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Abstract. In this paper, we consider a diffusion equation coupled to an ordinary dif-
ferential equation with FitzHugh-Nagumo type nonlinearity. We construct continuous spatially
heterogeneous steady states near, as well as far from, constant steady states and show that they
are all unstable. In addition, we construct various types of steady states with jump discontinu-
ities and prove that they are stable in a weak sense defined by Weinberger. The results are quite
different from those for classical reaction-diffusion systems where all species diffuse.

1. Introduction. Turing ([30]) considered spontaneous formation of patterns in de-
velopmental biology as a result of diffusion-driven-instability (DDI, for short): When two
chemicals with different diffusion rates react, the spatially homogeneous state can be desta-
bilized, leading to emergence of nontrivial spatial structures. Since then, the concept has
become a paradigm for pattern formation and led to development of numerous theoretical
models describing naturally occurring patterns [8, 13, 16, 29]. In this paper we study pattern
formation in a model system where only one species diffuses and the other does not diffuse, an
extreme situation of “different diffusion rates”. Such models have been proposed in develop-
mental biology (e.g., [18] and references therein) and ecology (e.g., [4] and references therein)
and so forth. In [10] and [15], we studied a receptor-based model for hydra regeneration in
which destabilization of a spatially homogeneous steady state by DDI and bi-stable type of
nonlinearity coexist. Our finding is, among other things, that there is no stable nonhomoge-
neous steady states near the constant steady state. However, there are continua of (weakly)
stable steady states with jump discontinuity. We would like to show that such a phenomenon
(i.e., coexistence of unstable continuous steady states and stable discontinuous steady states)
is not limited to a particular system considered in [10, 15], rather it is universal. For this
purpose, we take the FitzHugh-Nagumo equations as a reference system and prove that the
above-mentioned phenomenon occurs under appropriately chosen parameter values.

The original FitzHugh-Nagumo system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u
∂t
= ε2uxx + u(1 − u)(u − β) − v ,

∂v

∂t
= σu − γv − ρ,

(FHN)
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was used to model pulse propagation in excitable media, see [7, 21] for model introduction
and [14, 27] for overview of its analysis. The parameters 0 < β < 1, γ, ρ and σ are positive.

Later, pattern formation in systems including

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u
∂t
= ε2

1uxx + u(1 − u)(u − β) − v ,
∂v

∂t
=

1
ε2
vxx + σu − γv − ρ

(DFHN)

was studied by [20] in the context of DDI, where ε1 and ε2 are sufficiently small positive
constants. Subsequent studies have revealed that this reaction-diffusion system admits steady
states with transition layers (see, e.g., [23, 5, 24] and references therein), traveling wave
solutions and other types of solutions with complex behaviours (see, e.g., [26, 2, 3] and
references therein).

In this paper, motivated by the receptor-based model in [10] and [15], we consider a system
with ε1 = 0, i.e., a single reaction-diffusion equation coupled with an ordinary differential
equation. For the interval I = (0, l) we consider:

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t
= fβ (u) − v for x ∈ I, t > 0 ,

∂v

∂t
= D

∂2v

∂x2 + σu − γv − ρ for x ∈ I, t > 0 ,

∂v

∂x
(0) =

∂v

∂x
(l) = 0 ,

(u(0, x), v (0, x)) = (u0(x), v0(x)) for x ∈ I ,

where fβ (u) = u(1 − u)(u − β) with β ∈ (0, 1); D, γ, σ and ρ are positive constants. The
initial data satisfies (u0(x), v0(x)) ∈ C0(I) × (C2(I ) ∩ C(I )).

We choose (γ, σ, ρ) so that the kinetic system (i.e., (1) with D = 0) has three distinct
equilibria and two of them undergo DDI. This setting is different from that for the equations
in [15] where only one equilibrium of the kinetic system undergoes DDI. Our results on
bifurcation stated in Section 4 cover the case where only one equilibrium undergoes bifurcation.
To the best of our knowledge, even for classical reaction-diffusion models such as (DFHN),
little is known about pattern formation through DDI in the case where two or more equilibria
undergo DDI. Generally speaking, if there exist more than one stable steady states in addition
to an unstable steady state of saddle type, long-time-behaviour of the solution to the initial-
boundary value problem becomes very complicated. It is a legitimate theoretical question to
ask how patterns are selected when two equilibria undergo DDI. We believe that our analysis
serves as a first step in this direction.

The initial-boundary value problem (1) has two types of stationary solutions (u(x), v (x)).
One is continuous steady states by which we mean that both u(x) and v (x) are continuous func-
tions of x (as a result they are real analytic). The other type of solution is called discontinous
since u(x) and v ′′(x) have a finitely many jump discontinuities.

Main results of the present paper are summarized as follows:
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First, we construct (i) one-parameter families of spatially heterogeneous continuous
steady states near constant steady states by applying the bifurcation theory (Theorem 4.6)
and (ii) those far from the constant steady states under additional assumptions on the choice
of parameters (Theorem 5.3). Steady states in family (ii) cannot be found by perturbation
techniques such as bifurcation theorems; they constitute an isolated branch of solutions. We
study the spectrum of the linearized operator and show that these continuous steady states
are unstable (Proposition 4.7, Remark 4.8 and 5.7). Global structure of the set of continuous
steady states is also considered in Subsection 5.4.

Second, we prove that (1) has continua of discontinuous steady states (Corollary 6.2)
by reducing the problem to finding (weak) solutions of the boundary value problem for a
single equation in v (x) and solving the latter by using the approach taken in [18]. We start
with construction of monotone increasing solutions of this boundary value problem (31) and
then use them to construct various kinds of non-monotone discontinuous steady states in
Subsection 6.2. Finally we prove in Theorem 6.8 that all such discontinuous steady states
are (ε0, E)-stable, a notion formulated by Weinberger [32] in order to treat the stability of
discontinuous steady states.

In numerical simulations we have observed that solutions starting from initial functions
close to a constant steady state develop spatial heterogeneity and eventually approach steady
states exhibiting periodic or irregular patterns with sharp transitions. The final form of
solutions seems to be affected by the diffusion coefficient D significantly as in simulations
shown in [10] and in [9]. Our results provide a partial explanation for such dynamic behaviour;
however, we are far from a total understanding of the dynamics of solutions in system (1).

As a matter of fact, for decades such discontinuous steady states have been known to exist
(see, e.g., [20]), because they served as a first approximation to continuous steady states, with
interior transition layers, of reaction-diffusion systems where both species diffuse. However,
there have been not many systematic studies on discontinuous steady states themselves. This
seems partly because most models of pattern formation were based on Turing’s framework and
discontinuous steady states were regarded as intermediate products. In this classical setting, as
the diffusion coefficient of the activator tends to 0, stable steady states are known to converge
to a particular family of discontinuous steady states (see Section 7 for more details). However,
recent researches on models coupling diffusive and non-diffusive components of signalling
systems have revealed the significance of discontinuous steady states appearing systems of
reaction-diffusion equations coupled with ordinary differential equations [11, 12, 19, 25, 31].
We hope that our results will contribute to further studies in this direction.

This paper is organized as follows. As preliminaries, in Sections 2 and 3 we summarize
mostly known results but fundamental to subsequent arguments. Section 4 is devoted to the
bifurcation problem around constant steady states and the stability analysis of bifurcating
solutions. In Section 5, we reduce the problem of finding continuous steady states of (1) to
finding smooth solutions of a boundary value problem for a single equation with a smooth
nonlinearity and study the global structure of branches of such continuous solutions. In
Section 6, we focus on the boundary value problem for a single equation with a discontinuous
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nonlinearity. Particular attention is given to the construction of monotone increasing solutions.
Using these monotone solutions as building blocks, we obtain different types of non-monotone
steady states. Subsection 6.3 gives the proof of the stability of steady states with jump
discontinuity. In Section 7, as concluding remarks, we discuss the relationship between
(DFHN) and (1). Finally, in appendix we present classification tables for the location of
contant steady states of (1) according to ranges of parameter values.

Acknowledgment. This work was supported in part by JSPS KAKENHI Grant Number 26610027
‘Control of Patterns by Multi-component Reaction-diffusion Systems of Degenerate Type’. The authors
thank the referee for the comments which help them improve the presentation of the paper.

2. Spatially homogeneous steady states. In this section we study spatially homoge-
neous steady states of (1), which are equilibria of the kinetic system

(2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

du
dt
= f (u, v ) ,

dv
dt
= g(u, v ) ,

where

f (u, v ) = fβ (u) − v with fβ (u) = u(1 − u)(u − β) ,

g(u, v ) = σu − γv − ρ .

We always assume that 0 < β < 1, γ > 0, σ > 0, ρ > 0. Let uL = (1 + β − √
1 − β + β2)/3

be the unique local minimum point of fβ (u) and uR = (1+ β+
√

1 − β + β2)/3 be the unique
local maximum point of fβ (u). Put vL = fβ (uL ) and vR = fβ (uR).

The zero-level curve f (u, v ) = 0 in the (u, v )-plane defines three different branches u =
hi (v ) defined on the open interval Ji (i = 0, 1, 2), respectively, such that h0(v ) < h2(v ) <
h1(v ) holds in the intersection

⋂2
i=0 Ji (� ∅). Note that J0 = (vL,+∞), J1 = (−∞, vR) and

J2 = (vL, vR). We can extend hi (v ) up to the end points of the intervals, so that h0(vL) =
h2(vL), h2(vR) = h1(vR). Hence, f (u, v ) = 0 if and only if

(3) u =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h0(v ) for vL ≤ v < +∞ ,
h2(v ) for vL ≤ v ≤ vR ,
h1(v ) for −∞ < v ≤ vR ,

and u = h0(v ) and u = h1(v ) are strictly decreasing, whereas u = h2(v ) is strictly increasing.
We define B0 = {(h0(v ), v ) | vL ≤ v < +∞}, B1 = {(h1(v ), v ) | −∞ < v ≤ vR} and B2 =

{(h2(v ), v ) | vL ≤ v ≤ vR}.
The number of equilibria of the kinetic system varies from one to three depending on

parameters (β, γ, σ, ρ). In Appendix we shall classify them.
In this paper we are particularly interested in the case where three distinct equilibria are

on the branch B2. Hence, in what follows, we always assume that (2) has three equilibria
(u1, v1), (u2, v2) and (u3, v3) such that uL < u1 < u3 < u2 < uR and hence vL < v1 < v3 <
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FIGURE 1. Nullclines f (u, v) = 0 and g(u, v) = 0.

v2 < vR. See Proposition A.3 (v) and Proposition A.4 (iii) for how to choose parameters. The
existence of three spatially homogeneous steady states is illustrated in Figure 1.

3. Boundedness of solutions. We state here the existence and boundedness of solu-
tions of the initial-boundary value problem (1), which are obtained by the standard theory. In
this section we assume only that 0 < β < 1, γ > 0, σ > 0 and ρ > 0.

THEOREM 3.1. Let I = (0, l) be a bounded interval in R. Let u0(x), v0(x) be Hölder
continuous functions on I . Moreover, suppose that dv0/dx (0) = dv0/dx (l) = 0 and v0 ∈
C2+ω (I ), 0 < ω < 1. Then the initial-boundary value problem (1) has a unique classical
solution for all t > 0.

PROOF. See Theorem 2 in [18]. Global existence of the solutions (u(x, t), v (x, t))
follows from the next theorem. �

THEOREM 3.2. There exists an invariant rectangle� = {(u, v ) | U0 ≤ u ≤ U1,V0 ≤
v ≤ V1} such that if the initial data (u0(x), v0(x)) is included in �, then the solution of (1)
remains in� for all t ≥ 0.

PROOF. See Example 2 in [28] p.209 for details of the framework of invariant rectangles
and how to construct one for this particular system. The phase diagram is shown in Figure 2. �

Next, we derive a priori bounds on steady states. By a steady state of (1) we mean
that u(x) is piecewise continuous on [0, l], v (x) is continuously differentiable on (0, l) with
piecewise continuous second order derivative on (0, l), and (u(x), v (x)) satisfies (1) expect
points of discontinuity of u(x).

THEOREM 3.3. There exist four constants U� < U�, V� < V� such that any steady
state (u(x), v (x)) of (1) satisfies the inequalitiesU� ≤ u(x) ≤ U� and V� ≤ v (x) ≤ V� for all
x ∈ [0, l].

