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PRODUCTS OF RANDOM WALKS ON FINITE GROUPS
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Abstract. In this article, we consider products of random walks on finite groups with
moderate growth and discuss their cutoffs in the total variation. Based on several comparison
techniques, we are able to identify the total variation cutoff of discrete time lazy random walks
with the Hellinger distance cutoff of continuous time random walks. Along with the cutoff
criterion for Laplace transforms, we derive a series of equivalent conditions on the existence
of cutoffs, including the existence of pre-cutoffs, Peres’ product condition and a formula
generated by the graph diameters. For illustration, we consider products of Heisenberg groups
and randomized products of finite cycles.

1. Introduction. Let G be a finite group equipped with a probability Q. A random
walk on G driven by Q is a discrete time Markov chain with state space G and transition
matrix K given by K (x, y ) = Q(x−1 y ). If K is irreducible, then the stationary distribution U
is uniform on G. For simplicity, we write the triple (G,Q,U) for such a random walk. Here,
Q is called symmetric if Q(x) = Q(x−1) for all x ∈ G and, in this case, (G,Q,U) is named
a symmetric random walk. Note that if Q is symmetric, then K is reversible. To study the
convergence of (G,Q,U), we consider the total variation and its corresponding mixing time,
which are defined respectively by

(1.1) dTV(x,m) := max
E⊂G
{Q(m) (x−1E) −U (E)} ,

and

(1.2) TTV(x, ε) := min{m ≥ 0|dTV(x,m) ≤ ε} ,
where x−1E = {x−1y |y ∈ E} and Q(m) is the m-fold convolution product Q ∗ · · · ∗Q with

f ∗ g(x) =
∑
z∈G

f (z)g(z−1x) .

As the total variation and, thus, its mixing time are constant in x, we shall write dTV(m) and
TTV(ε) for short.

A subset E ⊂ G is called symmetric, if x ∈ E implies x−1 ∈ E, and is called a generating
set of G, if En := {x1x2 · · · xn |xi ∈ E, ∀1 ≤ i ≤ n} = G for some n > 0. We write (G, E) for
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the Cayley graph with vertex set G and edge set {(x, x y ) |x ∈ G, y ∈ E} and define its volume
growth function and diameter by

V (m) = |Em | , ρ = min{m ≥ 1|V (m) = |G |} .
A group G is said to have (A, d)-moderate growth with respect to a generating set E if

V (m)
V (ρ)

≥ 1
A

(
m
ρ

)d
, ∀1 ≤ m ≤ ρ .

The following are some typical groups with moderate growth.
Example 1: When G = Zn and E = {0,±1}, the graph (G, E) has diameter ρ = �n/2	

and G has (1, 1)-moderate growth w.r.t. E for n ≥ 2.
Example 2: When G = Zn and E = {0,±1,±�√n	}, the diameter ρ is of order

√
n and G

has (1, 2)-moderate growth w.r.t. E for n ≥ 2.
Example 3: When G is the Heisenberg group mod n+2, which is the set of 3×3 matrices

of the form

(1.3)
����

1 i k
0 1 j
0 0 1

���� , ∀i, j, k ∈ Zn+2 ,

and E contains the following matrices

(1.4) I,
����

1 1 0
0 1 0
0 0 1

���� ,
����

1 −1 0
0 1 0
0 0 1

���� ,
����

1 0 0
0 1 1
0 0 1

���� ,
����

1 0 0
0 1 −1
0 0 1

���� ,
it was proved in [7, Lemma 4.1] that (G, E) has diameter n + 1 ≤ ρ ≤ n + 4 and G has
(48, 3)-moderate growth w.r.t. E for n ≥ 1.

Throughout this article, we will simply write id for the identity of any group. In [7],
Diaconis and Saloff-Coste considered random walks on finite groups with moderate growth
and achieved the following proposition.

PROPOSITION 1.1 (Theorem 3.1 in [7]). Let (G,Q,U) be a symmetric random walk
on a finite group and E be a symmetric generating set of G containing id. Assume that G has
(A, d)-moderate growth with respect to E and η = min{Q(x) |x ∈ E} > 0. Then, there is C1 =

C1(A, d) > 0 such that

(1.5) dTV(m) ≤ C1e−ηm/ρ2
, ∀m ≥ 0 ,

where ρ is the diameter of (G, E). If it is assumed further that Q is supported on E and that
ρ ≥ A22d+2, then there is C2 = C2(A, d) > 0 such that

(1.6) dTV(m) ≥ 1
2

e−C2m/ρ2
, ∀m ≥ 0 .

In fact, the authors of [7] obtain C1 = A1/22d(d+3)/4 and C2 = A224d+2. This means that
the bounds in (1.5)-(1.6) are far from comparable when A or d is large.
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We now consider product chains. Let (Gi,Qi,Ui )ni=1 be irreducible random walks on
finite groups and (p1, . . . , pn) be a probability vector. Define

(1.7) G = G1 × · · · × Gn , U = U1 × · · · ×Un , Q(x) =
n∑
i=1

piQi (xi ) ,

for x = (x1, . . . , xn) ∈ G. Here, (G,Q,U) is called the product of (Gi,Qi,Ui )ni=1 with respect
to the probability vector (p1, . . . , pn). Note that if Ei is the support of Qi and contains id, then
Q is supported on E = Ě1∪· · ·∪ Ěn, where Ěi = {x = (x1, . . . , xn) ∈ G |xi ∈ Ei, x j = id,∀ j �
i}. Further, if Ei is a symmetric generating set of Gi and ρi is the diameter of (Gi, Ei), then E
is a symmetric generating set of G and the diameter ρ of (G, E) satisfies ρ = ρ1 + · · · + ρn.
To see the moderate growth of direct products of groups, let Ei, E be as before and assume
that Gi has (Ai, di)-moderate growth w.r.t. Ei. As G is a finite group and E generates G, there
are always positive constants A, d such that G has (A, d)-moderate growth w.r.t. E. However,
the relation between (A, d) and (Ai, di)ni=1 could be complicated and, in general, A or d can
be very large when n grows. (For instance, consider Gi = ZN and Ei = {0,±1} for 1 ≤ i ≤
n. It is mentioned earlier that Gi has (1, 1) moderate growth w.r.t. Ei. In some combinatoric
computations, one may show that, under the assumption of N ≥ n2, G has (A, d) moderate
growth with A = (1 − 1/N )−2 and d = n.) Consequently, (1.5) and (1.6) might not be sharp
enough to provide efficient bounds on the total variation even if the prerequisites, η > 0 and
ρ ≤ A22d+2, are fulfilled. To proceed the analysis of product chains, as the total variation
mixing times are comparable between (G,Q,U) and its associated continuous time walk, see
e.g. [5], it is more convenient, as is discussed below, to consider the continuous time chain
rather than the discrete time one.

Given a random walk (G,Q,U), we associate it with a continuous time random walk
(G, Ht,U), where Ht = et (K−I ) and K is the transition matrix given by Q. One realization
of (G, Ht,U) is to change the constant waiting times of (G,Q,U) into an i.i.d. sequence of
exponential random variables. Note that, if (G,Q,U) is the product of (Gi,Qi,Ui )ni=1 with
respect to the probability vector (p1, . . . , pn) and (Gi, Hi,t,Ui ) is the continuous time random
walk associated with (Gi,Qi,Ui ), then

(1.8) Ht = H1,p1t ⊗ · · · ⊗ Hn,pn t ,

where A⊗ B denotes the tensor product of matrices A and B. In general, Km does not have the
form of (1.8). Through (1.8), one may study Ht via (Hi,t )ni=1 but, unfortunately, there lacks
an efficient expression of the total variation of (G, Ht,U) in terms of the total variations of
(Gi, Hi,t,Ui )ni=1.

