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CHARACTERISTIC CYCLES OF HIGHEST WEIGHT HARISH-CHANDRA
MODULES AND THE WEYL GROUP ACTION ON THE CONORMAL
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Abstract. We give an inductive algorithm that computes the action of simple re-
flections on a subset of basis-vectors of the Borel-Moore homology of the conormal variety
associated to the symmetric pair (Sp(2n), GL(n)).

Introduction. The purpose of this paper is to establish an algorithm that computes the
action of simple reflections on a subset of basis-vectors of the Borel-Moore homology of the
conormal variety associated to the pair (Sp(2n),GL(n)).

Fix (G,K ) a symmetric pair of complex Lie groups. Let g denote the Lie algebra of G,
and let B denote the variety of Borel subalgebras of g. Fix b = h ⊕ n a base point of B.
Write W for the Weyl group of h in g. The conormal variety, T ∗KB, (or Generalized Steinberg
variety) is the union the conormal bundles to K-orbits on B. The topological construction
of the Springer representation due to Kazhdan-Lusztig can be adapted to prove that the top
Borel-Moore homology Htop(T ∗KB, Z) is a representation of W . The fundamental classes of
conormal bundles to K-orbits, [T ∗

Q
B], are a basis of the space Htop(T ∗KB, Z). The representation

(Htop(T ∗KB,Z),W ) plays a fundamental role in various areas within representation theory. Even
when it has been the focus of intense study, there is not known formula for the action of a
simple reflection on a basis-vector.

In this paper we consider the pair (Sp(2n),GL(n)) and we consider the set T = {Q}
of K-orbits on B having the property that their closures are Schubert varieties. Such orbits
are the support of the localization of highest weight Harish-Chandra modules. For a simple
reflection we give an inductive algorithm to compute sα · T ∗QB when Q ∈ T . Our method
is indirect. The Grothendieck group of Harish-Chandra modules with trivial infinitesimal
character,K (Mρ(g,K )) affords an action of W, via the coherent continuation representation.
This action is effectively computable. The characteristic cycle of the localization of Harish-
Chandra modules determines a map CC : K (Mρ(g,K )) → Htop(T ∗KB,Z) which is known to
be W -equivariant, see [13]. In [3], an algorithm is given that computes characteristic cycles
of highest weight Harish-Chandra modules. We use the characteristic cycle computation to
transfer information on coherent continuation to information on the W action on Borel-Moore
homology. This is a constant theme in the present work. Our results are written using the
combinatorial language of clans. The clans that occur determine, in an easy manner, K-
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orbits and Schubert cells. If prefered, the reader can view our arguments in the context of
(g, B)-modules.

This paper is motivated by the work by W. McGovern in [10] and that by P. Trapa in [15].
Peter Trapa has repeatedly and explicitly called for transferring knowledge on the coherent
continuation representation to information on (Htop(T ∗KB, Z),W ).

The organizationof this paper is as follows. The first section gives backgroundmaterial on
the parametrization of K-orbits onBvia the combinatorial notion of clans,reviews the notion of
τ-invariant, and describes the action of operators Tα,β in clan notation. In Section 2 we review
relevant results of [3] regarding the characteristic cycles of highest weight Harish-Chandra
modules. Section 3 illustrates the main ideas of this paper in low rank examples. In Section 4
we derive very explicit and technical results on the coherent continuation representation.
Section 5 contains the main theorems of the paper describing sα ·T ∗QB in an inductive manner.

1. Preliminaries. In this article we consider the pair of complex groups (G,K ) =
(Sp(2n),GL(n)) and the corresponding real form GR = Sp(2n,R). The realization of the
complex group G = Sp(2n) that we use is

G =

{
g ∈ Mn×n (C) : gt

(
0n Sn
−Sn 0n

)
g =

(
0n Sn
−Sn 0n

)}

where Sn ∈ Mn×n (C) satisfies (Sn)ij = δi+j,n+1.
If In ∈ M2n×2n (C) is the identity matrix and In,n = diag(In,−In), then the group K is the

fixed point set of the involution θ = Ad(In,n). We denote by g the Lie algebra of G and we let
g = k ⊕ p be the complexified Cartan decomposition. As K-representation, p decomposes into
the direct sum of two irreducible subrepresentations,

p = p+ ⊕ p−

with

p+ =

{(
0 A
0 0

)
: SnAtSn = A

}

and p− the transpose of p+. Then, the diagonal matrices in g,

h = {diag(t1, . . . , tn,−tn, . . . ,−t1) : ti ∈ C}
form a Cartan subalgebra of both g and k. We let εi ∈ h∗ be defined by

εi
(
diag(t1, . . . , tn,−tn, . . . ,−t1)

)
= ti, for 1 ≤ i ≤ n .

We once and for all fix the positive system of roots Δ+ = Δ+(g, h) determined by the set of
simple roots

S := {αi = εi − εi+1 : 1 ≤ i ≤ n − 1} ∪ {αn = 2εn} .(1.1)

The set of roots in p+ is Δ(p+) = {εi + ε j : 1 ≤ i < j ≤ n} and the sets of positive
compact roots in Δ+c = {εi−ε j : 1 ≤ i < j ≤ n}. Our choice of Cartan subalgebra and positive
system determines a Borel subalgebra b = h ⊕ ∑

α∈Δ+ gα. The connected subgroup of G with
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Lie algebra b is a Borel subgroup that we denote by B. We let T ∗B stand for the cotangent
bundle of the variety B � G · b of Borel subalgebras. We write μ : T ∗B → N∗ � N the
moment map with image in the nilpotent cone.

Our arguments are inductive in nature, reducing questions regarding the pair (G,K ) to
equivalent questions about smaller rank pairs. For each 1 ≤ i < n − 1, we consider

(Gi,Ki ) � (Sp(2(n − 2)),GL(n − 2)) .(1.2)

The group Gi is embedded in G so that the Cartan subalgebra is hi = {H ∈ h : εi (H ) =
εi+1(H ) = 0}, Δi = Δ(gi, hi) = {α ∈ Δ(g, h) : 〈α, εi〉 = 〈α, εi+1〉 = 0}. The Lie algebra of Gi

is

gi = hi ⊕
∑
α∈Δi
gα .