PROOF. Since v ′(x) is continuous, we have v ′(xM ) = 0 at a maximum point xM of
v (x). Moreover, since v ′′(x) is piecewise continuous, we have v ′′(xM−) ≤ 0 and v ′′(xM+) ≤
0. Indeed, for any h > 0 sufficiently small, we have v (xM ) ≥ v (xM −h) = v (xM )− v ′(xM )h+
1
2 v
′′(xM −θh)h2 with 0 < θ < 1 since v (x) is twice differentiable in the interval (xM −h, xM ).
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FIGURE 2. Vector field ( f (u, v), g(u, v)).

Hence, v ′′(xM − θh)h2 ≤ 0, so that v ′′(xM−) = limh↓0(xM − θh) ≤ 0. Similarly we obtain
v ′′(xM+) ≤ 0.

In the same way, we see that if xm is a minimum point of v (x), then v ′′(xm−) ≥ 0 and
v ′′(xm+) ≥ 0.

Case 1. First we consider the case where all the constant steady states are on the branch
B2. Suppose that v (xM ) = maxx∈[0,l] v (x). Then v ′′(xM±) ≤ 0. Hence, g(u(xM ), v (xM )) =
−Dv ′′(xM±) ≥ 0, i.e., (u(xM ), v (xM )) is below the straight line g(u, v ) = 0. Note that
fβ (u(xM )) = v (xM ), and hence v (xM ) ≤ vR. Similarly, if v (xm) = minx∈[0,l] v (x), then
v ′′(xm±) ≥ 0, hence g(u(xm), v (xm)) ≤ 0, which means that (u(xm), v (xm)) is above the
line g = 0. Since fβ (u(xm)) = v (xm), we see that v (xm) ≥ vL. Consequently we have vL ≤
v (x) ≤ vR.

Next, we derive bounds on u(x). Suppose that u(yM ) = maxx∈[0,l] u(x) and u(ym) =
minx∈[0,l] u(x). If we assume that u(ym) < uL, then (u(ym), v (ym)) is on the branch B0.
Observe that v = fβ (u) is strictly decreasing for u < uL . Therefore, fβ (u) ≤ fβ (u(ym)) if
u(ym) ≤ u ≤ uL. This means that v (x) = fβ (u(x)) attains a local maximum at x = ym, hence
v ′′(xm±) ≤ 0. On the other hand, the branchB0 is above the straight line g = 0 by assumption
of Case 1. Therefore, v ′′(ym±) = −g(u(ym), v (ym))/D > 0, a contradiction. Hence u(ym) ≥
uL .

In a similar fashion, we can prove that maxx∈[0,l] u(x) ≤ uR. We thus obtain the desired
inequalities with U� = uL, U� = uR, V� = vL and V� = vR.

Case 2. Second, we consider the case where (u1, v1) is on the branch B0 and it is the
only constant steady state. Let xm be a minimum point of v (x). Then v ′′(xm±) ≥ 0, so that
g(u(xm), v (xm)) ≤ 0. This implies that v (xm) ≥ v1 since (u(xm), v (xm)) is on the curve
f (u, v ) = 0. Similarly, at a maximum point xM of v (x), we must have g(u(xM ), v (xM )) ≥ 0,
which implies v (xM ) ≤ vR. Therefore, V� = v1 and V� = vR in this case. To obtain bounds
on u(x), we notice that (u(x), v (x)) must be on one of the branches B0, B1 and B2, and at the
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same time in the strip {(u, v ) | V� ≤ v ≤ V�}. Let U� be the smallest root of f (u,V�) = 0 and
U� be the largest root of f (u,V�) = 0. We then obtain U� ≤ u(x) ≤ U�.

Case 3. Third, we consider the case where there is only one constant steady state (u1, v1)
and it is on the branch B1. This case is treated in exactly the same way as in Case 2, and we
see that V� = vL, V� = v1, while U� and U� are defined as in Case 2.

Case 4. It remains to consider the cases (a) there is one constant steady state on every
branch, (b) there is one constant steady state on B0 and two (or one) on B2, and (c) there is
one constant steady state on B1 and two (or one) on B2. In the same way as above, we can
prove that it is sufficient to take V� = vL, V� = vR and to define U� as the smallest root of
f (u,V�) = 0 and U� as the largest root of f (u,V�) = 0. �

4. Bifurcation analysis. In this section, regarding D as a bifurcation parameter, we
consider the bifurcation problem around a constant steady state and the stability of bifurcating
solutions for the boundary value problem

(4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f (u, v ) = 0 for 0 ≤ x ≤ l ,

Dv ′′ + g(u, v ) = 0 for 0 < x < l ,

v ′(0) = v ′(l) = 0 .

4.1. Preliminaries. To begin with, we formulate the problem as an abstract equation
in appropriate spaces of functions. Let X = C0([0, l]) × C2

N ([0, l]) and Y = C0([0, l]) ×
C0([0, l]), where C0([0, l]) denote the Banach space of all continuous functions on [0, l]
with the maximum norm and C2

N ([0, l]) denote the space of twice continuously differentiable
functions satisfying homogeneous Neumann boundary conditions. Let V be an open set of X
defined by V = {V = (u, v ) ∈ X | vL < v < vR for all 0 ≤ x ≤ l }.

We define a mapping F (V, D) from V × (0,+∞) into Y by

(5) F (V, D) =
(

f (u, v ),Dv ′′ + g(u, v )
)

for V = (u, v ) .

Hence, solving (4) is reduced to finding a pair (V, D) ∈ V × (0,+∞) satisfying F (V, D) = 0.
We observe that if V∗ = (u∗, v∗) is an equilibrium of the kinetic system (2) then F (V∗, D) = 0
for any D > 0. The set {(V∗, D) | D > 0} is called the branch of constant steady state V∗. We
call (V∗, D∗) a bifurcation point (with respect to {(V∗, D) | D > 0}) if there exists a sequence
{(Vm, Dm)}∞m=1 ⊂ V × (0,+∞) such that F (Vm, Dm) = 0, Vm � V∗, Vm → V∗ and Dm → D∗
as m → ∞.

For a constant steady state V∗ = (u∗, v∗) of (1) and for D > 0, let ∂VF (V∗, D) denote the
Fréchet (partial) derivative with respect to V = (u, v ) of F at (V∗, D):

(6) ∂VF (V∗, D) :=
(

f ∗u f ∗v
g∗u Dd2/dx2 + g∗v

)
,

where we have defined

f ∗u = fu (u∗, v∗), f ∗v = fv (u∗, v∗), g∗u = gu (u∗, v∗), g∗v = gv (u∗, v∗) .
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The Jacobi matrix J∗ at V∗ of the kinetic system (2) is given by

(7) J∗ :=
(

f ∗u f ∗v
g∗u g∗v

)
= �
�

f ′β (u∗) −1
σ −γ

�
	 .

It is well known that (V∗, D∗) cannot be a bifurcation point if ∂VF (V∗, D∗) has a bounded
inverse, i.e., 0 is not its eigenvalue (see, e.g., [28, p. 171]).

A complex number λ is an eigenvalue of LD = ∂VF (V∗, D) if and only if it solves the
characteristic equation

(8) λ2 − (tr J∗ − D� j )λ + det J∗ − D� j f ′β (u∗) = 0

for some j = 0, 1, 2, 3, . . . , where

(9) � j := (π j/l)2

is an eigenvalue of −d2/dx2 under homogeneous Neumann boundary conditions. The follow-
ing lemma concerning the spectral structure of LD is proved in the same way as Lemma 3.1
in [15]:

LEMMA 4.1. Suppose that V∗ = (u∗, v∗) is a constant steady-state of (1). Let LD

denote the linearized operator ∂VF (V∗, D) : X → Y . Then the spectrum of LD consists of
the eigenvalues {λ j }∞j=0 ∪ {μj }∞j=0 of finite multiplicity, with Re λ j ≤ Re μj , and the point λ =
f ′β (u∗) is in the continuous spectrum. Furthermore,

λ j = −D� j − ( f ′β (u∗) − tr J∗) + O(1/� j) ,
μj = f ′β (u∗) + O(1/� j )

as j → ∞.
As to the distribution of eigenvalues we have the following

LEMMA 4.2. Assume that (2) has three equilibria on the branch B2. Let (u∗, v∗) be an
equilibrium of (2) and put

(10) Dj :=
det J∗

f ′β (u∗)� j
for j = 1, 2, 3, . . . .

If 0 < f ′β (u∗) < min{γ, σ/γ}, then Dj is positive for all j ≥ 1. Moreover,

(I) if D > D1, then λn < 0 < μn for all n ≥ 0 ;
(II) if D = Dj for some j ≥ 1, then Re λn ≤ Re μn < 0 for 1 ≤ n ≤ j − 1 and λ j < 0 =

μj . For n ≥ j + 1, we have λn < 0 < μn ;
(III) if Dj+1 < D < Dj , then Re λn ≤ Re μn < 0 for 1 ≤ n ≤ j, while for any n ≥ j + 1,

λn < 0 < μn .
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PROOF. Since (u∗, v∗) ∈ B2, we have f ′β (u∗) > 0. If f ′β (u∗) < γ, then tr J∗ = f ∗u +
g∗v = f ′β (u∗) − γ < 0. If f ′β (u∗) < σ/γ, then det J∗ = −γ f ′β (u∗) + σ > 0. Therefore, Dj =

det J∗/( f ′β (u∗)� j ) > 0 for all j = 1, 2, . . . .
Also from (8) it follows that (i) if det J∗ − D f ∗u �n < 0 for some n > 0, then λn < 0 < μn

and (ii) if det J∗ − D f ∗u �n > 0 and tr J∗ − D�n < 0 then Re λn ≤ Re μn < 0. The assertions of
the lemma are obtained easily by these observations combined with the definition of Dj . �

Under the assumptions of Lemma 4.2, we observe that if (u∗, v∗) = (u1, v1) or (u2, v2),
then f ′β (u∗) < σ/γ and if (u∗, v∗) = (u3, v3) then f ′β (u∗) > σ/γ since f ′β (u∗) is the slope of
the tangent to f (u, v ) = 0 at (u∗, v∗). On the other hand, the inequality f ′β (u∗) < γ is satisfied
by replacing σu − γv − ρ with (σu − γv − ρ)/τ for some τ > 0 sufficiently small.

DEFINITION 4.3. An equilibrium (u∗, v∗) of the kinetic system (2) is said to be double
if g(u, v ) = 0 is tangent to f (u, v ) = 0 at (u∗, v∗). Otherwise it is said to be simple.

In the following theorem, by the stability of a steady state (u0(x), v0(x)) of (1) for D =
D0 > 0 it is meant in the linearized sense, i.e., V0 = (u0(x), v0(x)) is said to be stable if
the spectrum of ∂VF (V0, D0) is contained in the left half plane {λ ∈ C | Re λ < 0}. If the
spectrum of ∂VF (V0, D0) has a point with positive real part, then we say that V0 is unstable.
We remark that by the standard analytic semigroup theory we can prove that the linearized
stability implies the asymptotic stability in the nonlinear sense.

THEOREM 4.4. Let (u∗, v∗) be a constant steady state of the initial-boundary value
problem (1).

(I) If (u∗, v∗) is on either the branchB0 orB1, i.e., if u∗ ≤ uL or u∗ ≥ uR , then it is stable
for all D > 0. In particular, bifurcation does not occur at (u∗, v∗) ;

(II) Assume that (u∗, v∗) is on B2 and simple.
(IIa) If either (u∗, v∗) is the only constant steady state or there exist two other constant

steady states (u∗, v∗) and (u′, v ′) such that uL < u∗ < u∗ ≤ u′ ≤ uR or uL ≤
u∗ ≤ u′ < u∗ < uR, then (u∗, v∗) is asymptotically stable for D = 0, but it is
unstable for D > 0. In fact, the linearized operator around (u∗, v∗) has infinitely
many positive eigenvalues for any D > 0. Moreover, there exists a strictly
decreasing sequence of positive numbers Dj such that Dj → 0 and LD j has 0
as an eigenvalue.

(IIb) If there exist two other constant steady states (u∗, v∗) and (u′, v ′) such that u∗ <
u∗ < u′, then (u∗, v∗) is a saddle point. The linearized operator around (u∗, v∗)
has infinitely many positive eigenvalues and infinitely many negative eigenvalues
for D > 0. Moreover, bifurcation does not occur at (u∗, v∗) .

(III) Assume that (u∗, v∗) is a double steady state on B2. Then (i) for D = 0, it is
asymptotically stable if f ′β (u∗) < γ, and unstable if f ′β (u∗) > γ, (ii) for D > 0
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it is unstable (the linearized operator has infinitely many positive eigenvalues and
infinitely many negative eigenvalues) and bifurcation does not occur at (u∗, v∗).

