fp) = (2/3)α2(Fp) + ε(Fp), which is called the
Horikawa index of Fp. We can easily compute the Horikawa index for a fiber Fp of each type.
For example, let Fp be a fiber of type (VIIj ). Then the branch locus R has two singularities
of multiplicity 5 and j singularities of multiplicity 4 over p. All vertical (−2)-curves in R̃
over p are the proper transforms of j − 1 exceptional curves obtained by blow-ups at essential
singularities with multiplicity 3. Thus we have α2(Fp) = j + 2, ε(Fp) = j − 1 and then
Ind(Fp) = (5/3) j + 1/3. Computing the Horikawa index for a fiber Fp of each type similarly,
we get:

THEOREM 4.9. The Horikawa index of a hyperelliptic fibration of genus 3 is given by

Ind =
∑
i

2
3

iν(Ii,0,0) +
∑
i,k≥1

(
2
3

i +
5
3

k − 1
)
ν(Ii,0,k ) +

∑
i

(
2
3

i +
5
3

)
ν(Ii,0,∞)
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+
∑

i, j≥1,k≥1

(
2
3

i +
5
3

( j + k) − 2
)
ν(Ii, j,k ) +

∑
i, j≥1

(
2
3

i +
5
3

j +
2
3

)
ν(Ii, j,∞)

+
∑
i

(
2
3

i +
10
3

)
ν(Ii,∞,∞) +

∑
i, j,k

(
2
3

i +
5
3

( j + k)

)
ν(IIi, j,k )

+
∑
i, j

(
2
3

i +
5
3

j +
8
3

)
ν(IIIi, j ) +

∑
i, j

(
2
3

i +
5
3

j +
4
3

)
ν(IVi, j )

+
∑
j

(
5
3

j +
4
3

)
ν(Vj ) +

∑
j

(
5
3

j +
5
3

)
ν(VIj )

+
4
3
ν(VII0) +

∑
j≥1

(
5
3

j +
1
3

)
ν(VIIj ) +

∑
j≥1

(
5
3

j +
2
3

)
ν(VIIIj )

+
4
3
ν(IX) +

7
3
ν(X) +

10
3
ν(XI)

where ν(∗) denotes the number of fibers of type (∗).
5. Multiple fibers. For any fiber F of a fibered surface, the intersection form on the

support of F is negative semi-definite (with 1-dimensional kernel) by Zariski’s lemma. Hence,
we have the smallest non-zero effective divisor D with support in Supp(F) such that DC = 0
holds for any irreducible component C of F . We call D the numerical cycle. There exists a
positive integer k such that F = kD. When k > 1, we call F a multiple fiber of multiplicity k.

The following lemma is easy to prove.

LEMMA 5.1. Let n ≥ 4 be a positive integer and a, b integers such that gcd(a, b, n) =
1. Then, it follows that a + 2b � nZ or 2a + b � nZ.

From Lemma 5.1, we obtain the following assertion on multiple fibers of f .

PROPOSITION 5.2. Let f : S → B be a primitive cyclic covering fibration of type
(g, 0, n). If n ≤ 3, then any multiple fiber of f is an n-fold fiber. If n ≥ 4, then f has no
multiple fibers.

PROOF. It is sufficient to show the claim with respect to f̃ . Suppose that F̃ = F̃p is a
multiple fiber of f̃ . We write F̃ = kD where k ≥ 2 and D is the numerical cycle. Let Γ̃ =
Γ̃p be the fiber of ϕ̃ at p = f̃ (F̃). We write Γ̃ = L1 + · · · + Ls and Li = kiΓi where Γi 	 P1

and Γi � Γj if i � j. At least two ki’s are 1 since Γ̃ is the total transform of a fiber Γ 	 P1

of ϕ. We may assume k1 = k2 = 1. The numerical cycle D is decomposed to D1 + · · · + Ds

such that θ̃(Di ) = Γi . Since θ̃∗Γ̃ = F̃, it follows θ̃∗Li = kDi . In particular, we have θ̃∗Γ1 =

kD1. Thus, Γ1 is contained in R̃ since k ≥ 2. Hence it follows k = n. Suppose that Γi is not
contained in R̃. Since θ̃∗Γi is reduced and nDi = ki θ̃∗Γi , then it follows ki ∈ nZ. Hence, Γ̃
satisfies the following (#):
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(#) We take an irreducible component Γj such that k j � nZ arbitrarily. If another component
Γi intersects Γj , then it follows that ki ∈ nZ,
since R̃ consists of smooth disjoint curves. However, we can show that there exist no reducible
fibers of ϕ̃ which satisfy (#) if n ≥ 4. This can be shown as follows. Let Γ be the fiber of ϕ
at p. If Γ̃ is reducible, Γ is blown up by ψ̃ at least once. we may assume that ψ1, . . . , ψs−1 are
blow-ups at a point on the fiber at p. Put Γ̃i = (ψi ◦ · · · ◦ ψ1)∗Γ = L1 + · · · + Li+1 where we
identify Lk with the proper transform of Lk . Then, we have Γ̃1 = L1 + L2 = Γ1 + Γ2. Since Γ̃
satisfies (#), the intersection point of Γ1 and Γ2 is blown up. Thus, we may assume ψ2 is the
blow-up at the point. Then, we have Γ̃2 = L1+ L2+ L3 = Γ1+Γ2+2Γ3. This operation repeats
unless the total transform of Γ satisfies (#). Blowing u p at the intersection point of Li = aΓi
and L j = bΓj , the multiplicity of the new exceptional curve is a+b. From this observation and
Lemma 5.1, the operation would repeat endlessly, which leads us to a contradiction. Hence
there exist no reducible fibers of ϕ̃ satisfying (#). If Γ̃ 	 P1, then F̃ = nD and D 	 P1. It
contradicts g ≥ 2 of f̃ . �

REMARK 5.3. In the case where n = 2, i.e., f is a hyperelliptic fibration of genus g, it
is known that there exists a fibration f with a double fiber for any odd g. In the case where
n = 3, we have shown in §3 that there exists a fibration f with a triple fiber.
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