We use the notation Ki for K ∩ Gi and Bi for B ∩ Gi . It is useful to observe that roots in S ∩
Δi are simple for Δ+i = Δ

+ ∩ Δi . The pair

(G′, K ′) � (Sp(2(n − 1)),GL(n − 1)) ,(1.3)

where G′ is embedded in G so that the Cartan subalgebra is h′ = {H ∈ h : ε1(H ) = 0} and

g′ = h′ ⊕
∑

α∈Δ(g,h) ,
〈α,ε1〉=0

gα ,

is also relevant to our work. We write K ′ = K ∩ G′ and B′ = B ∩ G′.
1.1. K-orbits in the flag variety of type C. The group K acts with finitely many

orbits both on B and on N ∩ p. We consider nilpotent K-orbits that lie in p+. These orbits
have a particularly nice form. They are

On
k =

{(
0 X
0 0

)
; SnX t Sn = X, rank(X ) = k

}
, k = 0, 1, . . . , n .

GivenQ a K-orbit inB, we letT ∗
Q
B ⊂ T ∗B denote the conormalbundle toQ. The moment

map image μ(T ∗
Q
B) is a subvariety of the nilpotent cone. Observe that T ∗

Q
B is invariant under

the action of K , and since μ is proper and T ∗
Q
B is irreducible, μ(T ∗

Q
B) is an irreducible K-

invariant subvariety of the nilpotent cone. Hence, μ(T ∗
Q
B) is the closure of a single nilpotent

K-orbit. The K-orbits in B relevant to us are:

μ−1 (On
k ) =

{
Q ∈ K |B : μ(T ∗

Q
B) = On

k

}
, k = 0, 1, . . . , n .

We parametrize K-orbits in ∪k μ−1 (On
k

) in two different ways. We use clans, following
the description in [21]. We identify a subsetW of the Weyl group W (g, h) in bijection with
∪k μ−1(On

k
). Such bijection is explicitly described in [3, Lemma 17]. We summarize some

relevant results.
For (G,K ) the clans are 2n-tuples c = (c1 · · · c2n) satisfying the following.
(a) Each ci is +, − or a natural number.
(b) If ci ∈ N, then ci = cj for exactly one j � i.
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(c) The number of +’s that occur among the ci’s is the same as the number of −’s that
occur.

(d) If ci = ±, then c2n−i+1 = ∓. If ci = cj ∈ N, then c2n−i+1 = c2n−j+1 ∈ N.

LEMMA 1.4 ([3, Corollary 14]). Let Q ∈ μ−1 (On
k

) for some k = 0, . . . , n. Let c be the
clan that parametrizes Q. Then, all entries ci of c with i ≤ n is a + signs or a natural number.
The clan (+ · · · + | − · · · −) parametrizes Q0 = K · b.

REMARK 1.5. (a) The symmetric nature of the clans, described in part (d), allows us
to identify a clan with its left half. This is the convention used in [3]. For example,
the clan (1 + 2 + | − 2 − 1) will be written as (1 + 2 +).

(b) If c parametrizes a K-orbit K · b ⊂ B, then c is of the form (1 c′) or (+ c′). The
smaller clan (c′) parametrizes a K ′-orbit K ′ · (b ∩ g′), in the notation of (1.3).

Using clan notation we write:

μ−1(On
k ) � {c : μ(T ∗c ) = On

k } = Cg(k) .

LEMMA 1.6 ([3, Lemma 26]). Let Cg(k) be the set of all clans for (G,K ) with μ(T ∗c ) =
On
k
. Then,

Cg (n) =
{
(+ c′) : c′ ∈ Cg′ (n − 1) ∪ Cg′ (n − 2)

}
, and

Cg(k) =
{
(+ c′) : c′ ∈ Cg′ (k − 2)

} ∪ {
(1 c′) : c′ ∈ Cg′(k)

}
, 2 ≤ k ≤ n − 1 ,

Cg(k) =
{
(1 c′) : c′ ∈ Cg′ (k)

}
, k = 0, 1 .

Next, we defineW ⊂ W (g, h). The closure of each orbit in ∪k μ−1(On
k

) is a Schubert
variety, see [3]. The setW indexes the set of Schubert varieties that are K-orbit closures. In
(1.1) we have fixed a positive system Δ+ = Δ+(g, h) which contains Δ(p+). Write Δ+c ⊂ Δ+ for
the set of positive compact roots and let

ρ =
1
2

∑
α∈Δ+

α = (n, n − 1, . . . , 1) .

DEFINITION 1.7.

W = {w ∈ W : −w ρ is Δ+c -dominant} .
The Weyl group W consists of all permutations and sign changes of {εi }. This may be

expressed in several ways. We will write w = (w1w2 · · · wn ) where w(ε j ) is εwj , when wj >
0 and −εwj when wj < 0.

LEMMA 1.8 ([3, Lemma 17]). The set ∪k Cg(k) is in bijection withW.

Each clan c ∈ ∪k Cg(k) gives a unique K-obit Qc ∈ B. The closure Qc is a Schubert
variety by wc ∈ W . The bijection assigns to c the Weyl group element wc . Let

W ′ = {w ∈ W : w(1) = 1} .



CONORMAL VARIETY 175

LEMMA 1.9. Given two clans, c1, c2, let wc1, wc2 ∈ W be the correspondingWeyl group
elements under the bijection of Lemma 1.8.

(1) If c1 = (1c′1) and c2 = (1 c′2), then w−1
c2 wc1 ∈ W ′.

(2) If c1 = (+ c′1) and c2 = (+ c′2), then w−1
c2 wc1 ∈ W ′.

PROOF. The lemma follows from the easy algorithm in [3, Lemma 17]. �

1.2. Tau-invariant and the operatorsTα,β . The operatorsTα,β of [17, Definition 3.4]
will be repeatedly used throughout this paper. We give some necessary background. The τ-
invariant of w ∈ W is

τ(w) = {α ∈ S : wα < 0} .
By Lemma 1.8, each wc ∈ W corresponds to a clan c. We write

τ(c) = τ(wc ) = τweak (Qc) .

LEMMA 1.10. Let c ∈ ∪k Cg(k). The simple root α j = ε j − ε j+1 ∈ τ(c) if and only if
the j and j + 1 entries in c are + +, k + or k k + 1. The root αn = 2εn ∈ τ(c) when the last
entry in c is an integer.