From (II) of Lemma 4.2 we know that as D increases over Dj , V∗ = (u∗, v∗) becomes
more unstable in the sense that the stability index decreases, which is defined by

DEFINITION 4.5. Let V∗ = (u∗, v∗) be a constant steady state of (1). Define the stability
index IndS (V∗, D) of (V∗, D) by

IndS (V∗, D) = #{μn | Re μn < 0} ,
where #N stands for the number of distinct elements of a countable set N .

If V∗ = (u∗, v∗) with 0 < f ′β (u∗) < min{γ, σ/γ}, then IndS (V∗, D) = j for Dj+1 < D <

Dj . If we understand D0 = +∞, this formula is valid for all j ≥ 0. We observe that under
disturbances of wave number ≤ IndS (V∗, D), V∗ is linearly stable. However, under disturbance
of wave number > IndS (V∗, D), V∗ is unstable.

Now let V∗ = (u∗, v∗) be a constant steady state of (1) which satisfies the assumption
of (IIa) of Theorem 4.4 above. Hence the linearized operator LD j has 0 as an eigenvalue.
By applying the standard bifurcation theory, we have a one-parameter family of non-constant
solutions of F (V, D) = 0. To state the rigorous result, we need some preparation.

From (6) it is straightforward to compute an eigenvector φ0 of LD j belonging to 0:

LD j φ0 = 0 if φ0 =

(
1

f ′β (u∗)

)
cos

π j x
l

.

Let L1 denote the linear operator ∂V∂DF (V∗, Dj ), i.e.,

L1 =

(
0 0
0 d2/dx2

)
.

Then we can prove that LD j has 0 as an L1-simple eigenvalue, which means that (i)
dim KerLDj = codim rangeLDj = 1 and (ii) if KerLDj = span{φ0}, then L1φ0 � rangeLDj.
(For a proof, see §3.2 of [15].) Hence, all the assumptions of the standard theorem on bifur-
cation from simple eigenvalues (e.g., Theorem 1.7 and 1.18 of [1]) are satisfied and we obtain
the following theorem.

THEOREM 4.6. LetV∗ = (u∗, v∗), a constant steady state of (1) satisfying 0 < f ′β (u∗) <
min{γ, σ/γ}. Let φ j,+ = cos(π j x/l) and ψ j,+ = f ′β (u∗) cos(π j x/l). Then there exists an ε0 >

0 such that (4) has a one-parameter family of nonconstant solutions {(V (ε),D(ε))}|ε |<ε0 of
the form V (ε) = (u(x, ε), v (x, ε)), D(ε) = Dj + d (ε) where

u(x, ε) = u∗ + ε(φ j,+(x) + φ(x, ε)) ,

v (x, ε) = v∗ + ε(ψ j,+(x) + ψ(x, ε))) ,

φ(x, 0) ≡ 0, ψ(x, 0) ≡ 0, d (0) = 0 .

Furthermore, in a small neighborhood of (V∗, Dj ) in X × R, there is no solutions other than
{(V (ε),D(ε))}|ε |<ε0 ∪ {(V∗, D)}|D−D j |<ε0 .
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4.2. Perturbation of critical eigenvalue. Let L(ε) denote the linearized operator
∂VF (V (ε), D(ε)) where (V (ε), D(ε)) is a bifurcating solution of (4) given by Theorem 4.6.
Since LD j = L(0), L(0) has 0 as an eigenvalue. Hence, L(ε) is expected to have an
eigenvalue μ(ε) such that μ(0) = 0. This is rigorously proved once we know that 0 is an
i-simple eigenvalue of LD j , where i is the inclusion mapping X ↪→ Y . Here, i-simplicity
means (i) dim kerLD j = codim rangeLD j = 1 and (ii) if kerLD j = span{φ0}, then iφ0 �
rangeLD j . (This fact is shown in the same way as in §3.3 of [15].)

Now we see that LD has an i-simple eigenvalue μj (D) near D = Dj and L(ε) has an
i-simple eigenvalue μ(ε) for |ε | sufficiently small. Moreover, by the well-known theorem of
Crandall and Rabinowitz (see, e.g., [28, Theorem 13.8]) we have

(11) lim
ε→0, μ(ε)�0

−εD′(ε) μ′j (Dj )

μ(ε)
= 1 .

From (8) it follows that 2μj (D) μ′j (D) + � j μj (D) − (tr J∗ − D � j )μ′j (D) − � j f ∗u = 0, and
hence μ′j (Dj ) = −� j f ∗u/(tr J∗ − Dj� j ) > 0. Therefore, μ(ε) has the same sign as −εD′(ε).

To know the sign of μ(ε), we compute D′(ε). We expand u(x, ε), v (x, ε) and D(ε) in ε:

u = u∗ + εw , w = w1 + εw2 + ε
2w3 + · · · ,

v = v∗ + εz , z = z1 + εz2 + ε
2z3 + · · · ,

D = Dj + εd1 + ε
2d2 + ε

3d3 + · · · .
Then, since fuv ≡ fvu ≡ fuuv ≡ fuvu ≡ fvvv ≡ 0, we have

f (u(x, ε), v (x, ε)) = f (u∗, v∗) + fu (u∗, v∗)εw + fv (u∗, v∗)εz

+
1
2

fuu (u∗, v∗)(εw)2 +
1
6

fuuu (u∗ + θεw, v∗ + θεw)(εw)3

= fu (u∗, v∗)(εw1 + ε
2w2 + ε

3w3 + · · · )
+ fv (u∗, v∗)(εz1 + ε

2z2 + ε
3z3 + · · · )

+
1
2

( f ′′β (u∗, v∗) +O(ε))(εw1 + ε
2w2 + · · · )2

− (1 +O(ε))(εw1 + ε
2w2 + · · · )3 .

Since g is linear in (u, v ), we have

g(u(x, ε), v (x, ε)) = g(u∗, v∗) + gu (u∗, v∗)εw + gv (u∗, v∗)εz

= gu (u∗, v∗)(εw1 + ε
2w2 + ε

3w3 + · · · )
+ gv (u∗, v∗)(εz1 + ε

2z2 + ε
3z3 + · · · ) .

We substitute these expressions into (4). Putting

a11 = fu (u∗, v∗) = f ′β (u∗) , a12 = fv (u∗, v∗) = −1 ,
a21 = gu (u∗, v∗) = σ , a22 = gv (u∗, v∗) = −γ
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and

J∗ =
(
a11 a12
a21 a22

)
,

we obtain the following series of equations by equating the coefficient of each power of ε to
zero: from ε1:

(12)
⎧⎪⎨⎪⎩

a11w1 + a12z1 = 0 ,
Dj z′′1 + a21w1 + a22z1 = 0;

from ε2:

(13)
⎧⎪⎪⎨⎪⎪⎩

a11w2 + a12z2 +
1
2

f ′′β (u∗)w2
1 = 0 ,

Dj z′′2 + d1z′′1 + a21w2 + a22z2 = 0;

from ε3:

(14)
⎧⎪⎨⎪⎩

a11w3 + a12z3 + f ′′β (u∗)w1w2 − w3
1 = 0 ,

Dj z′′3 + d1z′′2 + d2z′′1 + a21w3 + a22z3 = 0 .

Notice that (12) is equivalent to LD j
T(w1, z1) = 0, where T(w1, z1) denote the transpose

of the vector (w1, z1). Hence, in view of a11 = f ′β (u∗) > 0, we see that

w1 = −a12

a11
φ j,+ , z1 = φ j,+

satisfies (12), where φ j,+ = cos(π j x/l).
The first equation of (13) implies

w2 = −a12

a11
z2 −

f ′′β (u∗)
2a11

w2
1 .

Inserting this into the second equation of (13), we get

(15) Dj z′′2 +
det J∗

a11
z2 − d1� j z1 − a21

2a11
f ′′β (u∗)w2

1 = 0 .

Since Dj d2/dz2 + det J∗/a11 has 0 as an eigenvalue, (15) has a solution if and only if the
solvability condition

(16) d1� j

∫ l

0
z2

1 dx +
a21

2a11
f ′′β (u∗)

∫ l

0
w2

1 z1 dx = 0

is satisfied. Since w1 = −(a12/a11)z1, the second integral on the left-hand side vanishes.
Therefore, d1 = 0.

Then (15) reduces to

Dj z′′2 +
det J∗

a11
z2 =

a21a2
12

2a3
11

f ′′β (u∗)z2
1 .
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In view of z2
1 = (1 + cos(2π j x/l))/2, we are led to

Dj z′′2 +
det J∗

a11
z2 =

a21a2
12

4a3
11

f ′′β (u∗)
{

1 + cos
2π j x

l

}
.

Hence we obtain

z2 =
a21a2

12

4a2
11 det J∗

f ′′β (u∗) −
a21a2

12 f ′′β (u∗)

12a2
11 det J∗

cos
2π j x

l
+ C cos

π j x
l
,

where C is an arbitrary constant. If we require further that
∫ l

0 z2 z1 dx = 0, then C = 0 and we
conclude that

z2 =
a21a2

12

4a2
11 det J∗

f ′′β (u∗) −
a21a2

12

12a2
11 det J∗

f ′′β (u∗) cos
2π j x

l
,

w2 = −
a2

12

4a3
11

f ′′β (u∗)
(

a12a21

det J∗
+ 1

)
+

a2
12

4a3
11

f ′′β (u∗)
(

a12a21

3 det J∗
− 1

)
cos

2π j x
l

.

In the computations above, we have used the fact that Dj (cos(2π j x/l))′′ = −4� j Dj

cos(2π j x/l) = −(det J∗/a11) cos(2π j x/l).
Let us turn to (14). The first equation yields

w3 = − 1
a11

(
a12z3 + f ′′β (u∗)w1w2 − w3

1

)
.

Substituting this in the second equation of (14) gives

Dj z′′3 +
det J∗

a11
z3 − d2 � j z1 − a21

a11

[
f ′′β (u∗)w1w2 − w3

1

]
= 0 .

The solvability condition for this equation reads

d2� j

∫ l

0
z2

1 dx +
a21

a11

∫ l

0

(
f ′′β (u∗)w1w2 − w3

1

)
z1 dx = 0 ,

which yields

� j

2
d2 = −

3a21a3
12

8a4
11
− a21a3

12

8a5
11

[ f ′′β (u∗)]2
(
1 +

a21

det J∗

)
+

a21a3
12

16a5
11

[ f ′′β (u∗)]2
(

a21a12

3 det J∗
− 1

)
.

In deriving this expression, we have used the elementary formulas cos2(2π j x/l) = (1 +
cos(4π j x/l))/2 and cos4(π j x/l) = {3 + 4 cos(2π j x/l) + cos(4π j x/l)}/8.

Recalling that a12 = −1, a21 = σ and a22 = −γ, we obtain

(17)
� j

2
d2 =

3σ
8a4

11
+

σ

8a5
11

[ f ′′β (u∗)]2
(
1 +

σ

det J∗

)
+

σ

16a5
11

[ f ′′β (u∗)]2
(

σ

3 det J∗
+ 1

)
.

Since d1 = 0 and d2 > 0, we see that −εD′(ε) = −2d2ε
2 + O(ε3) < 0 as long as ε � 0

is sufficiently small. Therefore, by virtue of formula (11) we obtain the following proposition.

PROPOSITION 4.7. Let V∗ = (u∗, v∗) be a steady state of (1) satisfying 0 < f ′β (u∗) <
min{γ, σ/γ}. Let {(V (ε),D(ε))}|ε |<ε0 be a family of nonconstant solutions bifurcating from
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(V∗, Dj ). Then D(ε) > Dj for 0 < |ε | < ε0. Moreover, the i-simple eigenvalue μj (ε) of the
linearized operator L(ε) = ∂VF (V (ε),D(ε)) is negative for |ε | > 0 sufficiently small.

REMARK 4.8. For D > Dj with D − Dj sufficiently small, there are exactly two
nonconstant stationary solutions near the constant solution V∗ = (u∗, v∗). These noncon-
stant stationary solutions are more stable than V∗ in the sense that IndS (V (ε),D(ε)) >

IndS (V∗, D(ε)). However, L(ε) has infinitely many positive eigenvalues.

5. Spatially nonhomogeneous continuous steady states. In order to know the global
behaviour of the branch of bifurcating solutions obtained in the previous section, we turn to
the boundary value problem

(18)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D
∂2v

∂x2 + g(h2(v ), v ) = 0 for 0 < x < l ,

∂v

∂x
(0) =

∂v

∂x
(l) = 0 .