In [2], two inequalities were used to compare the total variation and the Hellinger distance
and this leads to a different way to analyze their mixing times. In detail, the Hellinger distance
of (G,Q,U) is defined by

(1.9) dH (x,m) := ���
1
2

∑
y∈G

(√
Km (x, y ) −√

U (y )
)2���

1/2

,
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while the Hellinger distance of (G, Ht,U) is defined by replacing Km with Ht in (1.9) and
denoted by d (c)

H (x, t) in avoidance of confusion. As before, we will write dH (m) (resp. d (c)
H (t))

for short since dH (x,m) (resp. d (c)
H (x, t)) is constant in x. In the above setting, Equation (1.3)

in [2] says that

(1.10) 1 −
√

1 − d2
TV(m) ≤ d2

H (m) ≤ dTV(m) ,

and also hold in the continuous time case. In the Hellinger distance, if (G,Q,U) is the product of
(Gi,Qi,Ui )ni=1 with respect to the probability vector (p1, . . . , pn), then the Hellinger distances,
d (c)
H and d (c)

i,H , of (G, Ht,U) and (Gi, Hi,t,Ui ) satisfy

(1.11) d (c)
H (t)2 = 1 −

n∏
i=1

(
1 − d (c)

i,H (pit)2
)
.

Such an equality is derived from (1.8) but not applicable to the discrete time case. See p.365
in [12] or Lemma 2.4 in [2] for a proof of (1.10) and see [2] for more comparisons of mixing
times of product chains.

In this article, we focus on the cutoff phenomenon, or briefly cutoff, for products of
random walks on finite groups with moderate growth. The cutoff of Markov chains was
introduced by Aldous and Diaconis in early 1980s in order to catch up the phase transition of
the mixing time. To see a definition, let F = (Gn,Qn,Un)∞

n=1 be a family of random walks on
finite groups. For n ≥ 1, let dn,TV and Tn,TV be the total variation and corresponding mixing
time of the nth chain in F . Assume that Tn,TV (ε0) → ∞ for some ε0 ∈ (0, 1). The family F
is said to present a cutoff in the total variation if

(1.12) lim
n→∞

Tn,TV(ε)
Tn,TV (δ)

= 1 , ∀ε, δ ∈ (0, 1) ,

or, equivalently (see [3, Proposition 2.4]), there is a sequence of positive reals (tn)∞
n=1 such

that

(1.13) lim
n→∞ dn,TV(�atn�) = 0 ∀a > 1 , lim

n→∞ dn,TV(�atn	) = 1 , ∀a ∈ (0, 1) .

When a cutoff exists, the sequence (tn)∞n=1, or briefly tn, in (1.13) is called a cutoff time. By
(1.12), it is easy to see that Tn,TV(ε) can be selected as cutoff time for any ε ∈ (0, 1). In
the continuous time case, we write Fc = (Gn, Hn,t,Un)∞n=1 for the family of continuous time
Markov chains associated with F and use d (c)

n,TV and T (c)
n,TV to denote the total variation and its

mixing time of the nth chain in Fc . The total variation cutoff of Fc is defined in the same way
through (1.12) or (1.13) under the replacement of Tn,TV, dn,TV with T (c)

n,TV, d
(c)
n,TV and the removal

of �·�, �·	 but without the prerequisite of T (c)
n,TV(ε0) → ∞. All above is also applicable to the

Hellinger distance. We refer readers to [6, 11] for more discussions on cutoffs for random
walks on finite groups.

Cutoffs in the total variation and in the Hellinger distance were proved to be equivalent
in [2] via (1.10). Since no similar formula to (1.11) is available for the total variation or for
the discrete time case, it is straightforward to consider the cutoff in the Hellinger distance for
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Total variation cutoffs for discrete time Markov chains
� (Proposition 1.1 in [5] holds for lazy random walks)

Total variation cutoffs for continuous time Markov chains
� (Proposition 1.1 in [2] holds for any Markov chain)

Hellinger distance cutoffs for continuous time Markov chains
� (Proposition 3.3 holds for groups with moderate growth)

Cutoffs for Laplace transforms
� (Theorem 2.4 in [1] holds for reversible Markov chains)

Precise condition on cutoffs

TABLE 1. A scheme to analyze cutoffs.

families of continuous time product chains. For finite groups with moderate growth, we obtain
a continuous time variant of Proposition 1.1 in Proposition 3.3 with a refined assumption on the
lower bound (from ρ ≥ A22d+2 to ρ ≥ 4). Through (1.11), the Hellinger distances of product
chains can be expressed in a form related to sums of exponential functions. By regarding those
sums as Laplace transforms, a criterion in [1] was proposed to determine the cutoff and to
characterize the cutoff time. Table 1 is the conclusive scheme of all above discussions.

The aim of this paper is to establish necessary and sufficient conditions for cutoff for
products of random walks on finite groups with moderate growth,and apply them to stimulating
examples. In the first main theorem (Theorem 2.3), we give various equivalent conditions for
cutoff in our framework. It should be noted that in this framework the cutoff is equivalent to
a weaker concept, called the pre-cutoff (note that such an equivalence generally fails; see [8]).
Moreover, one equivalent condition in Theorem 2.3 is consistent with Peres’ conjecture (see
Remark 2.4 (3)), while another is simply determined by the graph diameters and a sequence P
given below. In the second main theorem (Theorem 2.5), we apply Theorem 2.3 to the specific
type of products introduced in [2] and derive more concrete conditions on their cutoffs. To
illustrate our results, let us consider products of random walks on Heisenberg groups and
randomized products of random walks on finite cycles. Let G = (Gn,Qn,Un)∞n=1 be a family
of random walks on finite groups and P = (pn)∞n=1 be a sequence of positive reals. For n ≥
1, let qn =

∑n
i=1 pi and write GP for the family of which nth random walk is the product

of (Gi,Qi,Ui )ni=1 according to the probability vector (p1/qn, . . . , pn/qn). Then the following
hold.

PROPOSITION 1.2. Let G = (Gn,Qn,Un)∞n=1, where Gn is the Heisenberg group in
(1.3), Qn is the probability uniformly supported on the set En in (1.4) and pn = n2 exp{−nγ}
with γ > 0. Then, GP has a total variation cutoff if and only if 0 < γ < 1.

PROPOSITION 1.3. Consider the family G = (Zn+2,Qn,Un)∞
n=1, where Qn (0) = 1/2

andQn (1) = Qn (−1) = 1/4. Let (Xn)∞
n=1 be i.i.d. positive random variables and P = (pn)∞

n=1
be a random sequence given by (Xn)∞

n=1.
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(1) Suppose pn = (X1 + · · · + Xn)γ with γ > 0 and X1 has a finite expectation. For γ ∈
(0, 2], GP has a total variation cutoff with probability 1. For γ > 2, GP has no total
variation cutoff with probability 1.

(2) Suppose pn = X1 × · · · × Xn and log X1 has a positive finite expectation. Then, GP
has no total variation cutoff with probability 1.

Proposition 1.2 is an immediate result of Corollary 2.9, which shows a phase transition of
cutoffs at γ = 1. Proposition 1.3 is of its own interest and discussed in detail in Subsection 2.3.

The remaining of this paper is organized in the following way. In Section 2, we introduce
the core results of the paper. The main theorems are given in Subsections 2.1 and 2.2. As an
example, we consider the randomized product and discuss its cutoff in Subsection 2.3. Section
3 is dedicated to the construction of framework in Section 2. In Subsection 3.1, we review
and develop some theoretical results that are crucial to the equivalences in Table 1, while in
Subsection 3.2, Theorem 2.3 is proved in detail. To make this paper more readable, we address
those minor and involved results in the appendix.

We end the introduction by quoting the following notations. Let x, y ∈ R and an, bn be
sequences of positive reals. We write x ∨ y and x ∧ y for the maximum and minimum of x, y .
When an/bn is bounded, we write an = O(bn); when an/bn → 0, we write an = o(bn). In
the case of an = O(bn) and bn = O(an), we simply say an � bn. If an/bn → 1, we write an ∼
bn. In computations, O(an) and o(bn) denote two sequences cn and dn satisfying |cn/an | =
O(1) and |dn/bn | = o(1).