PROOF. The lemma follows from Lemma 1.8 and the definition of τ-invariant. �

Given α, β consecutive simple roots in the Dynkin diagram, we say that w is in the domain
of Tα,β when α � τ(w) and β ∈ τ(w). When this is the case and α has the same length as β,
then

Tα,β (w) =
⎧⎪⎨⎪⎩
wsα, β � τ(wsα ) ,

wsβ, α ∈ τ(wsβ ) .
(1.11)

When α, β have different lengths

Tα,β (w) =
{
w̃ : w̃ ∈ {wsα, wsβ }, α ∈ τ(w̃), β � τ(w̃)

}
(1.12)

a set of either one or two elements.
Let Tj j+1 stand for Tαj ,αj+1 . In clan notation the formulae (1.11) reads as follows, see [3].

Write the j, j + 1, j + 2 entries of the clans. We have in the case of equal lengths:

Tj j+1(· · · + k + · · · ) = (· · · + + k · · · )
Tj j+1(· · · + k − 1 k · · · ) = (· · · k − 1 + k · · · )

Tj j+1(· · · + + k · · · ) = (· · · + k + · · · )(1.13)
Tj j+1(· · · k − 1 + k · · · ) = (· · · + k − 1 k · · · ) .

When the roots α j, α j+1 have different lengths, we have

Tn n−1(· · · + +) = (· · · + k)

Tn n−1(· · · k +) = (· · · k − 1 + k)(1.14)
Tn−1 n (· · · + k) = {(· · · + k +), (· · · + +)} .
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LEMMA 1.15. If c = (c1 · · · cj−1cj · · · ci−1 + 1 ci+2 · · · cn) then, there exists a sequence
of operators Ti,i−1,Ti+1,i+2, . . . ,T2,1 so that

T2,1 · · ·Ti,i−1c = (+1 c1 · · · cj−1cj · · · ci−1ci+2 · · · cn) .

PROOF. The lemma follows from the explicit formulas for Ti,i−1 · c. A similar compu-
tation is included in the proof of [3, Lemma 51]. �

For a simple root αwe let Fα denote the variety of all parabolic subalgebras of g conjugate
to h ⊕ g−α ⊕∑

β∈Δ+ gβ. We let πα : B → Fα be the natural projection. It is known that for α �
τweak (Qc ), π−1

α πα(Qc) contains a dense K-orbit of dimension dim(Qc ) + 1. We denote this
orbit by

sα ◦ Qc � sα ◦ c .

It is useful to write sα ◦ c explicitly in clan notation. Let α = ε j − ε j+1 and write the j −
1, j, j + 1 entries of c. Then

sα ◦ c = sα ◦ (· · · cj−1 + 
 · · · ) = (· · · cj−1 
 + · · · ) .(1.16)

When α = 2εn

sα ◦ c = sα ◦ (· · · cn−1 +) = (· · · cn−1 
) .(1.17)

LEMMA 1.18. If c ∈ Cg(k) and α � τ(c), then sα ◦ c ∈ Cg (k) ∪ Cg(k − 1).

PROOF. The lemma follows from (1.16), (1.17), and the algorithm that computes mo-
ment map images in clan notation, see [21] and [14]. �

1.3. Weyl group action on the conormal variety. We let T ∗KB denote the conormal
variety to the K-action on B, that is, the union of conormal bundles to K-orbits in B. The
variety T ∗KB is pure of dimension dim (B) and its irreducible components are the closures
T ∗
Q
B of conormal bundles. The set

{
[T ∗

Q
B]

}
of fundamental classes of conormal bundle

closures is a basis for the top Borel-Moore homology Htop(T ∗KB,Z). The latter affords a
W -module structure. See for example, [7], [8], [4], [12], [11]. Although the W action on
Borel-Moore homology has been the focus of intense studies, there is no known method to
explicitly determine the action of a simple reflection on the basis

{
[T ∗

Q
B]

}
. It is our goal to

give such formulae when Q ∈ ∪k μ−1(On
k

). In this section we review some basic known facts.
In order to avoid introducing more notation, we assume Q = Qc ∈ μ−1(On

k
) for On

k
⊂ N ∩p+.

We keep the notation τweak(Q) = τ(c).

THEOREM 1.19 ([11], [4], [12], [3]). Let Q be a K-orbit in B with μ(T ∗
Q
B) = On

k
.

(1) If α ∈ τweak(Q), then

sα · T ∗QB = −T ∗QB .
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(2) If α � τweak (Q), then there exist positive integers mα(Q,Qj ) so that

sα · T ∗QB = T ∗QB + T ∗sα◦QB +
∑

Q j ⊂Q, α∈τweak (Q j )
μ(T ∗

Q j
)=μ(T ∗

Q
)

mα (Q,Qj ) T ∗Q j
B .(1.20)

REMARK 1.21. A convolution construction defines a Htop(T ∗diag (G)B × B, Z) module
structure on Htop(T ∗KB, Z), which by a theorem of Kazhdan-Lusztig, is the group algebra
Z[W ]. It follows from this construction that∑

Q j : μ(T ∗
Q j

)⊂On
k

Z [T ∗Q j
B](1.22)

is W invariant. Since our nilpotent orbit On
k
⊂ p+, each orbit Qj in (1.22) has μ(T ∗

Q j
) ⊂

p+. By [3, Proposition 16], the combined conditions Qj ⊂ Q and μ(T ∗
Q j

) ⊂ p+, imply that

μ(T ∗
Q
B) ⊂ μ(T ∗

Q j
B). Thus, the equality of moment map images in formula (1.20) follows

from the inclusion μ(T ∗
Q
B) ⊂ μ(T ∗

Q j
B) and (1.22).

2. Characteristic cycle.
2.1. Invariants of Harish-Chandra modules. LetMρ(g,K ) denote the category of

finitely generated (g,K )-modules of infinitesimal character ρ. This category is equivalent
to the category Mc (D,K ) of coherent K-equivariant D-modules on the flag variety B.
Localization implements the equivalence of categories, see [1]. If X ∈ Mρ(g,K ) we write X
for its localization. The irreducible modules X are parametrized by pairs (Q, χ), where Q is a
K-orbit on B and χ is a K-equivariant local system; supp(X) = Q .

A fundamental invariant of X is the characteristic cycle of X. That is,

CC(X) = [T ∗
Q
B] +

∑
j

mQ j [T ∗
Q j
B] ,

viewed as an element of the top degree Borel-Moore homology of the conormal variety. If
mQ j � 0, then Qj is in the singular locus of supp(X).

We refer to the support of X as the support of X . A Harish-Chandra module written as
X (Q) is assumed to have supp(X) = Q.

The moment map image of a conormal bundle closure T ∗
Q j
B is the closure of a single

nilpotent K-orbit. The characteristic cycle and associated variety are related through the
moment map μ : T ∗B → N . We have,

AV(X ) = μ(T ∗
Q
B) ∪

mQ j
�0
μ(T ∗

Q j
B) .