It is convenient to set

(19) g2(v ) = g(h2(v ), v ) for vL ≤ v ≤ vR .
In this section we construct solutions of the boundary problem (18). Since all nonconstant

continuous solution can be obtained from monotone increasing solutions, we focus on the
monotone increasing solutions of (18). Recall that (u1, v1), (u2, v2) and (u3, v3) are equilibria
of (2) and they are on the branch B2 : u = h2(v ).

5.1. Monotone increasing solutions. Multiplying both sides of the first equation of
(18) by v ′, we obtain (

D
2

(v ′)2 + G2(v )

)′
= 0 ,

where

(20) G2(v ) =
∫ v

v2

g(h2(s), s) ds for vL ≤ v ≤ vR .

Notice that G′2(v ) = g(h2(v ), v ) < 0 if vL < v < v1, G′2(v ) = 0 if v = vL, G′2(v ) > 0 if v1 <
v < v3, G′2(v ) = 0 if v = v3, G′2(v ) < 0 if v3 < v < v2, G′2(v ) = 0 if v = v2 and G′2(v ) >
0 if v2 < v < vR. Therefore, G2 is monotone decreasing in the intervals (vL, v1) and (v3, v2),
monotone increasing in the intervals (v1, v3) and (v2, vR). Moreover, G2(v ) achieves a local
minimum at v = v1, v2 and a local maximum at v = v3. Let a = v (0). Then we have, in view
of v ′(0) = 0,

D
2
v ′(x)2 + G2(v (x)) = G2(a) .

Therefore

(21) v ′(x)2 =
2
D

(
G2(a) − G2(v (x))

)
.
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Since v (x) is monotone increasing,

(22) v ′(x) =
1√
D

√
2
(
G2(a) − G2(v (x))

)
.

Due to the boundary condition v ′(l) = 0, we see that b = v (l) must satisfy G2(a) = G2(b).
Integrating (22), we obtain

(23)
x√
D
=

∫ v

a

dw√
2(G2(a) − G2(w))

,

and by putting x = l,

(24) D =

(
l

/ ∫ b(a)

a

dw√
2(G2(a) − G2(w))

)2

.

Expressions (23) and (24) are meaningful as long as (i) the algebraic equation G2(v ) =
G2(a) has a solution b > a and (ii) G2(v ) < G2(a) for a < v < b. This requirement restricts
the range of a. Since the potential G2(v ) is of double-well type, we can take a near the bottom
of each well. Moreover, if G2(vL) > G2(v3) and G2(vR) > G2(v3) then a may be taken far
from v1.

First we consider the neighbourhood of v2. There are two cases to be distinguished.
(I) G2(v3) ≤ G2(vR). In this case, there exists a unique b(2) = b(2) (a(2) ) for each

a(2) ∈ [v3, v2] such that G2(b(2) ) = G2(a(2) ). We can define D(a(2) ) and v (x, a(2) )
for a(2) ∈ (v3, v2].

(II) G2(v3) > G2(vR). In this case, G2(b(2) ) = G2(a(2) ) defines a unique solution
b(2) = b(2) (a(2) ) ≥ a(2) if a(2) ∈ [v (2)

0 , v2], where v (2)
0 ∈ [v3, v2] is uniquely determined

by G2(v (2)
0 ) = G2(vR). Therefore, we can define D(a(2) ) and v (x, a(2) ) for a(2) ∈

(v (2)
0 , v2].

Now, we claim that both case (I) and case (II) can occur under some parameter values.
We choose a value of β ∈ (0, 1) and fix the curve v = fβ (u). First, we fix the point (u1, v1) on
u = h2(v ). Then we adjust the slope σ/γ of the straight line g(u, v ) = 0 so that (h2(v2), v2)
is close to (h2(vR), vR). Under this situation G2(vR) can be made arbitrarily small. Therefore
we have case (II). Next, we choose (u3, v3) close to (uR, vR). Draw the tangent of v = fβ (u)
at (u3, v3). Then, make the slope of g(u, v ) = 0 slightly smaller than that of the tangent. Then
(u2, v2) is close to (u3, v3). This makes G2(v3) smaller than G2(vR) and we have case (I). We
show the two cases in the Figures 3–5.

Concerning solutions satisfying v (x) ∈ [vL, v3], we have by a similar argument the
following classification:

(III) G2(v3) ≤ G2(vL). In this case, G2(b(1) ) = G2(a(1) ) defines a unique solution
b(1) = b(1) (a(1) ) if a(1) ∈ [v (1)

0 , v1], where v (1)
0 ∈ [vL, v1] is uniquely determined

by G2(v (1)
0 ) = G2(v3). Therefore, we can define D(a(1) ) and v (x, a(1) ) for a(1) ∈

(v (1)
0 , v1].



258 Y. LI, A. MARCINIAK-CZOCHRA, I. TAKAGI AND B. WU

FIGURE 3. Case (I) with G2 (v3) < G2 (vR ). FIGURE 4. Case (I) with G2 (v3) = G2 (vR ).

FIGURE 5. Case (II) G2 (v3) > G2 (vR ). FIGURE 6. Case (III) with G2 (v3) > G2 (vL ).

(IV) G2(v3) > G2(vL). In this case, there exists a unique b(1) = b(1) (a(1) ) for each
a(1) ∈ [vL, v1] such that G2(b(1) ) = G2(a(1) ). We can define D(a(1) ) and v (x, a(1) )
for a(1) ∈ (vL, v1]. This case is shown in Figure 6.

In addition to these two types of monotone solutions, there exists another family of
monotoe solutions when G2(v3) is small:

(V) G2(v3) < min{G2(vL),G2(vR)}. In this case, there exists a unique v (3)
0 ∈ (vL, v3)

such that G2(v (3)
0 ) = G2(v3). There are two possibilities:

(V.1) If G2(vL) ≤ G2(vR), then for each a(3) ∈ [vL, v (3)
0 ) there is a unique b(3) =

b(3) (a(3) ) such that G2(b(3) ) = G2(a(3) ). We can define D(a(3) ) and v (x, a(3) )
for a(3) ∈ (vL, v

(3)
0 ).

(V.2) If G2(vL) > G2(vR), then there exists a unique v (3)
m ∈ (vL, v

(3)
0 ) such that

G2(v (3)
m ) = G2(vR). For each a(3) ∈ [v (3)

m , v (3)
0 ), there is a unique b(3) =

b(3) (a(3) ) > a(3) such that G2(b(3) ) = G2(a(3) ). We can define D(a(3) ) and
v (x, a(3) ) for a(3) ∈ (v (3)

m , v (3)
0 ).

We introduce the following notation:
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a(1)
0 =

⎧⎪⎨⎪⎩
v (1)
0 if G2(v3) ≤ G2(vL) ,

vL if G2(v3) > G2(vL) ,
a(2)

0 =
⎧⎪⎨⎪⎩
v3 if G2(v3) ≤ G2(vR) ,

v (2)
0 if G2(v3) > G2(vR) ,

and

a(3)
0 =

⎧⎪⎨⎪⎩
vL if G2(vL) ≤ G2(vR) ,

v (3)
m if G2(vL) > G2(vR) .

We define C (ν)
1,+ = {(v (x, a(ν) ), D(a(ν) )) | a(ν)

0 < a(ν) ≤ vν} for ν = 1, 2, which are
the branches of monotone increasing solutions ; C (ν)

1,− = {(v (l − x, a(ν) ), D(a(ν) )) | a(ν)
0 <

a(ν) ≤ vν} for ν = 1, 2, which are the branches of monotone decreasing solutions; and C (ν)
1 =

C (ν)
1,+ ∪ C (ν)

1,− , which are the branches of monotone solutions (ν = 1, 2). In the case G2(v3) <

min{G2(vL),G2(vR)} we obtain one more set of branches of monotone solutions: C (3)
1,+ =

{(v (x, a(3) ), D(a(3) )) | a(3)
0 < a(3) ≤ v (3)

0 }, C (3)
1,− = {(v (l − x, a(3) ), D(a(3) )) | a(3)

0 < a(3) ≤
v (3)
0 } and C (3)

1 = C (3)
1,+ ∪ C (3)

1,− .
5.2. Limiting behaviour of the branch of monotone solutions. In this subsection

we investigate the behaviour of the increasing solution (vν (x, a(ν) ), D(ν) (a(ν) )) as a(ν) → vν
(ν = 1, 2) or a(3) → v (3)

0 , and as a(ν) → a(ν)
0 (ν = 1, 2, 3).

THEOREM 5.1. For ν = 1, 2, as a(ν) ↑ vν, vν (x, a(ν) ) → vν uniformly on [0, l], and
Dν (a(ν) ) → D(ν)

1 = g ′2(vν)/(π/l)2.

THEOREM 5.2. It holds that
1) if G2(v3) ≤ G2(vR), then v (x, a(2) ) develops a boundary layer at x = l as a(2) ↓ v3,

namely, v (x, a(2) ) → v3 locally uniformly in [0, l), whereas v (l, a(2) ) → b(2) (v3) and
D(a(2) ) → 0;

2) if G2(v3) > G2(vR), then, as a(2) ↓ v (2)
0 , v (x, a(2) ) → v (x, v (2)

0 ) uniformly on [0, l]
and D(a(2) ) → D(2)

C , where D(2)
C is a positive number;

3) if G2(v3) ≤ G2(vL), then v (x, a(1) ) develops a boundary layer at x = l as a(1) ↓ v (1)
0 ,

namely, v (x, a(1) ) → v3 locally uniformly in [0, l), whereas v (l, a(1) ) → b(1) (v3) and
D(a(1) ) → 0;

4) if G2(v3) > G2(vL), then as a(1) ↓ vL, v (x, a(1) ) → v (x, vL) uniformly on [0, l] and
D(a(1) ) → D(1)

C
, where D(1)

C
is a positive number.

PROOF OF THEOREMS 5.1 AND 5.2. Since the properties of G2(v ) are identical with
those of H (v ) stated in Section 4 of [15], the assertions of these theorems are proved in the
same way as Theorem 4.1 and 4.2 in [15]. �

The branch C (3)
1 did not appear in the nonlinearity considered in [15] and exhibits a

different type of limiting behaviour:

THEOREM 5.3. If G2(v3) < min{G2(vL),G2(vR)}, then we have
1) as a(3) ↑ v (3)

0 , v (x, a(3) ) develops a boundary layer at each of the boundary points x =
0 and x = l, namely, v (x, a(3) ) → v3 locally uniformly in (0, l), whereas v (0, a(3) ) →
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v (3)
0 (< v3) and v (l, a(3) ) → v (3)

1 (> v3). Here v (3)
1 is a unique solution of G2(v ) =

G2(v3) satisfying v (3)
1 > v3. Moreover, D(a(3) ) → 0 as a(3) ↑ v (3)

0 ;
2) if G2(vL) ≤ G2(vR), then v (x, a(3) ) develops a boundary layer at x = l as a(3) ↑ v3,

namely, v (x, a(3) ) → v3 locally uniformly in [0, l), whereas v (l, a(3) ) → b(3) (v3) and
D(a(3) ) → 0;

3) if G2(vL) > G2(vR), then, as a(3) ↓ v (3)
m , v (x, a(3) ) → v (x, v (3)

m ) uniformly on [0, l]
and D(a(3) ) → D(3)

C
, where D(3)

C
is a positive number.

PROOF. Assertions 2) and 3) are proved in the same way as those of Theorem 5.2. To
prove 1) we observe that G2(a) = G2(v (3)

0 ) + (G′2(v (3)
0 ) + O( |a − v (3)

0 |))(a − v (3)
0 ), G2(w) =

G2(v3)+G′2(v3)(w− v3)+2−1(G′′2 (v3)+O(w− v3))(w− v3)2, G2(v (3)
0 ) = G2(v3) and G′2(v3) =

0. Hence,

2(G2(a) − G2(w))

= − G′′2 (v3)
⎧⎪⎨⎪⎩(1 + O(w − v3))(w − v3)2 − 2G′2(v (3)

0 )(1 + O(a − v (3)
0 ))

G′′2 (v3)
(a − v (3)

0 )
⎫⎪⎬⎪⎭

as a ↑ v (3)
0 and w → v3. Using this expression it is not hard to prove that for any positive

constant δ sufficiently small we have

I1(a) =
∫ v3

v3−δ
dw√

2(G2(a) − G2(w))
=

1

2
√
−G′′2 (v3)

log
1

v (3)
0 − a

+O(1) ,

J1 (a) =
∫ v3+δ

v3

dw√
2(G2(a) − G2(w))

=
1

2
√
−G′′2 (v3)

log
1

v (3)
0 − a

+O(1) ,

as a ↑ v (3)
0 . On the other hand,

I2(a) =
∫ v3−δ

a

dw√
2(G2(a) − G2(w))

= O(1) ,

J2(a) =
∫ b(a)

v3+δ

dw√
2(G2(a) − G2(w))

= O(1) ,

as a ↑ v (3)
0 (see, e.g., Lemmas 16 and 17 in [18]). Therefore,∫ b(a)

a

dw√
2(G2(a) − G2(w))

=
1√

−G′′2 (v3)
log

1
v (3)
0 − a

+O(1) as a ↑ v (3)
0 .