2. Main theorems and applications. In this section, we will introduce our main
results in the general setting and discuss their applications, including Proposition 1.2.

2.1. Framework and main theorem. In this subsection, we introduce the theoretical
framework and one of the main theorems in this article. First, let us consider a concept weaker
than cutoff.

DEFINITION 2.1. Let F = (Gn,Qn,Un)∞
n=1 be a family of random walks on finite

groups and dn,TV be the total variation of (Gn,Qn,Un). F is said to present a pre-cutoff in the
total variation if there are B > A > 0 and a sequence tn > 0 such that

(2.1) lim
n→∞ dn,TV(�Btn�) = 0 , lim inf

n→∞ dn,TV(�Atn	) > 0 .

REMARK 2.2. (1) The removal of �·�, �·	 provides the pre-cutoff for Fc and the re-
placement of dn,TV with dn,H yields the pre-cutoff in the Hellinger distance. When tn → ∞,
the pre-cutoff in Definition 2.1 is equivalent to

(2.2) lim
ε→0

lim sup
n→∞

Tn,TV (ε)

Tn,TV (ε0 − ε) < ∞ ,

for some ε0 ∈ (0, 1). Such an equivalence also holds for Fc without the prerequisite of tn →
∞ .

(2) Definition 2.1 was introduced for the purpose of studying the mixing times and cutoffs
for families of Markov chains. Readers are referred to [10, 3] for more discussions on this
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subject. It is worthwhile to note that there is indeed another (stronger) variant of pre-cutoff in
[9, Chapter 18], of which definition is similar to (2.1) except the replacement of the second
limit by

lim
n→∞ dn,TV(�Atn	) = 1 .

When tn → ∞, the equivalence of the pre-cutoff and (2.2) also holds for such a variant with
ε0 = 1. We would like to emphasize that Theorem 2.3 (discussed later) remains true when the
pre-cutoff refers to the stronger one.

In the following, we consider a rather general setting than Proposition 1.2. Let (kn)∞n=1
be a sequence of positive integers and

(2.3) F = {(Gn,i,Qn,i,Un,i ) |1 ≤ i ≤ kn, n ≥ 1} , P = {pn,i |1 ≤ i ≤ kn, n ≥ 1} ,
where (Gn,i,Qn,i,Un,i ) is a random walk on a finite group and pn,i > 0. We write F P for the
family (Gn,Qn,Un)∞n=1, where (Gn,Qn,Un) is the product of (Gn,i,Qn,i,Un,i )

kn
i=1 according to

the probability vector (pn,i/qn)kn
i=1 and qn = pn,1 + · · · + pn,kn . As before, we use d (c)

n,TV,T
(c)
n,TV

to denote the total variation and its mixing time of the nth chain in F Pc . Along with these
notations, we are ready to state the first main theorem of this article.

THEOREM 2.3. Refer to the triangular arrays in (2.3). Let En,i be the support of
Qn,i and ρn,i be the diameter of (Gn,i, En,i ). Assume that Qn,i is symmetric, inf{Qn,i (x) |x ∈
En,i, 1 ≤ i ≤ kn n ≥ 1} > 0 and Gn,i has (A, d)-moderate growth with respect to En,i for
all n, i. Assume further that ρn,1 ≥ 4 for n large enough and there are C > 1 and �n,i > 0
satisfying �n,i ≤ �n,i+1 such that �n,i/C ≤ pn,i/(qnρ2n,i ) ≤ C�n,i for all n, i. By setting tn =
max{log(i + 1)/�n,i |1 ≤ i ≤ kn}, one has:

(1) If kn = O(1), then there are A > 0 and σ2 > σ1 > 0 such that

1 − exp{−e−aσ2 } ≤ d (c)
n,TV(atn) ≤ 1 − exp{−e−aσ1 } , ∀a > A, n ≥ 1 .

In particular, F Pc has no pre-cutoff in the total variation.
(2) If kn → ∞ and min{ρn,i |i ≥ m, n ≥ 1} ≥ 4 for m large enough, then the following are

equivalent.
(i) F Pc has a total variation cutoff.
(ii) F Pc has a total variation pre-cutoff.
(iii) tn�n,1 → ∞.
(iv) T (c)

n,TV (ε)�n,1 → ∞ for all ε ∈ (0, 1).
(v) T (c)

n,TV (ε)�n,1 → ∞ for some ε ∈ (0, 1).
Moreover, if F Pc has a total variation cutoff, then T (c)

n,TV (ε) � tn and T (c)
n,TV(ε) =

T (c)
n,TV(δ) +O(1/�n,1) for all 0 < ε < δ < 1.

When En,i contains id, (2) also holds under the replacement of F Pc and T (c)
n,TV with F P

and Tn,TV.
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Theorem 2.3 is built on a list of theoretical results in Subsection 3.1. As its proof is a
little complicated, we leave it to Subsection 3.2. In the following, we provide some remarks
to comment the importance of Theorem 2.3.

REMARK 2.4. (1) Note that Theorem 2.3 also holds in the Hellinger distance due to
(1.10) and Proposition 3.2 and this is exactly what is done in the proof of the continuous time
case. See Subsection 3.2 for details.

(2) In the proof of Theorem 2.3, we obtain the order of the cutoff times, which is the same
as tn, but could not determine its asymptotic value, which relies on a more precise estimation
of the convergence rate in the Helinger distance in Proposition 3.3.

(3) A conjectured condition for the existence of cutoffs was introduced by Peres in 2004,
which says that

(2.4) A cutoff exists ⇔ Mixing time × Spectral gap→ ∞ .
In the setting of Theorem 2.3, the spectral gaps of the nth random walks in F P and F Pc are of
the same order as �n,1 due to the assumption of inf{Qn,i (x) |x ∈ En,i, 1 ≤ i ≤ kn n ≥ 1} > 0.
Consequently, the equivalence of (i) and (v) in (2) confirms the conjecture in (2.4) for products
of random walks on finite groups with moderate growth.

2.2. Applications. In this subsection, we apply Theorem 2.3 to the specific type of
products introduced in [2] and derive conditions on their cutoffs. Let G = (Gn,Qn,Un)∞

n=1 be
a family of random walks on finite groups driven by symmetric probabilities and P = (pn)∞

n=1
be a sequence of positive reals. Throughout this subsection, we write GP for the family, of
which nth random walk refers to the product of (Gi,Qi,Ui )ni=1 with respect to the probability
vector (p1/qn, . . . , pn/qn), where qn = p1 + · · · + pn. We now state the second main theorem
of this article.

THEOREM 2.5. Consider the family GP introduced above. Let En be the support of
Qn and ρn be the diameter of (Gn, En). Assume that Gn has (A, d)-moderate growth with
respect to En, inf{Qn (x) |x ∈ En, n ≥ 1} > 0, ρn ≥ 4 for n large enough and pn/ρ2n � �n for
some sequence (�n)∞n=1.

(1) If �n ≤ �n+1 and un = max{log(i + 1)/�i |1 ≤ i ≤ n}, then GPc has a total variation
cutoff if and only if un → ∞.

(2) If �n ≥ �n+1 and un = max{log(i+1)/�n−i+1 |1 ≤ i ≤ n}, thenGPc has a total variation
cutoff if and only if un�n → ∞.

In either case of (1) and (2), if GPc has a total variation cutoff, then the cutoff time is of order
unqn. Further, if En contains id for all n ≥ 1, then all above also holds for GP .

REMARK 2.6. The lower bound of the graph diameter (at least 4) in Theorem 2.5 is
due to the requirement in Proposition 3.3. As the product of finitely many random walks has
negligible contribution to the total variation (see e.g. Theorem 2.3(1) for an illustration), one
may suitably relax such a restriction on graph diameters as in Theorem 2.5.
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PROOF OF THEOREM 2.5. By Propositions 3.1 and 3.2 in the next section, it suffices
to prove this theorem for GPc in the Hellinger distance. In the following, we will discuss (2),
while (1) can be treated in a similar way.