The leading term cycle is defined to be

LTC(X ) =
∑

mQ [T ∗
Q
B] ,

summing over the K-orbits with dim(μ(T ∗
Q
B)) = dim (AV(X )).
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An important observation is that the family of highest weight Harish-Chandra modules
may be considered as sitting in Mρ(g,K ) or in M (g, B), the category of finitely generated
(g, B)-modules with trivial infinitesimal character. The characteristic cycle of a D-module is
defined independent of which category we are in.

2.2. Invariants of highest weight Harish-Chandra modules. We give a short sum-
mary of results in [3] relevant to our work. We keep the notation introduced in Section 1.

LEMMA 2.1. A (sp(2n),GL(n)) module with trivial infinitesimal character is a highest
weight Harish-Chandra modules if and only if its associated variety is a subvariety of p+.

PROOF. See [3, Appendix B], for example. �

NOTATION 2.2. We use the shorthand notation T ∗c for T ∗
Qc
B, when c is the clan

parametrizing the K-orbit Qc. We write the highest weight module X (Qc ) as X (c).

THEOREM 2.3 ([3]). LetQ′ for the K ′-orbit determined by a clan (c′) and assume that

CC(X (c′)) =
∑
c′j

mc′j [T ∗c′j ] .

(1) If c = (+ c′), then

CC(X (c)) =
∑
c′j

mc′j [T ∗(+ c′j )] .

Moreover, when (+ c′) ∈ Cg(n) ∪ ∪
k even

Cg(k), we have

LTC(X (c)) = CC(X (c)) .

(2) If c = (1 c′) and (1 c′) ∈ Cg(k) with k < n − 1 , then

CC(X (c)) =
∑
c′j

mc′j [T ∗(1 c′j )] .

Moreover, LTC(X (c)) = CC(X (c)) if and only if (1 c′) ∈ Cg(k) with k even.
(3) If c = (1 c′) and (1 c′) ∈ Cg(n − 1), then

CC(X (c)) =
∑
c′j

mc′j [T ∗(1 c′j )] +
∑
c′j

mc′j [T ∗(+ c′j )], if n is even.

When n is odd, we have

CC(X (c)) =
∑
c′j

mc′j [T ∗(1 c′j )] .

COROLLARY 2.4. Let Q′ be the K ′-orbit determined by the clan (c′) and assume that
there exist integers n� = ± so that

T ∗c′ =
∑
�

n� CC(X (c� ))
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for some highest weight modules Harish-Chandra modules X (c� ). Then,

T ∗(+ c′) =
∑
�

n� CC(X (+ c� )) ,

T ∗(1 c′) =
∑
�

n� CC(X ((1 c�)), when k < n − 1 and (1 c′) ∈ Cg(k) ,

T ∗(1 c′) =
∑
�

n� CC(X ((1 c�)), when n is odd (1 c′) ∈ Cg(n − 1) ,

T ∗(1 c′) =
∑
�

n�
[
CC(X ((1 c�)) − CC(X (+ c� ))

]
c′) ,

when n is even and (1 c′) ∈ Cg(n − 1) .

3. Low rank examples. In this section we illustrate our method for computing the
action of simple reflections on conormal bundles {T ∗c } in low rank cases. We use ATLAS
software to compute the coherent continuation action of simple reflections on irreducible
highest weight (g,K ) modules. We keep the notation introduced in prior sections. We write
si for the simple reflection through the simple root αi .

3.1. Type C2. By [3], we have:

T ∗(+ +) = CC (X (+ +)) T ∗(+ 1) = CC (X (+ 1))

T ∗(1 2) = CC (X (1 2)) T ∗(1 +) = CC (X (1 +)) − CC (X (+ +)) .

Observe that for appropriate integers n� = ±1, each conormal bundle T ∗c is given in the
formT ∗c =

∑
n� CC (X (c� )), where each X (c�) is an irreducible highest weight (g,K )-module.

Since the characteristic cylce functor is W -equivariant we conclude that

sα · T ∗c =
∑

n� CC (sα · X (c� )) .(3.1)

We compute:

c s1 · X (c) s2 · X (c)

(++) − X (+ +) X (+ +) + X (+ 1)
(1 +) − X (1 +) X (1 +) + X (+ 1) + X (1 2)
(+ 1) X (+ 1) + X (+ +) + X (1 +) − X (+ 1)
(1 2) − X (1 2) −X (1 2)

The modules occurring in sα · X (c) are highest weight (g,K )-modules. Hence, their
chracteristic cycles are given by the algorithm in [3]. This observation and (3.1) give:

s2 · T ∗(+ +) = T ∗(+ +) + T ∗(+ 1) ,

s2 · T ∗(1 +) = T ∗(1 +) + T ∗(1 2) ,

s1 · T ∗(+ 1) = T ∗(+ 1) + 2 T ∗(+ +) + T ∗(1 +) .
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3.2. Type C3. When AVX (c) = O3, the computations in [3] yield:

T ∗(+ + +) = CC (X (+ + +)) , T ∗(+ + 1) = CC (X (+ + 1))

T ∗(+ 1 +) = CC (X (+ 1 +)) − CC (X (+ + +)) .

Coherent continuation gives:

c s1 · X (c) s2 · X (c)

(+ + +) − X (c) − X (c)
(+ 1 +) X (c) + X (1 + +) + X (+ + 1) − X (c)
(+ + 1) − X (c) X (c) + X (+ 1 +) + X (+ + +)

c s3 · X (c)

(+ + +) X (c) + X (+ + 1)
(+ 1 +) X (c) + X (+ + 1) + X (+ 1 2)
(+ + 1) − X (c)

Combining the given information, as we did in the type C2 case, we obtain:

s1 · T ∗(+ 1 +) = T ∗(+ 1 +) + 2 T ∗(+ + +) + T ∗(+ + 1) + T ∗(1 + +) ,

s3 · T ∗(+ 1 +) = T ∗(+ 1 +) + T ∗(+ 1 2) ,

s2 · T ∗(+ + 1) = T ∗(+ + 1) + 2 T ∗(+ + +) + T ∗(+ 1 +) ,

s3 · T ∗(+ + +) = T ∗(+ + +) + T ∗(+ + 1) .