Hence, D(a(3) ) → 0 as a(3) ↑ v (3)
0 . Moreover,

x
l
=

∫ v

a(3)

dw√
2(G2(a(3) ) − G2(w))

/ ∫ b(a(3) )

a(3)

dw√
2(G2(a(3) ) − G2(w))

implies that if v (xκ) = v3 − κ, then xκ/l → 0 for κ > 0 and xκ/l → 1 for κ < 0 as a(3) ↑ v (3)
0 .

This completes the proof of Assertion 1). �
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5.3. Symmetric continuous steady states. We can construct solutions of the bound-
ary value problem (18) which are not monotone increasing. Let v∗(x) be any monotone
increasing solution of (18) with D = D∗, given by (23). For each integer k ≥ 2, define a
function vk+ (x) on 0 ≤ x ≤ l by

vk+ (x) =
⎧⎪⎨⎪⎩
v∗(kx − 2 jl) for 2 jl/k ≤ x ≤ (2 j + 1)l/k ,

v∗(2( j + 1)l − kx) for (2 j + 1)l/k ≤ x ≤ 2( j + 1)l/k ,

where j = 0, 1, 2, . . . , [k/2]. Also we define

vk− (x) =
⎧⎪⎨⎪⎩
v∗(2( j + 1)l − kx) for 2 jl/k ≤ x ≤ (2 j + 1)l/k ,

v∗(kx − (2 j + 1)l) for (2 j + 1)l/k ≤ x ≤ 2( j + 1)l/k .

Then vk± (x) is a solution of (18) for D = D∗/k2. Moreover, by making use of the uniqueness
of solution of the initial value problem for v ′′ = −g2(v ), we see easily that all the solutions of
(18) are obtained from monotone increasing solutions by this method.

We denote this continuation mapping by Ek,±:

(25) Ek,+v (x) = vk+ (x) , Ek,−v (x) = vk− (x) .

In this way we can define the branch of k-mode solutions of (18) as follows:

(26) C (ν)
k,± =

{(
Ek,±v (x, a(ν) ), D(a(ν) )/k2

) �� a(ν)
0 < a(ν) ≤ vν

}
and C (ν)

k
= C (ν)

k,+
∪ C (ν)

k,− ,

where a(ν)
0 < a(ν) ≤ vν is replaced with a(3)

0 < a(3) ≤ v (3)
0 for ν = 3.

5.4. Global behaviour of bifurcating branches. Let S denote the set of all noncon-
stant solutions of the single equation (18). Let C (ν)

j (ν = 1, 2) be the connected component
of S , the closure of S in C0([0, l]) × (0,+∞), which contains the bifurcation point (vν, Dj )
(ν = 1, 2). Notice that C (ν)

j coincides with that defined by (26) at the end of Subsection 5.3.
The following two propositions are proved in the same way as Lemma 4.1 and Proposi-

tion 4.2 in [15]:

PROPOSITION 5.4. If m � n then C (ν)
m

⋂
C (ν)
n = ∅ (ν = 1, 2). Moreover C (ν)

j is not
compact in D × (0,+∞), where D = {v ∈ C2([0, l]) | vL < v (x) < vR for all x ∈ [0, l]}.

Therefore, we are interested in how the branch Cj approaches the boundary ∂ (D ×
(0,+∞)). We consider the case when D is sufficiently large.

PROPOSITION 5.5. Assume the condition of Lemma 4.2 is satisfied. Then the boundary
value problem (18) has only constant solutions if D > D�, where D� is a positive constant
depending only on the function g2(v ) and l.

We make here an obvious

REMARK 5.6. For j, k ≥ 1, it holds that (a) C (1)
j ∩C (2)

k
= ∅, and (b) C (ν)

j ∩C (3)
k
= ∅

for ν = 1, 2 in the case G2(v3) < min{G1(vL),G2(vR)}.
Therefore, combined with Theorem 5.2,we conclude that the projection of the branch C (ν)

n

on R forms (i) an interval (0,DM ] if G2(v3) ≤ G2(vR) or G2(v3) ≤ G2(vL) and (ii) an interval
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[d�, DM ] if G2(v3) > G2(vR) or G2(v3) > G2(vL), where 0 < d� < DM . Furthermore, we
have DM > D(ν)

1 = g ′2(vν)/(π/l)2 by virtue of Proposition 4.7.
On the other hand, in the case where G2(v3) < min{G2(vL),G2(vR)}, the projection onR

of the connected component C (3)
1 = {(v (x, a(3) ), D(a(3) )) | a(3)

0 < a(3) < v (3)
0 } always forms

an interval (0, DM ] for some positive constant DM .
We close this section with the following remark:

REMARK 5.7. Each solution (v∗(x), D∗) of the boundary value problem for the
single equation (18) gives rise to a steady state (h2(v∗(x)), v∗(x)) of (1) for D = D∗.
All the continuous steady states thus obtained are unstable. For, fu (u∗(x), v∗(x)) =
f ′β (u∗(x)) > 0 is satisfied whenever (u∗(x), v∗(x)) is on the branch B2. Hence, the in-
terval [min0≤x≤l f ′β (u∗(x)),max0≤x≤l f ′β (u∗(x))] is a continuous spectrum of the linearized
operator L∗ around (u∗, v∗) by Theorem 4.5 of [17].

6. Spatially discontinuous steady states. In this section we construct various dis-
continuous steady states of (1), where u(x) has finitely many jump discontinuities and v (x)
has jump discontinuities in the second order derivative.

Let h0(v ) < h2(v ) < h1(v ) be the three branches of solutions of fβ (u) − v = 0 (see (3)).
Put

(27) gj (v ) = g(h j (v ), v ) , j = 0, 1 .

Moreover, we define

(28) G0(v ) =
∫ v

vL

g0(s) ds , G1(v ) =
∫ v

vR

g1(s) ds

for vL ≤ v ≤ vR.
The first goal of this section is to prove

THEOREM 6.1. For each α ∈ (vL, vR), let

(29) Tc (α) =
∫ α

v

d v√
2[(G0(α) − G1(α))+ − G0(v )]

+

∫ v

α

d v√
2[(G0(α) − G1(α))+ − G1(v )]

where (G0(α) − G1(α))+ = max{0,G0(α) − G1(α)}. Let
(30) Dc (α) = (�/Tc(α))2 .

Then for each D > Dc (α), there exists a unique solution of the boundary value problem

(31)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
d2v

dx2 + g0(v ) = 0 for 0 < x < x∗ ,

D
d2v

dx2 + g1(v ) = 0 for x∗ < x < l ,

dv
dx

(0) =
dv
dx

(l) = 0 ,
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such that

v (x∗) = α , lim
x↑x∗

dv
dx

(x) = lim
x↓x∗

dv
dx

(x) ,(32)

dv
dx

(x) > 0 for 0 < x < l .

Let v1,+(x; α, D) denote this monotone increasing solution. Then v1,−(x; α, D) = v1,+(l −
x; α, D) is a unique solution of (31) with x∗ replaced by l − x∗ satisfying

v (l − x∗) = α , lim
x↑ l−x∗

dv
dx

(x) = lim
x↓ l−x∗

dv
dx

(x) ,(33)

dv
dx

(x) < 0 for 0 < x < l .

The following is an immediate consequence of this theorem:

COROLLARY 6.2. For each α ∈ (vL, vR) and D > Dc (α), let

u1,+(x; α, D) =
⎧⎪⎨⎪⎩

h0(v1,+(x; α, D)) for 0 ≤ x ≤ x∗ ,
h1(v1,+(x; α, D)) for x∗ < x ≤ l .

Then (u1,+(x; α, D), v1,+(x; α, D)) is a solution of the boundary value problem (4) with the
properties (i) u1,+ has a jump discontinuity at x = x∗ and (ii) v1,+(x∗; α, D) = α. Let

u1,−(x; α, D) =
⎧⎪⎨⎪⎩

h0(v1,−(x; α, D)) for 0 ≤ x ≤ l − x∗ ,
h1(v1,−(x; α, D)) for l − x∗ < x ≤ l .

Then (u1,−(x; α, D), v1,−(x; α, D)) is a solution of (4) with properties (a) u1,− has a jump
discontinuity at x = l − x∗ and (b) v1,−(l − x∗; α, D) = α.

Solutions with non-monotone v are considered in Subsection 6.2.
6.1. Monotone increasing solutions. In this subsection we prove Theorem 6.1, fol-

lowing the approach in [18]: First we solve the initial value problems

(34)
⎧⎪⎨⎪⎩
wyy + g0(w) = 0 ,
w(0) = α , w′(0) = m ,

and

(35)
⎧⎪⎨⎪⎩
wyy + g1(w) = 0 ,
w(0) = α , w′(0) = m ,

where m is a given positive number. Then we glue the two solutions together and scale the
spatial variable appropriately to obtain a solution of (31).

LEMMA 6.3. Given a pair (m, α) such that vL < α < vR, and 0 < m <

min{√−2G0(α),
√−2G1(α)}, there exists a unique v ∈ (vL, α) and v ∈ (α, vR) satisfying

(36) G0(v) =
1
2

m2 + G0(α) and G1(v) =
1
2

m2 + G1(α) .
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Let

(37) Y (m, α) =
1√
2

∫ α

v

dv√
G0(v) − G0(v )

, X (m, α) =
1√
2

∫ v

α

dv√
G1(v) − G1(v )

.

Then the unique solution w0 (y ) of (34) satisfies w′0(y ) > 0 for −Y (m, α) < y < 0,
w′0 (−Y (m, α)) = 0 and w0(−Y (m, α)) = v . The unique solution w1(y ) of (35) satisfies
w′1 (y ) > 0 for 0 < y < X (m, α), w′1 (X (m, α)) = 0 and w1 (X (m, α)) = v.

PROOF. Since the method of proof is the same, we treat (35) only. Multiple the first
equation of (35) by w′ and then integrate the resulting equation from 0 to y . We hence obtain

1
2
w′(y )2 − 1

2
m2 + G1(w(y )) − G1(α) = 0 ,

where we have used the initial conditions w(0) = α and w′(0) = m. Put

(38) Ψ (w) = m2 + 2[G1(α) − G1(w)] .

Then

w′(y )2 =Ψ (w(y )) .

Since we are interested in monotone increasing solutions, we require w′(y ) > 0, and obtain

(39)
dw
dy
=

√
Ψ (w(y )) .

The solution is well-defined as long asΨ (w(y )) ≥ 0. From (38) we see thatΨ (α) = m2 > 0,
Ψ ′(w) = −2g1(w) < 0 andΨ ′′(w) = −2[gu(h1(w), w)h′1(w)+gv (h1(w), w)] = −2[σh′1(w)−
γ] > 0 because h′1(w) < 0 and σ, γ > 0. Moreover, Ψ (vR) = m2 + 2G1(α) < 0 due to
G1(vR) = 0 and the assumption on m. Therefore, there is a unique v = v (m, α) in the interval
(α, vR) such thatΨ (v ) = 0.

Now, w′(y ) andΨ (w(y )) are positive for y > 0 sufficiently small, butΨ (w(y )) decreases
as y increases. Hence, w(y ) is increasing until it reaches the value v for whichΨ (v ) = 0 is
satisfied.

We note thatΨ (w) = 2[G1(v) − G1(w)] since m2 + 2G1(α) = 2G1(v ). Hence, (39) is
rewritten as

dw
dy
=

√
2[G1(v) − G1(w)] .

We integrate this equation to get w(y ) as the inverse function of

(40) y =
1√
2

∫ w(y)

α

dw√
[G1(v) − G1(w)]

.

The integral on the right-hand side is convergent as w ↑ v , since

G1(w) = G1(v ) + [g1(v) + o(1)](w − v) ,
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and g1(v) > 0. Therefore, we can define X (m, α) by

X (m, α) =
1√
2

∫ v

α

dw√
G1(v) − G1(w)

.