Let n0 > 0 be an integer such that ρn ≥ 4 for n ≥ n0. For n > n0, let (G,Q,U)
and (GRn ,QRn ,URn ) be products of (Gi,Qi,Ui )

n0
i=1 and (Gi,Qi,Ui )ni=n0+1 with respect to the

probability vectors (pi/q)n0
i=1 and (pi/qRn )n

i=n0+1, where q = p1 + · · · + pn0 and qRn = pn0+1 +

· · · + pn. Clearly, the nth random walk in GP is the product of (G,Q,U) and (GRn ,QRn ,URn )
with respect to the probability vector (q/qn, qRn /qn). Let dH , dRn,H and d (c)

n,H be the Hellinger
distances of the continuous time random walks associated with (G,Q,U), (GRn ,QRn ,URn ) and
the nth random walk in GP . By (1.11), one has

(2.5) d (c)
n,H (t)2 = 1 −

(
1 − dH (qt/qn)2

) (
1 − dRn,H

(
qRn t/qn

)2)
.

For the familyH := (GRn ,QRn ,URn )∞n=n0+1 and the random walk (G,Q,U), we set

vn = qRn max
1≤i≤n−n0

log(i + 1)
�n−i+1

, v = q max
1≤i≤n0

log(i + 1)
�n0−i+1

.

By Theorem 2.3(1), there are constants A > 0 and σ2 > σ1 > 0 such that

(2.6) 1 − exp
{−e−aσ2

} ≤ dH (av ) ≤ 1 − exp
{−e−aσ1

}
, ∀a > A ,

and, by Theorem 2.3(2), Hc has a cutoff in the Hellinger distance if and only if vn�n/qRn →
∞. Observe that, for n > n0,

vn

qRn
≤ un ≤ vn

qRn
+ max

n−n0<i≤n
log(i + 1)
�n−i+1

≤ vn
qRn

(
1 +

log(n + 1)
log(n − n0 + 1)

)
.

This implies vn/qRn � un.
We are now ready to derive (2). Assume that un�n → ∞ or equivalently vn�n/qRn → ∞.

By Theorem 2.3(2),Hc has a cutoff in the Hellinger distance and the cutoff time wn satisfies
wn � vn. Immediately, this implies

lim
n→∞ dRn,H (awn) =

⎧⎪⎨⎪⎩
0 for a > 1 ,
1 for 0 < a < 1 ,

lim
n→∞ dH

(
bwn/q

R
n

)
= 0 , ∀b > 0 ,

where the second limit results from the second inequality of (2.6) and the observation of un ≥
log(n + 1)/�1 → ∞. Applying the above computations to (2.5) yields

lim
n→∞ d (c)

n,H

(
aqnwn/q

R
n

)
=
⎧⎪⎨⎪⎩

0 for a > 1 ,
1 for 0 < a < 1 .

This proves that GPc has a cutoff in the Hellinger distance and the cutoff time is of order unqn.
Conversely, assume that GPc has a cutoff in the Hellinger distance with cutoff time w′n . Then,
for a > 1,

lim
n→∞ dRn,H

(
aqRn w

′
n/qn

)
= 0 , lim

n→∞ dH (aqw′n/qn) = 0 .
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By the first inequality of (2.6), the latter limit implies w′n/qn → ∞, which yields
dH (bw′n/qn) → 0 for all b > 0. In addition with the cutoff for GPc , we may derive from
(2.5) that, for 0 < a < 1,

1 = lim
n→∞ d (c)

n,H (aw′n) = lim
n→∞ dRn,H

(
aqRn w

′
n/qn

)
.

As a consequence,Hc has a cutoff in the Hellinger distance or equivalently un�n � vn�n/qRn →
∞, as desired. �

REMARK 2.7. Theorem 2.5(1) can be in fact proved in a more direct way.
Consider the exchange of the first random walk in G and the first random walk of
which graph diameter is at least 4, say the N th random walk. For the new family,
all assumptions in Theorem 2.3 are fulfilled except the monotonicity of the sequence
{�N, �2, . . . , �N−1, �1, �N+1, . . . }. Such a concerning can be eliminated by using the origi-
nal sequence (�n)∞

n=1 along with a larger multiplicative constant and its reciprocal to bound
the sequence {pN/ρ

2
N, p2/ρ

2
2, . . . , pN−1/ρ

2
N−1, p1/ρ

2
1, pN+1/ρ

2
N+1, . . . }. Under the above con-

struction, Theorem 2.5 follows immediately from Theorem 2.3(2).

The following lemma is auxiliary to Theorem 2.5, which provides conditions on the
boundedness of un and un�n.

LEMMA 2.8. Let �n, un be constants in Theorem 2.5.
(1) If �n ≤ �n+1, then

un → ∞ ⇔ sup
n≥1

log n
�n
= ∞ .

(2) Assume �n ≥ �n+1. If �n/�n+1 → 1, then un�n → ∞. If lim inf
n→∞ �n/�n+1 > 1, then

un�n = O(1).

PROOF. (1) is obvious from the definition of un. For (2), we first consider the case
�n/�n+1 → 1. Note that, for m ≥ 1,

lim inf
n→∞ un�n ≥ lim inf

n→∞
log(m + 1)
�n−m+1/�n

= log(m + 1) .

Letting m tend to infinity gives the desired limit. Next, we consider the case lim inf
n→∞ �n/�n+1 >

1 and choose N > 0 and M > 1 such that �n/�n+1 ≥ M for n ≥ N . Immediately, this implies
that �n−m/�n ≥ Mm−N+1 for all 0 ≤ m < n and n ≥ 1. As a result, one has

un�n = max
1≤i≤n

log(i + 1)
�n−i+1/�n

≤ MN sup
i≥1

log(i + 1)
M i

< ∞ .
�

The following corollary is a combination of Theorem 2.5 and Lemma 2.8, of which proof
is obvious and skipped.

COROLLARY 2.9. Let GP, En, ρn be as in Theorem 2.5. Assume that Gn has (A, d)-
moderate growth with respect to En, inf{Qn (x) |x ∈ En, n ≥ 1} > 0, ρn → ∞ and pn � ρ2n�n
for some monotonic sequence (�n)∞

n=1.
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(1) If sup{log n/�n |n ≥ 1} < ∞ or lim inf
n→∞ �n/�n+1 > 1, then GPc has no total variation

cutoff.
(2) If sup{log n/�n |n ≥ 1} = ∞ and lim

n→∞ �n/�n+1 = 1, then GPc has a total variation
cutoff.

In particular, if �n = exp{−nγ} with γ > 0, then GPc has a total variation cutoff if and only if
0 < γ < 1. When En contains id for all n ≥ 1, all above also holds for GP .

2.3. Examples. In this subsection, we consider the randomized product in Propo-
sition 1.3 for illustration of the results developed in Subsections 2.1-2.2. Recall that G =
(Zn+2,Qn,Un)∞n=1, where Qn (0) = 1/2 and Qn (1) = Qn (−1) = 1/4. It has been stated in the
introduction that the diameter ρn of Gn w.r.t. {0,±1} is �n/2+1	 and Zn+2 has (1, 1)-moderate
growth w.r.t. {0,±1}. As the randomness refers to the case that P = (pn)∞n=1 is a sequence of
positive random variables, we treat the specified cases separately in the following.

EXAMPLE 2.10 (Polynomial random sequences). Let X1, X2, . . . be i.i.d. positive ran-
dom variables, γ > 0 and set pn = (X1 + · · · + Xn)γ . Assume that the expectation μ of X1 is
finite. By the strong law of large numbers, one has

X1 + · · · + Xn

n
∼ μ, almost surely ,

which implies
pn
ρ2n
∼ �n := μγnγ−2 , almost surely .