Similarly, when AV(X (c)) = O2, we compute:

s1 · T ∗(+ 1 2) = T ∗(+ 1 2) + T ∗(1 + 2) ,

s2 · T ∗(1 + 2) = T ∗(1 + 2) + 2 T ∗(1 + +) + T ∗(+ 1 2) + T ∗(1 2 +) ,

s3 · T ∗(1 + +) = T ∗(1 + +) + T ∗(1 + 2) ,

s3 · T ∗(1 2 +) = T ∗(1 2 +) + T ∗(1 2 3) .

3.3. Type C4. There are sixteen highest weight Harish-Chandra modules for Sp(8,R).
We only write the action of simple reflections on T ∗(1 + 2 +) and T ∗(+ 1 2 +) due to space consid-
erations.

By Corollary 2.4, we have

T ∗(1 + 2 +) =
[
CC (X (1 + 2 +)) − CC (X (+ + 1 +))

]
− [

CC (X (1 + + +)) − CC (X (+ + + +))
]
,

T ∗(+ 1 2 +) = CC (X (+ 1 2 +)) − CC (X (+ 1 + +)) .

Computing as in prior examples we obtain:

s1 · T ∗(+ 1 2 +) = T ∗(+ 1 2 +) + T ∗(1 + 2 +) ,

s4 · T ∗(+ 1 2 +) = T ∗(+ 1 2 +) + T ∗(+ 1 2 3) .
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REMARK 3.2. It is relevant to observe that the formula for s4 ·T ∗(+ 1 2 +) and that for s3 ·
T ∗(1 2 +) differ by a + at the begging of each clan.

s2 · T ∗(1 + 2 +) = T ∗(1 + 2 +) + 2 T ∗(1 + + +) + T ∗(1 2 + +) + T ∗(+ 1 2 +) + T ∗(1 + + 2) ,

s4 · T ∗(1 + 2 +) = T ∗(1 + 2 +) + T ∗(1 + 2 3) .

REMARK 3.3. The following observations will be relevant to us.
(a) If T ∗(1 c) occurs in s4 · T ∗(1 + 2 +), then T ∗c occurs in s3 · T ∗(+ 1 +).
(b) If T ∗c occurs in s3 · T ∗(+ 1 +) , then T ∗(1 c) occurs in s4 · T ∗(1 + 2 +).
(c) The conormal bundle contributes to T ∗(1 c) occurs in s2 · T ∗(1 + 2 +) if and only if T ∗c

occurs in s1 · T ∗(+ 1 +).

3.4. One example in type C6. The examples considered so far suggest an inductive
algorithm to compute the action of simple reflections on the conormal variety. For example,
one can check that:

s2 · T ∗(1 + 2 +)(3.4)
= T ∗(1 + 2 +) + 2 T ∗(1 + + +) + T ∗(1 2 + +) + T ∗(+ 1 2 +) + T ∗(1 + + 2) .

s3 · T ∗(+ 1 + 2 +)

= T ∗(+ 1 + 2 +) + 2 T ∗(+ 1 + + +) + T ∗(+ 1 2 + +) + T ∗(+ + 1 2 +) + T ∗(+ 1 + + 2) .

On the other hand, the formula

s4 · T ∗(1 + 2 + 3 +) = T ∗(1 + 2 + 3 +) + 2 T ∗(1 + 2 + + +) + T ∗(1 + 2 3 + +)(3.5)
+ T ∗(1 + + 2 3 +) + T ∗(1 + 2 + + 3) + T ∗(+ + 1 2 3 +) ,

shows that the inductive argument needed is more subtle than the one used in [3]. Inducing
data from the pair (G′, K ′) � Sp(2(n − 1)),GL(n − 1)) to (G,K ) provides useful but partial
information.

Observe that T ∗(+ + 1 2 3 +) occurs in s4 · T ∗(1 + 2 + 3 +) and T ∗(+ 1 2 +) occurs in sα3 · T ∗(1 +2 +).
The clan (+ 1 2 +) is obtained from (+ + 1 2 3 +) by deleting the symbols +1 in the second
and third entries.

4. Coherent continuation. Our study of the W -module structure on Htop(T ∗KB, Z) is
indirect. The Weyl group W acts on the Grothendieck groupK (Mρ(g,K )) of Harish-Chandra
modules of infinitesimal character ρ via coherent continuation. The characteristic cycle of the
localization of Harrish-Chandramodules induces a W -equivariantmap betweenK (Mρ(g,K ))
and Htop(T ∗KB, Z), see [13]. Concrete knowledge of the characteristic cycles of highest weight
Harish-Chandra modules, available in [3], allow us to transfer information on the coherent
continuation representation to information about the W -action on the Borel-Moore homology
of the conormal variety.

4.1. A brief survey on the coherent continuation representation. We include a
brief summary of results on the coherent continuation representation. The reader might want
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to consult [18, Chapter 7, 8], [16], [19], [20]. In order to avoid introducing further notation
we write relevant results in the context of highest weight (Sp(2n),GL(n)) modules.

We use the Beilinson-Bernstein classification of irreducible (g,K )-modules of infinitesi-
mal character ρ. Highest weight (g,K ) modules are parametrized by pairs (Qc, 1) consisting of
a K-orbit inB, as described in Subsection 1.1, and the trivial local system overQc . We keep the
notation of prior sections and we write X (Qc ) = X (c) for the highest weight Harish-Chandra
module attached to the pair (Qc, 1). In particular, the localization of X (Qc ) has support Qc .
When consulting the reference the reader might want to be aware of various classifications of
Harish-Chandra modules. For example, in [20], irreducible (g,K )-modules are parametrized
by regular characters. The correspondence of parameters, (Qc, 1) ↔ γc, is explained in [19,
Proposition 2.7]. The modules X (Qc ), we are interested in, lie in both categoriesMρ(g,K )
and M (g, B). As an element of M (g, B), X (Qc ) is the irreducible highest weight module
L(wc ). The localization of L(wc ) has support equal to the Schubert variety Bwc = Qc . Hence,
sα · X (Qc ) can be viewed in the context of (g, B)-modules.

We refer the reader to [18, 7.3.8] for the notion of τ-invariant of an irreducible Harish-
Chandra module. It follows from the remarks surrounding [18, 7.3.8] that for X (c) = X (Qc),
a highest weight (g,K )-module, τ(c) = τ(X (Qc )) = τweak(Qc ).

THEOREM 4.1 ([18, Corollary 7.3.18], [16, Theorem 3.10], [19, Theorem 5.10], [20,
Lemma 14.7]). Let X (c) be an irreducible highest weight (g,K )-module. If α ∈ Δ+ is simple
and α ∈ τ(X (c)), then

sα · X (c) = − X (c) .