The dependence of X (m, α) on m is by way of v = v (m, α). This shows that w(X (m, α)) =
v and w′(X (m, α)) = 0. Calling thus obtained solution w1 (y ) = w1(y; m, α), we finish the
proof of assertions concerning w1 (y ).

The proof of the assertions on w0 (y ) is the same and we omit the detail. �

LEMMA 6.4. For each α ∈ (vL, vR) fixed, there exists a one-parameter family of
solutions {

v (x; m, α) �� 0 < m < min{√−2G0(α),
√−2G1(α)}

}
of the boundary value problem (31) with

(41)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x∗ = x∗(m, α) =
lY (m, α)

X (m, α) + Y (m, α)
,

D = D(m, α) =
l2

[X (m, α) + Y (m, α)]2 .

Moreover, the solution v (x; m, α) is given as the inverse functions of the following indef-
inite integrals:

1√
2

∫ α

v(x)

d v√
G0(v ) − G0(v )

=
1√
D

(x∗ − x) for 0 < x < x∗ ,

1√
2

∫ v(x)

α

d v√
G1(v) − G1(v )

=
1√
D

(x − x∗) for x∗ < x < l .

PROOF. We define x∗ (m, α) and D(m, α) by (41) and put

v (x; m, α) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w0

(
x∗ − x√
D(m, α)

)
for 0 < x < x∗ ,

w1

(
x − x∗√
D(m, α)

)
for x∗ < x < l .

Then it is straightforward to check that v (x; m, α) satisfies (31) for D = D(m, α). �

Next we consider the behaviour of v (x; m, α) as m ↓ 0 and m ↑
min

{√−2G0(α),
√−2G1(α)

}
.

LEMMA 6.5. Let x∗(m, α) and D(m, α) be the functions defined in Lemma 6.4.
(a) As m ↓ 0,

D(m, α) → +∞ , x∗(m, α) → lg(h1(α), α)
g(h1(α), α) − g(h0(α), α)

and v (x; m, α) → α uniformly on [0, l].
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(b) Let (G0(α) −G1(α))− = −min{G0(α) −G1(α)), 0}. Let v∗R(α) and v∗L(α) be defined
as a unique solution of

G1(v∗R) = −(G0(α) − G1(α))− , G0(v∗L) = −(G0(α) − G1(α))− ,

respectively. Then as m ↑ min
{√−2G0(α),

√−2G1(α)
}
,

X (m, α) → 1√
2

∫ v∗R

α

dv√−(G0(α) − G1(α))− − G1(v )
,

Y (m, α) → 1√
2

∫ α

v∗L

dv√−(G0(α) − G1(α))− − G0(v )
.

PROOF. (a) FromΨ (v ) = 0 it follows thatΨ (v ) =Ψ ′(v + θ(v − v))(v − v ) for some θ ∈
(0, 1). On the other hand,Ψ ′′(v ) > 0 implies thatΨ ′(α) <Ψ ′(v + θ(v − v )) <Ψ ′(v) for α <

v < v . Hence,Ψ (v ) > −Ψ ′(α)(v − v ) for α < v < v . Therefore,

X (m, α) =
∫ v

α

dv√
Ψ (v )

<
1√|Ψ ′(α) |

∫ v

α

dv√
v − v =

2
√
v − α√|Ψ ′(α) | .

Observe, however, that m2 +2[G1(α) −G1(v)] = 0 implies v → α as m → 0 since G1(v )
is strictly increasing. Consequently, we have X (m, α) → 0 as m ↓ 0. Similarly, we obtain
Y (m, α) → 0 as m ↓ 0. Therefore, D(m, α) → +∞ as m ↓ 0. Since v ≤ v (x; m, α) ≤ v and
v → α, v → α, we see that v (x; m, α) converges to α uniformly as m ↓ 0.

To know the behaviour of x∗ (m, α) as m ↓ 0, we need precise asymptotic formulas for
X (m, α) and Y (m, α). From m2/2 = G1(v) − G1(α) it follows that

m2/2 = G′1(α + θ(v − α))(v − α) = (g1(α) +O(v − α))(v − α) ,

so that

(42) v − α = m2(1 + o(1))
2g1(α)

as m ↓ 0 .

Similarly, we have

(43) α − v = −m2(1 + o(1))
2g0(α)

as m ↓ 0 .

Also, for v ∈ (α, v ) it holds thatΨ (v ) = (Ψ ′(v) + O(v − v ))(v − v). Hence, for m > 0
sufficiently small, we obtain

X (m, α) =
∫ v

α

d v√
Ψ (v )

=

∫ v

α

d v√−Ψ ′(v ) +O(v − v)
√
v − v

=
1√|Ψ ′(v) |

∫ v

α

1 +O(v − v )√
v − v

dv .
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Therefore, in view ofΨ ′(v) =Ψ ′(α) + O(v − α) = −2g1(α) +O(v − α), we are led to

(44) X (m, α) =
2√

2|g1(α) | (1 +O(v − α))
√
v − α .

In the same way, we obtain

(45) Y (m, α) =
2√

2|g0(α) | (1 +O(α − v))
√
α − v .

In (41), we substitute (44), (45), (42) and (43) to see

x∗(m, α) =
lY (m, α)

X (m, α) + Y (m, α)

=
l/|g0(α) |

1/|g1(α) | + 1/|g0(α) | (1 +O(m2))

=
l |g1(α) |

|g0(α) | + |g1(α) | (1 +O(m2)) as m ↓ 0 .

Since g0(α) = g(h0(α), α) < 0 and g1(α) = g(h1(α), α) > 0, we obtain the formula

x∗(m, α) → lg(h1(α), α)/(g(h1(α), α) − g(h0(α), α)) as m ↓ 0 .

Now we turn to the proof of (b). First, we consider the case G0(α) ≤ G1(α). Hence,
0 < m <

√−2G1(α). Let m∗1 =
√−2G1(α). Then v = vR for m = m∗1. SinceΨ (v ) =Ψ (v ) +

Ψ ′(v + θ(v − v))(v − v) =Ψ ′(vR + θ(v − vR))(v − vR) andΨ ′(v ) = −2g(h1(vR), vR) < 0 for
m = m∗1, we see that the integral

X (m∗1, α) =
∫ vR

α

dv√−2G1(v )

is also convergent. Clearly, X (m, α) → X (m∗1, α) as m ↑ m∗1.
On the other hand, if m = m∗1, then v satisfies (m∗1)2 + 2(G0(α) − G0(v)) = 0, that is ,

G0(v) = G0(α) − G1(α). We denote this v for m∗1 by v∗L (α). Obviously v∗L (α) ≥ vL and the
equality holds if and only if G0(α) = G1(α). As in the case X (m∗1, α), we see that

Y (m∗1, α) =
∫ α

v∗L (α)

dv√
2[G0(α) − G1(α) − G0(v )]

is convergent and Y (m, α) → Y (m∗1, α) as m ↑ m∗1.
The case G0(α) > G1(α) is treated in the same way and we omit the proof. �

LEMMA 6.6. Let α be any number such that vL < α < vR. For 0 < m <

min
{√−2G0(α),

√−2G1(α)
}
, put

T (m) = X (m, α) + Y (m, α) .

Then T ′(m) < 0 for all m in the interval
(
0,min{√−2G0(α),

√−2G1(α)}
)
.
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PROOF. It is convenient to introduce the notation

Y (w) =
∫ α

w

dv√
2[G0(α) − G0(v )]

for vL < w < α ,

X (w) =
∫ w

α

dv√
2[G1(α) − G1(v )]

for α < w < vR .

For each vL < w < α, let v (w) denote the unique value of v such that

G1(v (w)) = G0(w) − G0(α) + G1(α) .

Then G′1(v (w))v ′(w) = G′0(w), that is,

(46)
d v (w)

dw
=
g(h0(w), w)
g(h1(w), w)

< 0 .

We define

S(w) = X (w) + Y (v (w))

and prove S′(w) > 0. We observe that the relation

G0(w) =
1
2

m2 + G0(α)

determines a positive number w uniquely as a function of m, and g(h0(w), w) dw
dm = m, i.e.,

dw
dm
=

m
g(h0(w), w)

.

Hence, S′(w) > 0 implies
dT
dm
=

d
dm

S(w(m)) = S′(w(m)) · m
g(h0(w), w)

< 0 .

Now we turn to the proof of S′(w) > 0. Set v = α + (w − α)t. Then we have
√

2X (w) =
∫ 1

0

(w − α) dt

[G1(w) − G1(α + (w − α)t)]1/2 .

We differentiate both sides to obtain

2
√

2X ′(w) =
1

w − α
∫ w

α

[Θ1(w) −Θ1(v )]
[G1(w) − G1(v )]3/2 dv ,

where we have defined

Θ1(z) = 2G1(z) − (z − α)g(h1(z), z) .

On the other hand, we see

Θ′1(z) = g(h1(z), z) − (z − α)
d
dz
g(h1(z), z) .

Note that
d
dz
g(h1(z), z) =

d
dz

(σh1(z) − γz − ρ) = σh′1(z) − γ ,
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therefore, d
dz g(h1(z), z) < 0. Also,we know that g(h1(z), z) > 0 for z < vR, which yields that

Θ′1(z) > 0 for α < z < w .

We thus conclude that

X ′(w) > 0 for α < w .

Second, we consider Y ′(w). By a similar argument, we obtain
√

2Y (w) =
∫ 1

0

(α − w)d t

[G0(w) − G0(w + (α − w)t)]1/2

and

2
√

2Y ′(w) = − 1
α − w

∫ α

w

[Θ0(w) −Θ0(v )]
[G0(w) − G0(v )]3/2 dv

where

Θ0(z) = 2G0(z) − (z − α)g(h0(z), z) .

Hence, Θ′0(z) = g(h0(z), z) + (α − z) d
dz g(h0(z), z). However, we see that

d
dz
g(h0(z), z) = σh′0(z) − γ < 0 and g(h0(z), z) < 0 for z > vL .

We therefore conclude that Θ′0(z) > 0 for w < z < α. Hence, Y ′(w) < 0 for w < α.
Now, recalling (46), we obtain S′(w) = X ′(w) + Y ′(v (w))v ′(w) > 0. �

6.2. Non-monotone steady states with jump discontinuity.
6.2.1. Periodic steady states. Starting from monotone increasing solutions given by

Theorem 6.1 we can construct symmetric (periodic) solutions of the boundary value problem
(4) by the method explained in Subsection 5.3. Therfore, for each integer k ≥ 1, (1) has
(symmetric) steady states (u(x), v (x)) such that u(x) has k jump discontinuities.

6.2.2. Non-periodic steady-states. To find non-periodic steady states with jump dis-
continuities (in u), we use the following two types of solutions. For r > vL, let V0(x; r) be the
unique solution of

(47)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vxx + g(h0(v ), v ) = 0 for −∞ < x < +∞ ,
v (0) = r ,

v ′(0) = 0 .

For s < vR, let V1(x; s) denote the unique solution of

(48)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vxx + g(h1(v ), v ) = 0 for −∞ < x < +∞ ,
v (0) = s ,

v ′(0) = 0 .

Since g(h0(v ), v ) < 0 for v > vL and g(h0(v ), v )/v → −γ as v → +∞, we see that V0(x; r)
exists for all x ∈ R and satisfies V ′′0 (x; r) > 0, r ≤ V0(x; r) for all x ∈ R. Similarly, V1(x; s)
exists for all x ∈ R and satisfies V ′′1 (x; s) < 0, s ≥ V1(x; s) for all x ∈ R.
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Step 1. We would like to glue V0(x; r) and V1(L1 − x; s) together to obtain a monotone
increasing solution on 0 ≤ x ≤ L1. We say that V0(x; r) is switchable to V1(x; s) at v = α ∈
(r, vR) if there are constants xα = xα (α; r) > 0, yα = yα (α; r) > 0 and s = s(α, r) ∈ (α, vR)
such that V1(−xα; s) = V0(yα; r) = α and V ′1 (−xα; s) = V ′0 (yα; r). We claim that for each r ∈
(vL, vR) there is a unique α0→1 = α0→1 (r) such that V0(x; r) is switchable to V1(x; s) at v =
α if and only if r < α < α0→1 (r). To prove this, we recall that

V ′0 (x; r)2 = G0(r) − G0(V0(x; r)) and V ′1 (x; s)2 = G1(s) − G1(V1(x; s)) .

Hence if there are xα > 0, yα > 0 and s ∈ (α, vR) such that V0(yα; r) = V1(−xα; s) = α, then
V ′0 (yα; r) = V ′1 (−xα; s) if and only if

(49) G0(r) − G0(α) = G1(s) − G1(α) .