Clearly, (�n)∞
n=1 is monotonic, �n/�n+1 → 1 and

sup
n≥1

log n
�n

⎧⎪⎨⎪⎩
< ∞ for γ > 2 ,
= ∞, for 0 < γ ≤ 2 .

As a consequence of Corollary 2.9, if 0 < γ ≤ 2, then GP has a total variation cutoff almost
surely; if γ > 2, then GP has no total variation cutoff with probability 1.

EXAMPLE 2.11 (Exponential random sequences). Let Y1,Y2, . . . be i.i.d. positive ran-
dom variables and pn = Y1 × · · · ×Yn . For n ≥ 1, let (�n,i )ni=1 be a non-decreasing arrangement
of (pi/ρ2i )n

i=1 and set

tn = sup
1≤i≤n

log(i + 1)
�n,i

.

Using a similar reasoning as in the proof of Theorem 2.5, one may conclude using Theorem 2.3
that GP has a total variation cutoff if and only if tn�n,1 → ∞.

To analyze the product tn�n,1, we assume that the expectation ν of logY1 is finite. By the
strong law of large numbers, there is an event E with probability 1 such that

νn :=
log(pn/ρn)

n
→ ν on E .
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In the following, we focus on the case ν > 0. By writing pn/ρ2n = eνnn, one may select, for
each ω ∈ E, a constant C(ω) ∈ (0, 1) such that pn(ω)/ρ2n ≥ C(ω)eC(ω)νn for all n ≥ 1. This
implies that, on the event E,

�n,1 � 1 , �n,i ≥ CeCνi , ∀1 ≤ i ≤ n, n ≥ 1 .

Consequently, we obtain tn�n,1 = O(1) on E, which is equivalent to say that GP has no total
variation cutoff with probability 1.

The results in the above discussion are summarized in Proposition 1.3.

3. Constructions of theoretical frameworks. This section is dedicated to proving
Theorem 2.3. In the first subsection, we review those required but developed results in the
introduction. In the second subsection, we treat the discrete time and continuous time cases
separately and provide proofs in detail.

3.1. Review of technical supports. In this subsection, we survey those equivalences
in Table 1 and state them by following the setting in the introduction. The first two propositions
are supportive to the first two equivalences in Table 1 and, in fact, hold under more general
assumptions.

PROPOSITION 3.1 (Theorems 3.1 and 3.3 in [5]). LetF = (Gn,Qn,Un)∞n=1 be a family
of random walks on finite groups and δ = infn Qn(id). Assume that δ > 0 and, for some ε0 ∈
(0, 1), Tn,TV (ε0) → ∞ or T (c)

n,TV(ε0) → ∞. Then, in the total variation, F has a cutoff (resp.
pre-cutoff) if and only if Fc has a cutoff (resp. pre-cutoff). Furthermore, if F or Fc presents a
total variation cutoff, then Tn,TV (ε) ∼ T (c)

n,TV (ε) for all ε ∈ (0, 1) and, for sequences of positive
reals, (tn)∞n=1 and (bn)∞n=1, satisfying bn = o(tn),��Tn,TV(ε) − tn�� = O(bn), ∀ε ∈ (0, 1) ⇔ ���T (c)

n,TV (ε) − tn
��� = O(bn), ∀ε ∈ (0, 1) .

PROPOSITION 3.2. Let F = (Gn,Qn,Un)∞
n=1 be a family of random walks on finite

groups and let T (c)
n,TV and T (c)

n,H be the total variation and the Hellinger distance of the nth chain
in Fc. Then, Fc has a total variation cutoff (resp. pre-cutoff) if and only if Fc has a Hellinger
distance cutoff (resp. pre-cutoff). Furthermore, if Fc presents a cutoff in either measurement,
then T (c)

n,TV (ε) ∼ T (c)
n,H (ε) for all ε ∈ (0, 1).

PROOF. The equivalence of cutoffs is already discussed in Proposition 1.1 of [2], while
the equivalence of pre-cutoffs is given by (1.10). �

To analyze products of random walks, we need a variant of Proposition 1.1 in the Hellinger
distance and, particularly, in the continuous time case.

PROPOSITION 3.3. Let (G,Q,U) be a symmetric random walk on a finite group and
d (c)

TV , d
(c)
H be the total variation and the Hellinger distance of its associated continuous time

random walk. If G has (A, d)-moderate growth with respect to the support E of Q, then there
is C > 0 depending only on A, d such that

1
2

e−Ct/ρ2 ≤ d (c)
TV (t) ≤ Ce−ηt/(2ρ2) , ∀t ≥ 0 ,
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and
1
4

e−Ct/ρ2 ≤ d (c)
H (t) ≤ Ce−ηt/(4ρ2) , ∀t ≥ 0 ,

where ρ is the diameter of (G, E), η = min{Q(x) |x ∈ E} and both lower bounds require ρ ≥
4 in addition.

REMARK 3.4. (1) Compared with Proposition 1.1, the generating set E in Proposi-
tion 3.3 need not contain id and this means that the laziness of (G,Q,U) is not required at all.
In fact, the laziness of a continuous time walk can be seen from the identity 1

2 (K − I ) = 1
2 (K +

I ) − I , where K refers to the transition matrix determined by Q.
(2) The prerequisite of the lower bound on the graph diameter (at least 4) is due to the

development of an upper bound on the spectral gap. See the proof of (3.2) in [7] for details.

PROOF OF PROPOSITION 3.3. First, we set Q′ = (Q + 1{id })/2 and E ′ = E ∪ {id}.
Let K, K ′ be the transition matrices determined by Q,Q′, set ρ, ρ′ for the diameters of
(G, E), (G, E ′) and define η = min{Q(x) |x ∈ E} and η ′ = min{Q′(x) |x ∈ E ′}. Obviously,
one has K ′ = (K + I )/2 and Ht = H ′2t , where Ht = e−t (I−K ) and H ′t = e−t (I−K′) . Let d ′TV, d

(c)
TV

be the total variations of (G,Q′,U), (G, Ht,U). By applying Proposition 1.1 to (G,Q′,U),
since G has (A, d)-moderate growth with respect to E (and, hence, with respect to E ′), there
is C2 > 0 depending only on A, d such that

d ′TV(m) ≤ C2e−η
′m/(ρ′)2

, ∀m ≥ 0 .

By the triangle inequality, this implies

d (c)
TV (t) ≤ e−2t

∞∑
m=0

(2t)m

m!
d ′TV(m) ≤ C2 exp

{
2t

(
e−η

′/(ρ′)2 − 1
)}
≤ C2e−ηt/(2ρ2) ,

where the last inequality comes from ρ′ ≤ ρ, η ′ ≥ η/2 and the fact that e−u ≤ 1− u/2 for u ∈
[0, 1]. To see a lower bound of the total variation, let λ be the smallest nonzero eigenvalue of
I − K . Note that 2d (c)

TV (t) = ‖Ht − Π‖∞→∞, where Π f := π( f )1, ‖L‖∞→∞ := sup{‖L f ‖∞ :
‖ f ‖∞ ≤ 1} and ‖ f ‖∞ := maxx | f (x) |. By the symmetry of Q, this implies

d (c)
TV (t) ≥ 1

2
e−λt , ∀t ≥ 0 .

Based on the (A, d)-moderate growth of (G, E), Diaconis and Saloff-Coste showed in [7,
Equation (3.2)] that if ρ ≥ 4, then there is a constant C1 > 0 depending only on A, d such that
λ ≤ C1/ρ

2, where the assumption of id ∈ E is in fact not required. This proves the desired
bounds for the total variation with C = max{C1,C2}, while the combination of (1.10) with
such total variation bounds leads to bounds for the Hellinger distance. �

Finally, we introduce the fourth equivalence in Table 1. Let A = {an,i |1 ≤ i ≤ kn, n ≥
1} and Λ = {λn,i |1 ≤ i ≤ kn, n ≥ 1} be triangular arrays of positive reals and set

(3.1) F (A,Λ) = ( fn)∞n=1, fn (t) =
kn∑
i=1

an,ie
−λn, i t .
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As fn is nonnegative and decreasing, we define the mixing time of fn by Tn(ε) = min{t ≥
0| fn (t) ≤ ε} for ε > 0 and define the cutoff for F (A,Λ) as follows.