If α ∈ Δ+ is simple and α � τ(X (c)), then there exist positive integers μα (c, ci ) so that

sα · X (c) = X (c) + X (sα ◦ c) +
∑
i

μα (c, ci) X (ci) .(4.2)

For each clan ci with μα (c, ci ) � 0 the following holds:
(1) AV(X (ci)) ⊂ AV(X (c));
(2) dim(Qci ) ≤ dim(Qc) − 1, and Qci ⊂ Q;
(3) α ∈ τ(X (ci ));
(4) if γ is a simple root perpendicular to α and γ ∈ τ(X (c)), then γ ∈ τ(X (ci )).

Moreover, if β is a simple root with 〈α, β〉 of type A2, then there is exactly one cj with
μα (c, cj ) � 0 and β � τ(X (cj )). In this case μα (c, cj ) = 1.

REMARK 4.3. (1) By [18, Chapter7], sα · X = X + Uα. In [19, Theorem 5.10], the
author proves that Uα is completely reducible. Information on the constituents of Uα

can be found in [18, Theorem 8.5.18] and [18, 8.3.2].
(2) The statements in Theorem 4.1 regarding τ-invariant follow from [16, Theorem 3.10].
(3) The inclusion of associated varieties follows, for example, from [20, Lemma 4.7].

Note that if X (c) is a highest weight Harish-Chandra modules, then AV(X (c)) ⊂ p+.
Thus, each module Y that contributes to sα · X (c) has AV(Y ) ⊂ p+. It follows from
Lemma 2.1, that Y is a highest weight module.
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(4) When X (ci) contributes to sα · X (c), the corresponding Kazhdan-Lusztig-Vogan
polynomial is of maximal possible degree and μα (c, ci ) is the coefficient of the largest
power of q, see [20, Lemma 14.7]. The coefficients μα (c, ci) encode important
geometric information on the singularities of Qc = Bwc , see [6, Theorem 4.3] and [9,
Theorem 1.2].

4.2. The theory of coherent continuation will be used in §5 to help describe an inductive
algorithm that computes sα · T ∗c . Our inductive procedure is compatible with the induction
used in [2] in the study of coherent continuation. In this section we relate coefficients μα (c, d)
to appropriate coefficients μα (c′, d ′) occurring in coherent continuation formulae for smaller
pairs. We also study the behavior of μα (c, d) when operators Ti,i−1 are applied to the clans c,
d.

We continue with our notation (G,K ) for (Sp(2n),GL(n)), b for the Borel subalgebra of
g as in §1, Δ+ for the corresponding positive system, S for the set of simple roots, etc. We use
the notation (G′, K ′) for (Sp(2(n − 1)),GL(n − 1)), b′ = b ∩ g′, Δ′+ for the corresponding
positive system, etc. For α ∈ S ∩ Δ′+ ⊂ S , we write μα (clan1, clan2) for the multiplicity of
X (clan2) in sα · X (clan1).

LEMMA 4.4. Let X (Qc1 ), X (Qc2 ) be highest weight (g,K ) modules attached to K-orbits
with parametrizing clans c1, c2, respectively.

(1) If c1 = (1 c′1) and c2 = (1 c′2) and α ∈ S ∩ Δ′+ ⊂ Δ+ satisfies α � τ(c′1) and α ∈
τ(c′2), then α � τ(c1) and α ∈ τ(c2) and

μα
(
(1 c′1), (1 c′2)

)
= μα

(
c′1, c

′
2
)
.

(2) If c1 = (+ c′1) and c2 = (+ c′2) and α ∈ S ∩ Δ′+ ⊂ Δ+ satisfies α � τ(c′1) and α ∈
τ(c′2), then α � τ(c1) and α ∈ τ(c2) and

μα
(
(+ c′1), (+ c′2)

)
= μα

(
c′1, c

′
2
)
.

PROOF. By Lemma 1.8 and Lemma 1.9, associated to the clans c1, c2 are Weyl group
elements wc1, wc2 so that X (Qc1 ) = L(wc1 ) and X (Qc2 ) = L(wc2 ) and w−1

c2 wc1 ∈ W ′. The
lemma follows from [2, Lemma 3.10]. �

LEMMA 4.5. Let αi, αi+1 be consecutive short simple roots in Δ+. Assume c, d are
clans with αi � τ(c) ∪ τ(d) and αi+1 ∈ τ(c) ∩ τ(d). Furthermore, assume β is a simple root
perpendicular to αi, αi+1 and so that β � τ(c) but β ∈ τ(d). Then,

μβ (c, d) = μβ
(
Ti,i+1 · c,Ti,i+1 · d)

.

PROOF. This lemma is a special case of Theorem 4.2 in [5], written in clan notation. �

LEMMA 4.6. Let α be a simple root perpendicular to the long simple root. Let c be
a clan of the form c = (1 c′+). Assume α � τ(c) and let X (c) be the highest weight (g,K )
module with supportQc . If X (+ · · ·+) occurs as a summand in sα ·X (1 c′+), then X (+ · · · 1)
occurs as a summand in sα · X (Tn,n−1 · (1 c′+)).
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PROOF. Let αn denote the long simple root. Since α ∈ {αn }⊥,
sαn sα · X (1 c′+) = sα sαn · X (1 c′+) .

We argue that X (+ · · · + 1) contributes to sαn sα · X (1 c′+). Hence, X (+ · · · + 1) occurs
as a summand in sα sαn · X (1 c′+). Comparing the τ-invariant of the constituents of sαsαn ·
X (1 c′+), we conclude that X (+ · · · + 1) occurs in sα · X (Tn,n−1 · (1 c′+)).

Write

sα · X (1 c′+) = X (1 c′+) + μα
(
(1 c′+), (+ · · ·+)

)
X (+ · · ·+) + Zαn + Z��αn

,(4.7)

where Zαn (Z��αn
) is a sum of irreducible modules that have α and αn in their τ-invariant (sum

of irreducible modules that have α but not αn in their τ-invariant, resp.).
By Lemma 1.10, αn−1 ∈ τ ((1 c′+)) and αn−1 � τ ((+ · · · + 1)) . If α ∈ {αn−1 }⊥, then

Theorem 4.1 guarantees that each irreducible summand of Zn has αn−1 in its τ-invariant.
Hence, X (+ · · · + 1) can not be one such summand. If α = αn−2, then X

(
Tn−2,n−1 · (1 c′+)

)
is the only summand in sα · X (1 c′+) with αn−2 and not αn−1 in its τ-invariant. As (+ · · · +
1) starts with +, Tn−2,n−1 · (1 c′+) � (+ · · · + 1). Thus, X (+ · · · + 1) does not occur in Zn . It
follows that X (+ · · · 1) is not cancelled out in

sαn ·
(
sα · X (1 c′+)

)
= sαn · X (1 c′+) + sαn · Z��αn

(4.8)
+ μα

(
(1 c′+), (+ · · ·+)

)
[X (+ · · ·+) + X (+ · · · 1)] − Zαn .