Now, put

φ(v ; r) = G1(v ) − G0(v ) + G0(r) .

Then φ′(v ; r) = g(h1(v ), v ) − g(h0(v ), v ) > 0 and φ(vL; r) < 0 < φ(vR; r). Hence, there
exists a unique α0→1 (r) ∈ (vL, vR) such that φ(α0→1(r); r) = 0. Note that φ(r; r) = G1(r) <
0, so that r < α0→1 (r). Moreover, φ(v ; r) < 0 if and only if v < α0→1 (r). Therefore, we find
a unique s = s(α; r) < vR such that G1(s) = φ(α; r), i.e., (49) is satisfied if and only if r <
α < α0→1 (r). This verifies our assertion.

Step 2. We say that V1(x; s) is switchable to V0(x; r) at v = α ∈ (vL, s) if there exist xα =
xα (α; s) > 0, yα = yα (α; s) > 0 and r = r (α, s) such that V1(xα; s) = V0(−yα; r) = α and
V ′1 (xα; s) = V ′0 (−yα; r). One can prove as in Step 1 that for each s ∈ (vL, vR) there is a unique
α1→0 = α1→0 (s) such that V1(x; s) is switchable to V0(x; r) at v = α if and only if α1→0 (s) <
α < s.

Step 3. We start with choosing an arbitrary r1 such that vL < r1 < vR. Then we
choose an α1 arbitrarily in the interval r1 < α1 < α0→1 (r1). We now have a triplet
(yα1, xα1, s1) = (yα1 (α1, r1), xα1 (α1, r1), s1(α1, r1)) for which V0(yα1 ; r1) = V1(−xα1 ; s1) =
α1 and V ′0 (yα1 ; r1) = V ′1 (−xα1 ; s1) are satisfied. Here, xα1 > 0, yα1 > 0 and α1 < s1 < vR.
Let L1 = xα1 + yα1 and define

W1(x; r1, α1) =
⎧⎪⎨⎪⎩

V0(x; r1) for 0 ≤ x ≤ yα1 ,

V1(x − L1; s1) for yα1 < x ≤ L1 .

Next we select α2 arbitrarily in s1 < α2 < α1→0 (s1) and obtain a triplet (xα2, yα2, r2) for
which V1(xα2 ; s1) = V0(−yα2 ; r2), V ′1 (xα2 ; s1) = V ′0 (−yα2 ; r2) hold. Let L2 = L1 + xα2 + yα2

and define W2 = W2(x; r1, α1, α2) by

W2(x; r1, α1, α2) =
⎧⎪⎨⎪⎩

V1(x − L1; s1) for L1 ≤ x ≤ L1 + xα2 ,

V0(x − L2; r2) for L1 + xα2 < x ≤ L2 .

In the same way, we can define when j is even

Wj (x; r1, α1, . . . , α j ) =
⎧⎪⎨⎪⎩

V1(x − L j−1; s j−1) for L j−1 ≤ x ≤ L j−1 + xαj ,

V0(x − L j ; r j ) for L j−1 + xαj < x ≤ L j
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and when j is odd

Wj (x; r1, α1, . . . , α j ) =
⎧⎪⎨⎪⎩

V0(x − L j−1; r j ) for L j−1 ≤ x ≤ L j−1 + yαj ,

V1(x − L j ; s j ) for L j−1 + yαj < x ≤ L j .

Here, we have defined L0 = 0 and L j = L j−1 + xαj + yαj . Therefore, for each positive integer
k, we obtain a function on [0, Lk] defined by

W̃k,+(x; r1, α1, . . . , αk ) = Wj (x; r1, α1, . . . , α j ) on [L j−1, L j ] .

Finally we define vk,+(x; r1, α1, . . . , αk ) by

vk,+(x; r1, α1, . . . , αk ) = W̃k,+

(
Lk
l

x; r1, α1, . . . , αk

)
.

Put

uk,+(x; r1, α1, . . . , αk ) =
⎧⎪⎨⎪⎩

h0(vk,+(x; r1, α1, . . . , αk )) on [L j−1, L j ] if j is odd ,
h1(vk,+(x; r1, α1, . . . , αk )) on [L j−1, L j ] if j is even .

Moreover, let

D(r1, α1, . . . , αk ) = l2/(Lk2) .

We therefore have a discontinuous steady state (uk,+(x; r1, α1, . . . , αk ), vk,+(x; r1, α1, . . . , αk ))
of (1.2) for D = D(r1, α1, . . . , αk ). If k ≥ 2 and αi � α j for some i � j, then this solution
is called an asymmetric steady state of mode k since v ′

k,+
(x; r1, α1, . . . , αk ) has exactly k − 1

simple zeros in the open interval 0 < x < l.
Similarly we can construct a steady state of mode k starting from V1(x; s1) instead of

V0(x; r1). We omit the detail.
6.3. Stability of steady states with jump discontinuity. In this subsection, we study

the stability of steady states with jump discontinuity. In Subsections 6.1 and 6.2,we constructed
various discontinuous steady states of (1), in which u(x) has finitely many jump discontinuities
and v (x) has jump discontinuities in the second order derivative. First we state the definition
of (ε0, E)-stability defined in [32]. Let H1(I ) =

{
u ∈ L2(I ) | u′ ∈ L2(I )

}
and ‖u‖H1(I ) =

‖u‖L2 (I ) + ‖u′‖L2(I ) .

DEFINITION 6.7. For positive constants ε0 and E, the steady state (ũ, ṽ) of (1) is said
to be (ε0, E)-stable if, for some I0 ⊂ I with meas (I \ I0) < ε4 and for some ε ∈ (0, ε0), the
initial functions (u0, v0) satisfy

‖u0 − ũ‖2L∞(I0 ) + ‖v0 − ṽ‖2H1(I ) < ε2 ,

then for all t > 0

‖u(t, ·) − ũ‖2L∞(I0 ) + ‖v (t, ·) − ṽ ‖2
H1(I ) < Eε2 .

THEOREM 6.8. Let (ũ, ṽ ) be a steady state of (1) with finitely many discontinuities
constructed in Subsections 6.1 and 6.2. If vL < min0≤x≤l ṽ (x) < max0≤x≤l ṽ (x) < vR, then
(ũ, ṽ ) is (ε0, E)-stable for a certain pair (ε0, E) with 0 < ε0, E < ∞.
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PROOF. We apply Theorem 2.3 in [10]. First, we note that Assumption 2.1 in [10] is
satisfied in our case by virtue of Theorem 3.2. Let J(x) = (aij (x))1≤i, j≤2 denote the Jacobian
matrix at the steady state:

(50) J(x) =

(
a11(x) a12(x)
a21(x) a22(x)

)
= �
�

f ′β (ũ(x)) −1
σ −γ

�
	 .

We have to check the three conditions: (i) a11(x) ≤ −c1 < 0, (ii) a22(x) ≤ −c1 < 0 and (iii)
det J(x) > 0 for all 0 ≤ x ≤ l, where c1 is a positive constant. Conditions (ii) and (iii) are
automatically satisfied since a22(x) = −γ, det J(x) = −γ f ′β (ũ(x)) + σ and f ′β (ũ(x)) < 0 for
all x ∈ [0, l]. By the assumption vL < min ṽ (x) < max ṽ (x) < vR, condition (i) is fulfilled
because of a11(x) = f ′β (ũ(x)) < 0.

Therefore, all the conditions of Theorem 2.3 in [10] are satisfied and we conclude that
(ũ, ṽ ) is (ε0, E)-stable. �

7. Concluding remarks. We discuss the relationship between steady states of the
reaction-diffusion system (DFHN) where both species diffuse and those of our system (1). For
this purpose we set ε = ε1 and D = 1/ε2 in (DFHN).

Let us recall some known results on the existence and stability of steady states of (DFHN).
For proofs see, e.g., [20, 22, 23]. Assume that g(u, v ) = 0 intersects f (u, v ) = 0 at exactly one
point on the branch B2 (excluding the end points (uL, vL) and (uR, vR)). Let α∗ be a unique
value in the interval vL < α < vR satisfying

(51)
∫ h1 (α∗ )

h0 (α∗ )
f (s, α∗) ds = 0 .

Let (u1,±(x; α∗, D), v1,±(x; α∗, D)) with D > Dc (α∗) be the monotone steady states of (1)
given by Corollary 6.2. For each positive integer n, let (Un± (x; α∗, D),Vn± (x; α∗, D)) denote
the symmetric steady state of (1) with n jump discontiuities in u obtained from (u1,±, v1,±) by
applying the “folding-up method” in Subsection 5.3.

Then for any fixed D0 > Dc (α∗) and positive integer n, there exists an ε0 > 0 such that
(DFHN) has an (ε, D)-family of steady states (un±(x; ε, D), vn± (x; ε, D)) for (ε,D) ∈ {(ε,D) |
0 < ε < εn, D ≥ D0} which satisfy

lim
ε↓0

un
±(x; ε, D) = Un

± (x; α∗, D) locally uniformly on [0, l] \ {x∗, j | j = 1, 2, . . . , n}

where x∗, j is the j-th discontinuity point of Un± (x; α∗, D), and

lim
ε↓0

vn± (x, ε, D) = V ∗± (x; α∗, D)

uniformly on [0, l]. We call this solution (un±(x; ε, D), vn± (x; ε, D)) the normal n-layered
solution of (DFHN). (See [20] or [23, Theorem 3.3 and Corollary 3.9].) Moreover, there exists
εn(D) > 0 for D > D0 such that εn(D) → 0 as n → ∞ and the normal n-layered solution is
asymptotically stable if 0 < ε < εn(D) (see [23, Theorem 3.27]). This result seem to continue
to hold true for our situation that g(u, v ) = 0 meets f (u, v ) = 0 at three points on the branch
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B2. Therefore, the special family of steady states (Un± (x; α∗, D),Vn± (x; α∗, D)) is captured as
the limit of stable steady-states of (DFHN) as ε ↓ 0.

It is also to be noted that the standard bifurcation analysis for (DFHN) yields the following:
Let (uj, vj ), j = 1, 2, 3, be three equilibra with uL < u1 < u3 < u2 < uR on the branch B2.
Then these give rise to constant steady-states of (DFHN). For ν = 1, 2 and a positive integer
j, let ε[ν]

j and D[ν]
j (ε) be defined by

ε[ν]
j =

√
f ′β (uν)

� j
, D[ν]

j (ε) =
σ − γ f ′β (uν ) + γ� jε2

� j ( f ′β (uν) − � jε2)
, where � j = (π j/l)2 .

Then, for each pair of distinct positive integers ( j, k) there is a unique ε[ν]
j,k

such that D[ν]
j (ε[ν]

j,k
) =

D[ν]
k

(ε[ν]
j,k

). For j = 0, k = 1, we define ε[ν]
0,1 := ε[ν]

1 . For each j ≥ 1 and ε[ν]
j, j+1 < ε < ε[ν]

j−1, j ,
the constant steady state (uν, vν) is stable 0 < D < D[ν]

j (ε), but it is unstable if D > D[ν]
j (ε),

namely the DDI occurs for (uν, vν) at D = D[ν]
j (ε). Moreover, the linearized operator

�
�
ε2d2/dx2 + f ′β (uν) −1

σ Dd2/dx2 − γ
�
	

has 0 as a simple eigenvalue if D = D[ν]
j (ε) and ε � ε[ν]

j,k
for k � j, hence

(
(uν, vν), D[ν]

j (ε)
)

is
a bifurcation point when D is regarded as the bifurcation parameter. (See [22, pp. 561–562].)
We observe that

D[ν]
j (ε) → D[ν]

j as ε ↓ 0 ,

in which D[ν]
j = det J/( f ′β (uν)� j ) (see Lemma 4.2). Therefore, the bifurcation points(

(uν, vν), D[ν]
j

)
for (1) are regarded as the limit of those

(
(uν, vν), D[ν]

j (ε)
)

for (DFHN) as
ε ↓ 0. Also, it is not difficult to check that, as ε ↓ 0, the bifurcating solutions of (DFHN)
converge to the bifurcating solutions of (1) given by Theorem 4.6. It is very interesting to ask
whether there exist steady states of (DFHN) for ε > 0 sufficiently small in the neighbourhood
of a solution on the branch C (3)

k
in the case G2(v3) < min{G2(vL),G2(vR)} (see §§5.1–5.3).