DEFINITION 3.5. The family F (A,Λ) is said to present a cutoff if there is a sequence
(tn)∞

n=1 of positive reals such that

lim
n→∞ fn (atn) =

⎧⎪⎨⎪⎩
0 if a > 1 ,
∞ if 0 < a < 1 .

In the above, (tn)∞n=1 or briefly tn is called a cutoff time.

REMARK 3.6. It is easy to check from Definition 3.5 that F (A,Λ) has a cutoff if and
only if Tn(ε) ∼ Tn(δ) for all ε > 0 and δ > 0. In particular, if F (A,Λ) has a cutoff, then
Tn(ε) is a cutoff time for all ε > 0.

By expressing fn as a Laplace transform of some positive measure, the authors of [4]
provided a criterion (Theorems 3.5 and 3.8 in [4]) to determine the cutoff for F (A,Λ). Later,
such a method was refined in [1, Theorem 2.4]. To see the details, we set, for c > 0,

(3.2) λn (c) = λn, jn (c) , τn(c) = max
i≥ jn (c)

log(1 + an,1 + · · · + an,i )

λn,i
,

where jn (c) := min{i ≥ 1|an,1 + · · · + an,i > c}.
PROPOSITION 3.7 (Theorem 2.4 in [1]). Let F be the family in (3.1), Tn(ε) be the

mixing time of fn and λn, τn be the quantities in (3.2). Then, the following are equivalent.

(1) F (A,Λ) has a cutoff.
(2) There is ε > 0 such that Tn(ε)λn(c) → ∞ for all c > 0.
(3) τn(c)λn(c) → ∞ for all c > 0.

In particular, τn(c) is a cutoff time for all c > 0.

REMARK 3.8. It was shown in [1, Lemma 2.5] that, if τn(c)λn(c) → ∞, then
τn (c′)λn (c′) → ∞ for all c′ > c.

3.2. Proof of Theorem 2.3. The proof of Theorem 2.3 is based on some crucial
techniques, of which proofs are either developed or involved and are addressed in the appendix
for reference. See Lemmas A.1, A.2 and A.3 for details.

PROOF OF THEOREM 2.3 (The continuous time case). To prove this proposition, it
suffices to consider, by Proposition 3.2 and (1.10), the Hellinger distance. Let d (c)

n,H and
d (c)
n,i,H be the Hellinger distances of the nth and (n, i)th random walks in F Pc and Fc, and set
η = inf{Qn,i (x) |x ∈ En,i, 1 ≤ i ≤ kn n ≥ 1}. By Proposition 3.3, there is C1 > 1 such that,
for all 1 ≤ i ≤ kn and n ≥ 1,

(3.3)
1
4

e−C1t/ρ
2
n, i ≤ d (c)

n,i,H (t) ≤ C1e−ηt/(4ρ2
n, i ), ∀t ≥ 0 ,

where ρn,i ≥ 4 is required for the first inequality.
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For (1), set M = supn kn. By (3.3), one has

d (c)
n,i,H (apn,itn/qn) ≤ C1e−aη
n, i tn/(4C) ≤ C1(i + 1)−aη/(4C) ≤ C12−aη/(4C) ,

and, in addition with the fact tn ≤ log(M + 1)/�n,1,

d (c)
n,1,H (apn,1tn/qn) ≥ 1

4
e−aC1C
n,1tn ≥ 1

4
(M + 1)−aC1C .

Consequently, the replacement of A, pi with 1/
√

2, pn,i/qn in Lemma A.1 yields

1 − exp
{
− 1

16
(M + 1)−2aC1C

}
≤ d (c)

n,H (atn)2 ≤ 1 − exp
{
−MC2

1 21−aη/(2C)
}
,

for all a > A := (4C/η)(log2 C1 + 1/2) and n ≥ 1. This proves (1).
For (2), note that (i)⇒(ii) is clear from the definition of cutoffs and pre-cutoffs, and

(iv)⇒(v) is trivial. To prove the other equivalences, we first make some analysis on d (c)
n,H . Let

C1 be the constant in (3.3), A be the constant defined as above and N be a positive integer such
that ρn,i ≥ 4 for i ≥ N and n ≥ 1. In a similar reasoning as before, one can show that

(3.4) d (c)
n,H (t)2 ≥ 1 − exp

⎧⎪⎨⎪⎩−
kn∑
i=1

d (c)
n,i,H (pn,it/qn)2

⎫⎪⎬⎪⎭ , ∀t > 0 ,

and

(3.5) d (c)
n,H (t)2 ≤ 1 − exp

⎧⎪⎨⎪⎩−2
kn∑
i=1

d (c)
n,i,H (pn,it/qn)2

⎫⎪⎬⎪⎭ , ∀t > Atn .

By (3.3), we have
kn∑
i=1

d (c)
n,i,H (pn,it/qn)2 ≤ C2

1

kn∑
i=1

e−ηpn, i t/(2qnρ2
n, i ) ≤ C2

1

kn∑
i=1

e−ηt
n, i/(2C)

and ∑
i∈In

d (c)
n,i,H (pn,it/qn)2 ≥ 1

16

∑
i∈In

e−2C1pn, i t/ρ
2
n, i ≥ 1

16

∑
i∈In

e−2CC1t
n, i ,

where In = {1 ≤ i ≤ kn |ρn,i ≥ 4}. Putting the last terms in the above computations back to
(3.4) and (3.5) yields

(3.6) 1 − exp
{
− 1

16
gn (2CC1t)

}
≤ d (c)

n,H (t)2 ≤ 1 − exp
{
−2C2

1 fn (ηt/(2C))
}
,

where fn (t) =
∑kn

i=1 e−
n, i t , gn(t) =
∑

i∈In e−
n, i t and the second inequality holds for t > Atn.
We are now ready to proceed the proof of (ii)⇒(iii)⇒(iv) and (v)⇒(i).

To see (ii)⇒(iii), assume that F Pc presents a pre-cutoff in the Hellinger distance and let
sn > 0 and B2 > B1 > 0 be such that

(3.7) lim
n→∞ d (c)

n,H (B2sn) = 0 , lim inf
n→∞ d (c)

n,H (B1sn) = α > 0 .
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Note that

fn (atn) ≤
kn∑
i=1

(i + 1)−a ≤
∫ ∞

1
u−adu =

1
a − 1

, ∀a > 1 .

By the second inequality of (3.6) and the fact A > 2C/η, we have

(3.8) d (c)
n,H (atn)2 ≤ 1 − exp

⎧⎪⎨⎪⎩−
2C2

1
aη/(2C) − 1

⎫⎪⎬⎪⎭ , ∀a > A, n ≥ 1 .

Next, let’s fix a > (2C2
1/α

2 + 1)A. By the fact of A > 2C/η, one may derive aη/(2C) − 1 >
2C2

1/α
2 and, by (3.8), this leads to d (c)

n,H (atn)2 ≤ 1 − e−α2
< α2. As a result of the second

limit in (3.7), we obtain that atn ≥ B1sn for n large enough. In addition with the fact 1 ∈ In
for all n ≥ 1, we may conclude from the first inequality of (3.6) that

0 = lim
n→∞ d (c)

n,H (B2sn)2 ≥ lim
n→∞ d (c)

n,H (aB2tn/B1)2

≥ 1 − exp
{
− 1

16
lim sup
n→∞

e−2aB2CC1tn
n,1/B1

}
,

which leads to (iii).
For (iii)⇒(iv), assume that tn�n,1 → ∞. By Proposition 3.7 and Remark 3.8, the family

( fn)∞n=1 has a cutoff with cutoff time tn. By (3.6), this implies

lim
n→∞ d (c)

n,H (atn) = 0 , ∀a > A , lim
n→∞ d (c)

n,H (atn) = 1 , ∀0 < a < 1/(2CC1) ,

where the second limit also uses the fact

gn (t) = fn (t) − ( fn(t) − gn (t)) ≥ fn (t) − Ne−
n,1t .