Hence, X (+ · · · + 1) contributes to sαn sα · X (1 c′+) = sαsαn · X (1 c′+).
On the other hand,

sαn · X (1 c′+) = X (1 c′+) + X (Tn,n−1 · (1 c′+)) + Yα + Y
�α
,

where Yα and Y
�α

are sums of irreducible modules. The irreducible modules occurring in Yα
have αn−1, αn, and α in their τ-invariant. The irreducible modules contributing to Y

�α
have

αn−1, αn, but not α in their τ-invariant. By Lemma 1.10, the last two symbols of the clans
that parametrize constituents of Y

�α
are natural numbers. Then,

sα · (sαn · X (1 c′+)
)
= sα · X (1 c′+) + sα · X (Tn,n−1 · (1 c′+)) − Yα + sα · Y�α .(4.9)

We know that X (+ · · · + 1) does not occur in sα · X (1 c′+). In order to complete the
proof we need to show that X (+ · · · + 1) does not contribute to sα · Y�α . If α ∈ {αn−1 }⊥, each
constituent of sα · Y�α has αn−1 in its τ-invariant. Hence, X (+ · · · + 1) is not one of them.
Assume α = αn−2 . Since X (+ · · · + 1) has αn−2 and not αn−1 in its τ-invariant, for X (+ · · · +
1) to occur in sα · Y�α we would need to have X (c), summand of Y

�α
, with

X (+ · · · + 1) = X
(
Tn−2,n−1 c

)
.(4.10)

Our observation on the shape of such a clan c indicates that equation (4.10) can not
hold. �
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4.3. We continue our study of the coherent continuation representation.

PROPOSITION 4.11. Let X (c) be the highest weight (g,K ) module with support Qc .
Assume c is of the form c = (1 c′+). If α is a simple root perpendicular to the long simple
root with α � τ(c), then X (+ · · ·+) does not contribute to sα · X (1 c′+).

PROOF. We use induction on n to obtain a contradiction. The cases n ≤ 3 have been
established in §3. Let n > 3 and assume that the (Sp(2n),GL(n)) module X (+ · · ·+) occurs
in sα · X (1 c′+). By Lemma 4.6, if

Tn,n−1 (1 c′+) =
⎧⎪⎨⎪⎩

Tn,n−1 (1 c′′ + +) = (1 c′′ + k) , or
Tn,n−1 (1 c′′ k +) = (1 c′′ + k) ,

then μα
(
Tn,n−1 (1 c′+), (+ · · · + 1)

)
� 0. Both (+ · · · + 1) and (1 c′′ + k) are in the domain

of the operator Tn−1,n−2. Hence, Lemma 4.5 gives

μα
(
Tn,n−1 (1 c′+), (+ · · · + 1)

)
= μα

(
Tn−1,n−2 (1 c′′ + k),Tn−1,n−2 (+ · · · + 1)

)
� 0 .

By choosing an appropriate sequence of operators Ti,i−1, as in Lemma 1.15, and applying
Lemma 4.5 we conclude that

μα
(
(+ k 1 c′′), (+1 + · · ·+)

)
� 0 .

Now, for clans corresponding to a smaller pair (Sp(2(n − 2)),GL(n − 2)), Lemma 4.4 gives,

μα
(
(1 c′′), (+ · · ·+)

)
� 0 .(4.12)

Note that τ ((1 c′′)) ⊂ τ ((+ · · ·+)), implies that the clan (1 c′′) ends on a + sign. Hence,
(4.12) contradicts our induction hypothesis. �

PROPOSITION 4.13. Let c = (1 c′) be a clan consisting of n symbols. Assume α is a
simple root not in τ(c). If μα ((1 c′), (+ d ′)) � 0, then either

(1) c = (1 + c′′), α = ε2 − ε3 and (+ d ′) = T2,1 c, or
(2) c = (1 + · · · + cj = 2 c′′), d is of the form (+ · · · + d j = 1 d ′′), and α � ε j−1 − ε j .

Moreover, there is at most one clan d = (+ · · · + d j = 1 d ′′) with

μα
(
(1 + · · · + cj = 2 c′′), (+ · · · + d j = 1 d ′′)

)
� 0 .

We prove an auxiliary lemma.

LEMMA 4.14. Let c = (c1 c2 · · · ck · · · cn) be a clan consisting of n symbols. Let α be
a simple root not in τ(c).

(1) Assume k > 1, c1 · · · ck ∈ N and ck+1 = +. If X (d) contributes to sα · X (c), then d is
of the form d = (1 d ′).

(2) Assume for k ≥ 2 (c1 c2 · · · ck+1) = (1 + · · ·+ 2). If α = εk − εk+1 and X (d) occurs
in sα · X (c), then either k = 2 and d = T2,1 c or k � 2 and d is of the form (1 d ′).

(3) Assume α � ε2 − ε3 and c1 ∈ N. If c has all simple roots but α in its τ-invariant and
X (d) contributes to sα · X (c), then d is of the form d = (1 d ′).
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PROOF. We prove (1) by induction on n. The cases n ≤ 3 have been established in §3.
Let n > 3 and assume that there exists a clan of the form d = (+ d ′) for which μα (c, d) �
0. Then, by Theorem 4.1, α ∈ τ(d). Moreover, each simple root γ ∈ {α}⊥ ∩ τ(c) is in τ(d).
The description of the τ-invariant of clans in ∪k Cg(k) given in Lemma 1.10, implies that for
some 
 ≥ k + 1 d is of the form (+ · · · + d� = 1 d ′′).