A. Appendix: Equilibria of the kinetic system. In this appendix we consider the
number of intersection points of the curve C = {(u, fβ (u)) | −∞ < u < +∞} and the straight
line � = {(u,mu − r) | −∞ < u < +∞}, where m is a positive number and r is a real number.

Put

(52) Φm(u) = mu − fβ (u)
(
= u3 − (1 + β)u2 + (β + m)u

)
.

Clearly, the number of intersection points are given by the number of real (distinct) roots of
the cubic equation mu − r − fβ (u) = 0, i.e.,

(53) Φm(u) = r .

SinceΦ′m(u) = 3u2 − 2(1 + β)u + (β + m) and (1 + β)2 − 3(β + m) = 1 − β + β2 − 3m, we
see that
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(a) if m ≥ (1 − β + β2)/3 thenΦ′m ≥ 0 for all u;
(b) if 0 < m < (1− β+ β2)/3 thenΦm(u) attains one strict local maximum at u = u−(m)

and one strict local minimum at u = u+(m), where

u±(m) =
1
3

(
1 + β ±

√
1 − β + β2 − 3m

)
.

Therefore we can classify the number of intersection points immediately. However, we would
like to know also the location of intersection points. For this purpose the following observations
are useful.

(c) u′−(m) > 0 > u′+(m) for 0 < m < (1− β+ β2)/3 and uL = (1+ β−√
1 − β + β2)/3 =

u−(0) < u−(m) < u−((1− β + β2)/3) = (1+ β)/3 = u+((1− β + β2)/3) < u+(m) <
u+(0) = (1 + β +

√
1 − β + β2)/3 = uR for 0 < m < (1 − β + β2)/3, sinceΦ0(u) =

− fβ (u);
(d) the straight line v = m(u − u∗) + fβ (u∗) passing through a point (u∗, fβ (u∗)) on C

meets the v-axis at (0,−Φm(u∗));
(e) if 0 < m < (1− β + β2)/3, then there are exactly two straight lines which are tangent

to the curve C, and they are given by v = m(u − u±(m)) + fβ (u±(m));

(f) Φm(uR) −Φm(uL ) =
2
3

√
1 − β + β2

{
m − 2

9
(1 − β + β2)

}
.

PROPOSITION A.1. If m ≥ (1 − β + β2)/3, then C and � intersect at precisely one
point (u1, v1) with

(i) uR < u1 if r > Φm(uR) ;
(ii) u1 = uR if r = Φm(uR) ;
(iii) uL < u1 < uR ifΦm(uL) < r < Φm(uR) ;
(iv) u1 = uL if r = Φm(uL) ;
(v) u1 < uL if r < Φm(uL).

PROOF. Since v = Φm(u) is strictly monotone increasing if m > 1 − β + β2, the
assertion follows immediately. �

The case 0 < m < (1 − β + β2)/3 splits into three: (i) (1 − β + β2)/4 < m < (1 − β +
β2)/3, (ii) m = (1− β + β2)/4 and (iii) 0 < m < (1− β + β2)/4. This is due to the following

LEMMA A.2. If m� = (1− β + β2)/4 then the lines v = m�(u− uL ) + fβ (uL) and v =
m�(u − uR) + fβ (uR) are tangent to the curve C. If m � m�, then the lines v = m(u − uL) +
fβ (uL) and v = m(u − uR) + fβ (uR) are never tangent to C.

PROOF. If the line v = m(u − uL ) + fβ (uL ) is tangent to C at (u0, fβ (u0)) then m =
f ′β (u0), so that Φ′m(u0) = 0. This means that u0 = u±(m). Hence, fβ (u0) = f ′β (u0)(u0 −
uL ) + fβ (uL). Note that fβ (b) − fβ (a) = (b − a)

(
f ′β (a) + 1

2 f ′′β (a)(b− a) + (b − a)2
)

and
f ′β (uL) = 0. Therefore, fβ (u0) − fβ (uL) = (u0 − uL )2

(
1
2 f ′′β (uL ) + (u0 − uL )

)
. On the other
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hand, f ′β (u0) = f ′β (u0) − f ′β (uL ) = f ′′β (uL)(u0 − uL) + 3(u0 − uL)2 because of f ′′′β (u) = 6;
hence, our equation reduces to

f ′′β (uL) + 3(u0 − uL ) =
1
2

f ′′β (uL) + u0 − uL .

Therefore, u0 = uL +
1
4 f ′′β (uL) = uL + (1 + β)/2 − 3uL/2 = (1 + β − uL )/2, i.e., 2u0 = 1 +

β − uL =
1
3 (2(1 + β) +

√
1 − β + β2). This shows that u0 = u+(m) is the only choice and we

get 2
√

1 − β + β2 − 3m =
√

1 − β + β2, yielding m = (1 − β + β2)/4.
In the same way, corresponding to uR, we see that u0 = u−(m) and m = (1 − β +

β2)/4. �

We now state the classification table.

PROPOSITION A.3. If (1 − β + β2)/4 < m < (1 − β + β2)/3, then C and � intersect
(i) at precisely one point (u1, v1) with uR < u1 if r > Φm(uR) ;
(ii) at precisely one point (u1, v1) with u1 = uR if r = Φm(uR) ;
(iii) at precisely one point (u1, v1) with uL < u1 < uR ifΦm(u−(m)) < r < Φm(uR) ;
(iv) at precisely two points (u1, v1) and (u2, v2) with uL < u1 = u−(m) < u2 < uR if r =

Φm(u−(m)) ;
(v) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with uL < u1 < u3 < u2 < uR if

Φm(u+(m)) < r < Φm(u−(m)) ;
(vi) at precisely two points (u1, v1) and (u2, v2) with uL < u1 < u2 = u+ < uR if r =

Φm(u+(m)) ;
(vii) at precisely one point (u1, v1) with uL < u1 < uR ifΦm(uL) < r < Φm(u+(m)) ;
(viii) at precisely one point (u1, v1) with u1 = uL if r = Φm(uL ) ;
(ix) at precisely one point (u1, v1) with u1 < uL if r < Φm(uL (m)) .

PROOF. By (c) above, if m� < m < (1 − β + β2)/3 then u−(m�) < u−(m) < u+(m) <
u+(m�). Hence the straight line v = m(u − u−(m)) + fβ (u−(m)) (v = m(u − u+(m)) +
fβ (u+(m)), respectively) tangent to C with gradient m must intersect C at a point (u
, fβ (u
))
with uL < u
 < u−(m) (u+(m) < u
 < uR (m), respectively).

Keeping this remark in mind, we can easily verify the assertions (i)–(ix). �

PROPOSITION A.4. Let m� = (1 − β + β2)/4. If m = m�, then C and � intersect
(i) at precisely one point (u1, v1) with uR < u1 if r > Φm� (u−(m�)) ;
(ii) at precisely two points (u1, v1) and (u2, v2) with uL < u1 < u2 = uR if r = Φm� (uR) ;
(iii) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with uL < u1 < u3 < u2 < uR if

Φm� (u−(m�)) < r < Φm� (u+(m�)) ;
(iv) at precisely two points (u1, v1) and (u2, v2) with u1 = uL < u2 < uR if r = Φm� (uL) ;
(v) at precisely one point (u1, v1) with u1 < uL if r < Φm� (uL ).

PROOF. This proposition is proved in the same way as in Proposition A.3. �

We notice that, by (c) above, if 0 < m < m� then u−(m) < u−(m�) < u+(m�) < u+(m).
Hence the straight line v = m(u − u−(m)) + fβ (u−(m)) (v = m(u − u+(m)) + fβ (u+(m)),
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respectively) tangent to C with gradient m must intersect C at a point (u�, fβ (u�)) with uR <

u� (u� < uL , respectively). Moreover, by (f) above, Φm(uL) < Φm(uR) if m > 2(1 − β +

β2)/9 andΦm(uL) > Φm(uR) if m < 2(1 − β + β2)/9.
These observations are sufficient to complete the classification in Propositions A.5–A.7

below:

PROPOSITION A.5. If 2(1− β + β2)/9 < m < (1− β + β2)/4, then C and � intersect

(i) at precisely one point (u1, v1) with uR < u1 if r > Φm(u−(m)) ;
(ii) at precisely two points (u1, v1) and (u2, v2) with uL < u1 = u−(m) < uR < u2 if r =

Φm(u−m) ;
(iii) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with uL < u1 < u−(m) < u3 <

uR < u2 ifΦm(uR) < r < Φm(u−(m)) ;
(iv) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with uL < u1 < u3 < u2 = uR if

r = Φm(uR) ;
(v) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with uL < u1 < u3 < u2 < uR if

Φm(uL) < r < Φm(uR) ;
(vi) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with u1 = uL < u3 < u2 < uR if

r = Φm(uL) ;
(vii) at precisely three point (u1, v1), (u2, v2) and (u3, v3) with u1 < uL < u3 < u2 < uR if

Φm(u−(m)) < r < Φm(uL) ;
(viii) at precisely two points (u1, v1) and (u2, v2) with u1 < uL < u2 = u+(m) < uR if u =

Φm(u+(m)) ;
(ix) at precisely one point (u1, v1) with u1 < uL if r < Φm(u+(m)) .

PROPOSITION A.6. If m = 2(1 − β + β2)/9, then C and � intersect

(i) at precisely one point (u1, v1) with uR < u1 if r > Φm(u−(m)) ;
(ii) at precisely two points (u1, v1) and (u2, v2) with uL < u1 = u−(m) < uR < u2 if r =

Φm(u−(m)) ;
(iii) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with uL < u1 < u3 < uR < u2 if

Φm(uL) = Φm(uR) < r < Φm(u−(m)) ;
(iv) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with u1 = uL < u3 < u2 = uR if

r = Φm(uL) = Φm(uR) ;
(v) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with u1 < uL < u3 < u2 < uR if

Φm(u+(m)) < r < Φm(uL) ;
(vi) at precisely two points (u1, v1) and (u2, v2) with u1 < uL < u2 = u+(m) < uR if u =

Φm(u+(m)) ;
(ix) at precisely one point (u1, v1) with u1 < uL if r < Φm(u+(m)) .

PROPOSITION A.7. If 0 < m < 2(1 − β + β2)/9, then C and � intersect

(i) at precisely one point (u1, v1) with uR < u1 if r > Φm(u−(m)) ;
(ii) at precisely two points (u1, v1) and (u2, v2) with uL < u1 = u−(m) < uR < u2 if r =

Φm(u−(m)) ;
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(iii) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with uL < u1 < u3 < uR < u2 if
Φm(uL) < r < Φm(u−(m)) ;

(iv) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with u = uL < u3 < uR < u2 if
r = Φm(uL) ;

(v) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with u1 < uL < u3 < uR < u2 if
Φm(uR) < r < Φm(uL) ;

(vi) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with u1 < uL < u3 < u2 = uR if
r = Φm(uR) ;

(vii) at precisely three point (u1, v1), (u2, v2) and (u3, v3) with u1 < uL < u3 < u2 < uR if
Φm(u+(m)) < r < Φm(uR) ;

(viii) at precisely two points (u1, v1) and (u2, v2) with u1 < uL < u2 = u+(m) < uR if u =
Φm(u+(m)) ;

(ix) at precisely one point (u1, v1) with u1 < uL if r < Φm(u+(m)) .

Notice thatΦm(u+(m)) ≤ 0 for m ≤ (1− β)2/4. Therefore, if we restrict the range of r to
0 < r < +∞, some of the cases in Propositions A.5–A.7 should be ignored. By an elementary
computation we see that 2(1− β + β2)/9 > (1− β)2/4 if β > 5−√24 and 2(1− β + β2)/9 <
(1− β)2/4 if 0 < β < 5−√24. Therefore, for instance, if β > 5−√24, then new classification
reads as follows:

PROPOSITION A.8. Assume that 5−√24 < β < 1. (a) If (1− β)2/4 < m < 2(1− β +
β2)/9, then the classification is the same as Proposition A.7. (b) If 0 < m ≤ (1 − β)2/4, then
C and � intersect

(i) at precisely one point (u1, v1) with uR < u1 if r > Φm(u−(m)) ;
(ii) at precisely two points (u1, v1) and (u2, v2)with uL < u1 < uR < u2 if r =Φm(u−(m)) ;
(iii) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with uL < u1 < u3 < uR < u2 if

Φm(uL) < r < Φm(u−(m)) ;
(iv) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with u1 = uL < u3 < uR < u2 if

r = Φm(uL) ;
(v) at precisely three points (u1, v1), (u2, v2) and (u3, v3) with 0 < u1 < uL < u3 < u2 <

uR if 0 < r < Φm(uL) .
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