As a consequence, when ε ∈ (0, 1), one has tn/(4CC1) ≤ T (c)
n,H (ε) ≤ 2tn for n large enough,

which gives (iv) and the order of the mixing time.
To show (v)⇒(i), it suffices to prove T (c)

n,H (ε) − T (c)
n,H (δ) = O(1/�n,1) for all 0 < ε < δ <

1, which is exactly the specific conclusion in (2). First, we need a refinement of (3.5). Let δ ∈
(0, 1). In Lemma A.1, the first inequality implies T (c)

n,H (δ) ≥ max{T (c)
n,i,H (δ)qn/pn,i |1 ≤ i ≤

kn}, while the third inequality yields

d (c)
n,H (t)2 ≤ 1 − exp

⎧⎪⎨⎪⎩− 1
1 − δ2

kn∑
i=1

d (c)
n,i,H

(
pn,it

qn

)2⎫⎪⎬⎪⎭ , ∀t ≥ T (c)
n,H (δ) .

Let t = T (c)
n,H (δ) + a/�n,1 with a > 0. By the quasi-submultiplicativity in Lemma A.3, one has

d (c)
n,i,H

(
pn,it

qn

)
≤ 4d (c)

n,i,H
���

pn,iT
(c)
n,H (δ)

qn
��� d (c)

n,i,H

(
apn,i
�n,1qn

)
.
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Putting this back to the upper bound for d (c)
n,H (t) yields

d (c)
n,H (t)2 ≤ 1 − exp

⎧⎪⎪⎨⎪⎪⎩−
16

1 − δ2

kn∑
i=1

d (c)
n,i,H

���
pn,iT

(c)
n,H (δ)

qn
���

2

d (c)
n,i,H

(
apn,i
�n,1qn

)2⎫⎪⎪⎬⎪⎪⎭ .
Observe that the second inequality in (3.3) and (3.4) give

d (c)
n,i,H

(
apn,i
�n,1qn

)2
≤ C2

1 e−aη/(2C) ,

kn∑
i=1

d (c)
n,i,H

���
pn,iT

(c)
n,H (δ)

qn
���

2

≤ log
1

1 − δ2 .

Combining the last three inequalities leads to

d (c)
n,H

(
T (c)
n,H (δ) + a/�n,1

)2 ≤ 1 − exp
⎧⎪⎨⎪⎩−

C2
1 e−aη/(2C)

1 − δ2 log
1

1 − δ2

⎫⎪⎬⎪⎭ , ∀a > 0 .

As the right hand side tends to 0 as a tends to infinity, we obtain T (c)
n,H (ε)−T (c)

n,H (δ) = O(1/�n,1)
for ε ∈ (0, δ), as desired. This finishes the proof of (2). �

PROOF OF THEOREM 2.3 (The discrete time case). We shall prove the discrete time
case by identifying the items in (2) with the continuous time case. First, we show that
Tn,TV (ε) → ∞ and T (c)

n,TV (ε) → ∞ for some ε ∈ (0, 1). Let d (c)
n,i,TV be the total variation of the

(n, i)th random walk in Fc and let N > 0 be a positive integer such that ρn,i ≥ 4 for i ≥ N and
n ≥ 1. By Proposition 3.3, there is C2 > 0 such that

d (c)
n,i,TV(t) ≥ 1

2
e−C2t/ρ

2
n, i ≥ 1

2
e−C2t/16 , ∀t ≥ 0, i ≥ N, n ≥ 1 .

Note that the first inequality in Lemma A.1 also holds for the total variation (see [2, Proposi-
tion 3.2]) and this implies that, for kn > N ,

d (c)
n,TV(t) ≥ max

N≤i≤kn
d (c)
n,i,TV

(
pn,it

qn

)
≥ 1

2

{
−C2t

16
min

N≤i≤kn
pn,i
qn

}

≥ 1
2

exp
⎧⎪⎨⎪⎩− C2t

16(kn − N )

kn∑
i=N

pn,i
qn

⎫⎪⎬⎪⎭ ≥ 1
2

exp
{
− C2t

16(kn − N )

}
,

where the last inequality uses the fact that (pn,i/qn)kn
i=1 is a probability vector. As kn → ∞,

one has T (c)
n,TV (1/4) ≥ 8(kn − N )/C2 for n large enough, which yields T (c)

n,TV(1/4) → ∞. In the
discrete time case, observe that, by the triangle inequality,

d (c)
n,TV(t) ≤

∞∑
m=0

e−t
tm

m!
dn,TV(m) ≤


∑
m=0

e−t
tm

m!
+ ��

∞∑
m=
+1

e−t
tm

m!
�� dn,TV(�) .

When t = T (c)
n,TV(1/4) and � = �t/2�, it’s easy to check (or to see from [3, Lemma A.1]) that

lim
n→∞ e−t


∑
m=0

tm

m!
= 0 ,
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which leads to

lim
n→∞ dn,TV

(⌈
1
2

T (c)
n,TV (1/4)

⌉)
≥ 1

4
.

Consequently, we obtain Tn,TV(1/5) ≥ 1
2T (c)

n,TV(1/4) for n large enough and, thus, Tn,TV(1/5) →
∞. Now, we are ready to prove (2) for the discrete time case.

Let (∗)’ with ∗ ∈ {i, ii, iv, v} be respectively the corresponding statements for F P in
Theorem 2.3(2). Immediately, the equivalence of (∗) and (∗)’ with ∗ ∈ {i, ii} is given by
Proposition 3.1. Let μn and μn,1 be the second largest eigenvalues of the transition matrices
determined by Qn and Qn,1. It is easy to check that 1 − μn ≤ (pn,1/qn)(1− μn,1). A similarly
reasoning as in the proof of Proposition 3.3 implies

dn,TV(m) ≥ μmn , 1 − μn,1 ≤ C3/ρ
2
n,1 , ∀m ≥ 0, n ≥ 1 ,

where C3 is a positive constant depending on A, d. As a result, this yields

dn,TV(m) ≥ e−m(1−μn ) ≥ e−C3mpn,1/(qnρ2
n,1) ≥ e−CC3m
n,1 .

When F P has a total variation cutoff, one has

exp
{
−2CC3 lim inf

n→∞ Tn,TV(ε)�n,1
}
≤ lim

n→∞ dn,TV
(
2Tn,TV(ε)

)
= 0 , ∀ε ∈ (0, 1) .

This proves (i)’⇒(iv)’.
Based on the above discussions, it remains to show (v)’⇒(v). Assume that

Tn,TV (ε1)�n,1 → ∞ for some ε1 ∈ (0, 1). We will prove (v) by contradiction and thus as-
sume the inverse that T (c)

ξn,TV(ε2)�ξn,1 = O(1), where ε2 ∈ (0, 1) and (ξn)∞
n=1 is an increasing

sequence of positive integers. Note that we may restrict ourselves to the case of ε2 ≤ 1/4.
Set rn =

√
Tξn,TV(ε1)/�ξn,1. Obviously, T (c)

ξn,TV(ε2) = o(rn) and rn = o(Tξn,TV(ε1)). By the
quasi-submultiplicativity of the total variation, one has

lim sup
n→∞

2d (c)
ξn,TV(rn) ≤ lim sup

n→∞

(
2dξn,TV

(
T (c)
ξn,TV(ε2)

)) ⌊rn /T (c)
ξn,TV(ε2 )

⌋

≤ lim sup
n→∞

2−
⌊
rn

/
T (c)
ξn,TV(ε2 )

⌋
= 0 .

As a consequence of Lemma A.2(3), this implies

lim
n→∞ dξn,TV(�arn�) = 0 , ∀a > 1 .

But, however, as arn = o(Tξn,TV(ε1)), we have

lim inf
n→∞ dξn,TV(�arn�) ≥ lim inf

n→∞ dξn,TV

(
Tξn,TV(ε1) − 1

)
≥ ε1 > 0 .

This makes a contradiction and, hence, Tn,TV(ε2)�n,1 → ∞, as desired. �
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Appendix A. Techniques and auxiliary results.

LEMMA A.1 ([2, Proposition 3.2]). Let (Gi,Qi,Ui )ni=1 be random walks on finite
groups and (G,Q,U) be their product according to the probability vector (p1, . . . , pn). Let
d (c)
i,H and d (c)

H be the Hellinger distances of the continuous time random walks associated with
(Gi,Qi,Ui ) and (G,Q,U). Then, one has

d (c)
H (t) ≥ max

{
d (c)
i,H (pit)

���1 ≤ i ≤ n
}
,

and

1 − exp
⎧⎪⎨⎪⎩−

n∑
i=1

d (c)
i,H (pit)2

⎫⎪⎬⎪⎭ ≤ d (c)
H (t)2 ≤ 1 − exp

⎧⎪⎨⎪⎩− 1
1 − A2

n∑
i=1

d (c)
i,H (pit)2

⎫⎪⎬⎪⎭ ,
where the second inequality requires t ≥ max{T (c)

i,H (A)/pi |1 ≤ i ≤ n} with A ∈ (0, 1).

LEMMA A.2 ([5, Proposition 3.1]). Let F = (Gn,Qn,Un)∞n=1 be a family of random
walks on finite groups and Fc be the family of continuous time random walks associated with
F . For n ≥ 1, let dn,TV, d

(c)
n,TV be the total variations of the nth randomwalks in F , Fc. Suppose

infn≥1 Qn (id) > 0. Then, for any sequence (tn)∞n=1 tending to infinity,
(1) dn,TV(�tn	) = 1 if and only if d (c)

n,TV(tn) = 1.
(2) If dn,TV(�tn�) = 0, then d (c)

n,TV(atn) → 0 for all a > 1.
(3) If d (c)

n,TV(tn) → 0, then dn,TV(�atn�) → 0 for all a > 1.

LEMMA A.3. Consider an irreducible Markov chain on a finite or countable set X
with transition matrix K and stationary distribution π. Set Ht = e−t (I−K ) and let dH, d

(c)
H be

the maximum Hellinger distances defined by

dH (m) = sup
x∈X

���
1
2

∑
y∈X

(√
Km(x, y ) −√

π(y )
)2���

1/2

,

and

d (c)
H (t) = sup

x∈X
���

1
2

∑
y∈X

(√
Ht (x, y ) −√

π(y )
)2���

1/2

.

Then, the mappings

m �→ 4dH (m) , t �→ 4d (c)
H (t) ,

are non-increasing and submultiplicative.

PROOF. We deal with the discrete time case, while the continuous time case can be
shown in a similar way. Let n,m be positive integers and x, y ∈ X. Note that

(A.1)

√
Kn+m (x, y ) −√

π(y ) =

∑
z∈X[Kn (x, z) − π(z)][Km(z, y ) − π(y )]√

Kn+m (x, y ) +
√
π(y )

=
∑
z∈X

AzBz ,
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where

Az =
(√

Kn (x, z) −√
π(z)

) (√
Km (z, y ) −√

π(y )
)

and

Bz =

(√
Kn (x, z) +

√
π(z)

) (√
Km(z, y ) +

√
π(y )

)
√

Kn+m (x, y ) +
√
π(y )

.

Consider the following two cases.
Case 1: Kn+m (x, y ) ≥ π(y ). In this case, one may apply the Cauchy-Schwarz inequality

to obtain

���√Kn+m (x, y ) −√
π(y )���2 ≤ ���

∑
z∈X

A2
z
��� ���

∑
z∈X

B2
z
��� .

Note that (
√

a +
√

b)2 ≤ 2(a + b) for all a, b ≥ 0. As a result, this implies∑
z

B2
z ≤

4
∑

z∈X (Kn (x, z) + π(z))(Km(z, y ) + π(y ))(√
Kn+m (x, y ) +

√
π(y )

)2

=
4[Kn+m (x, y ) + 3π(y )]

Kn+m (x, y ) + π(y ) + 2
√

Kn+m (x, y )π(y )
≤ 4 ,

and, hence,

���√Kn+m (x, y ) −√
π(y )���2 ≤ 4 ���

∑
z∈X

A2
z
��� .

Case 2: Kn+m (x, y ) < π(y ). For this case, set

E1 = {z |π(z) > Kn (x, z) , Km(z, y ) > π(y )}
and

E2 = {z |π(z) < Kn (x, z) , Km(z, y ) < π(y )} .
By (A.1), one has

0 <
√
π(y ) −√

Kn+m (x, y ) ≤
∑

z∈E1∪E2 [π(z) − Kn (x, z)][Km(z, y ) − π(y )]√
Kn+m (x, y ) +

√
π(y )

=
∑

z∈E1∪E2

AzBz .

As before, we may apply the Cauchy-Schwarz inequality to get

���√Kn+m (x, y ) −√
π(y )���2 ≤ ���

∑
z∈E1∪E2

A2
z
��� ���

∑
z∈E1∪E2

B2
z
��� .
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Note that, for z ∈ E1,(√
Kn (x, z) +

√
π(z)

)2 (√
Km (z, y ) +

√
π(y )

)2

≤4
(√

Kn (x, z) +
√
π(z)

)2
Km (z, y ) = 4 ��

√
Kn (x, z)
π(z)

+ 1��
2

π(z)Km(z, y ) ,

and, for z ∈ E2, (√
Kn (x, z) +

√
π(z)

)2 (√
Km (z, y ) +

√
π(y )

)2

≤ 4Kn(x, z)
(√

Km (z, y ) +
√
π(y )

)2
.

By the Jensen inequality, this implies

(A.2)

∑
z∈E1

(√
Kn (x, z) +

√
π(z)

)2 (√
Km (z, y ) +

√
π(y )

)2

≤ 4 ���
√∑

z∈E1

Kn (x, z)Km(z, y ) +
√

c1π(y )���
2

,

where c1 =
∑

z∈E1 π(z)Km(z, y )/π(y ), and

(A.3)

∑
z∈E2

(√
Kn (x, z) +

√
π(z)

)2 (√
Km (z, y ) +

√
π(y )

)2

≤ 4 ���
√∑

z∈E2

Kn (x, z)Km(z, y ) +
√

c2π(y )���
2

,

where c2 =
∑

z∈E2 Kn (x, z). Summing up (A.2) and (A.3) yields

∑
z∈E1∪E2

B2
z ≤

4
(√∑

z∈E1∪E2 Kn (x, z)Km(z, y ) +
√

(c1 + c2)π(y )
)2

(√
Kn+m (x, y ) +

√
π(y )

)2 ≤ 8 ,

while the last inequality uses the fact of c1 ≤ 1 and c2 ≤ 1. As a consequence, this leads to

���√Kn+m (x, y ) −√
π(y )���2 ≤ 8 ���

∑
z∈E1∪E2

A2
z
��� ≤ 8

∑
z∈X

A2
z ,

which is also applicable for Case 1.
Based on the result in the above discussions, we obtain

4dH (n + m) = sup
x∈X

⎧⎪⎪⎨⎪⎪⎩8
∑
y∈X

(√
Kn+m (x, y ) −√

π(y )
)2
⎫⎪⎪⎬⎪⎪⎭

1/2

≤ sup
x∈X

⎧⎪⎪⎨⎪⎪⎩
∑
y,z∈X

8
(√

Kn (x, z) −√
π(z)

)2 × 8
(√

Km(z, y ) −√
π(y )

)2
⎫⎪⎪⎬⎪⎪⎭

1/2
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≤ sup
x∈X

{
8
(√

Kn (x, z) −√
π(z)

)2}1/2
× 4dH (m) = 4dH (n) × 4dH (m) .

�
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