We claim that the clans c, d are in the domain of the operator T�−1,�−2. Observe that α
is not adjacent to α�−1 = ε�−1 − ε� . Indeed, if α were adjacent to α�−1, by Lemma 1.10, we
would have α � τ(c), α�−1 ∈ τ(c), α ∈ τ(d), α�−1 � τ(d). In such a case, Theorem 4.1 would
force d = Tα,α�−1 c. That is not possible as the first entry in c is an integer and the first entry in
d is a sign. Since α not adjacent to α�−1 and α�−1 � τ(d), we conclude that α�−1 � τ(c). The
root α�−2 ∈ τ(c) ∩ τ(d) according to description of the τ-invariant of clans in Lemma 1.10.
Thus, both c and d are in the domain of T�−1,�−2. Lemma 4.5 gives

μα (c, d) = μα (T�−1,�−2 · c,T�−1,�−2 · d) � 0 .

Choosing an appropriate sequence of operators Ti,i−1, as in Lemma 1.15, Lemma 4.5 yields

μα
(
(+1 c1 · · · �c�−1 �c� · · · cn), (+1 + · · ·�+ �1 d�+1 · · · dn)

)
� 0 .(4.15)

Applying Lemma 4.4 to (4.15), we obtain clans associated to a smaller rank pair (Sp(2(n−
2)),GL(n − 2)), for which

μα
(
(c1 · · · �c�−1 �c� · · · cn), (+ · · ·�+ �1 d�+1 · · · dn)

)
� 0 ,

a contradiction to our inductive hypothesis.
The proof of (2) is similar. For (3), observe that each clan d with μα (c, d) � 0 satisties

(3) and (4) of Theorem 4.1. Assume there is a clan d that starts with a + sign satisfying
μα (c, d) � 0. Since the clan c starts with an integer d � Tα,βc for any root β adjacent to α.
Hence, τ(d) contains α and the roots adjacent to α. On the other hand, (4) of Theorem 4.1
and our assumptions on τ(c), imply that {α}⊥ ∩ S ⊂ τ(d). Thus τ(d) = S. By Lemma 1.10,
there is no clan d with its first entry equal to + and τ(d) = S. �

PROOF OF PROPOSITION 4.13. We use induction on n. The cases n ≤ 3 have been
established in §3. Let n > 3 and assume that for a clan d = (+ d ′), μα (c, d) � 0. Note that
Proposition 4.11 shows d � (+ · · ·+). Moreover, Lemma 4.14 implies that c is of the form
(1+ · · · cj = 2 c′′) for some j ≥ 3.When j = 3, α = ε2− ε3 and (+ d ′) = T2,1 c, Theorem 4.1
gives μα (c, d) � 0. This is case (1) in the statement of the proposition.

If j > 3, by part (2) in Lemma 4.14, α � ε j−1 − ε j . We have two possibilities, either
α j−1 ∈ τ(d) or α j−1 � τ(d). If α j−1 ∈ τ(d), then for some 
 > j, d = (+ · · · + c�+1 = 1 d ′′).
Arguing as in the proof of Lemma 4.14, we conclude that both clans c and d are in the domain
of the operator T�,�−1. Thus,

μα (c, d) = μα (T�,�−1 · c,T�,�−1 · d) � 0 .
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Choosing an appropriate sequence of operators Ti,i−1, as in Lemma 1.15, Lemma 4.5 and
Lemma 4.4 produce a pair a clans with n − 2 symbols with

μα
(
(1 + · · · + cj = 2 · · · �c�−1 �c� · · · cn), (+ · · ·�+ �1 d�+1 · · · dn)

)
� 0 .

This is a contradiction to our inductive hypothesis. Hence, α j−1 � τ(d) and d is of the form
prescribed by the proposition.

A similar inductive argument gives the uniqueness statement in the proposition. �

PROPOSITION 4.16. Let c be a clan of the form (+ 1 c′). Assume T = {α :
α is a short simple root α � α1 and α � τ(c)} � ∅. Let j be the least integer so that α j = ε j −
ε j+1 ∈ T . If μα1 ((+ 1 c′), (+ + d3 d4 · · · dn)) � 0, then for all i ≤ j di = + and d j+1 = 1.

PROOF. It is clear from Lemma 1.10 that α j � α2. Assume there is a clan d =
(+ + d ′) with α j ∈ τ(d) and μα1 (c, d) � 0. Since α j � τ(c), by Theorem 4.1,
μαj ((+ 1 c′), (+ + d ′)) � 0. By Lemma 4.4, we conclude that for smaller clans

μαj
(
(1 c′), (+ d ′)

)
= μαj (c, d) � 0 .(4.17)

Now, (4.17) contradicts Lemma 4.14. Hence, α j � τ(d) and the proposition follows form (3)
and (4) of Theorem 4.1. �

PROPOSITION 4.18. Let c be a clan consisting of n symbols of the form c = (+ 1 c′).
Then μα1 ((+ 1 c′), (+ · · ·+)) � 0 if and only if either

⎧⎪⎨⎪⎩
c = (+ 1), d = (++) n = 2 or
c = (+ 1 2 + · · ·+) n is even.

(4.19)

PROOF. We first argue that μα1 ((+ 1 c′), (+ · · ·+)) � 0 implies that c satisfies (4.19).
It follows from Proposition 4.16 that the tau-invariant τ ((+ 1 c′)) = S − {α1, αn}. Hence, the
clan c is of the form c = (+ 1 2 · · · k + · · ·+). On the other hand, if μα1 ((+ 1 c′), (+ · · ·+)) �
0 then X (+ · · ·+) contributes to sα1 · X (+1 c′). By Theorem 4.1, On

n = AV(X (+ · · ·+)) ⊂
AV(X (+ 1 c′)).Hence, we must have AV (X ((+ 1 c′)) = On

n . The computations of associated
varieties in [3, Proposition 36] force us to have

μ
(
T ∗(+1 2· · ·k+· · ·+)

)
=
⎧⎪⎨⎪⎩
On
n or On

n−1 if n is even, or
On
n if n is odd.

(4.20)

Using the algorithm that computes moment map images, [21], we conclude that (4.20) can
only hold if

c = (+ 1 2 · · · k + · · ·+) =
⎧⎪⎨⎪⎩

(+ 1 + · · ·+) or
(+ 1 2 + · · ·+) with n even.

It remains to show that μα1 ((+ 1 + · · ·+), (+ · · ·+)) � 0 if and only if n = 2. The examples in
Section 3 give μα1 ((+ 1), (++)) � 0 and μα1 ((+ 1+), (+ + +)) = 0.We proceed by induction
on n to arrive to a contradiction. Assume that clans with k symbols so that 3 ≤ k < n



188 L. BARCHINI

have μα1 ((+ 1 + · · ·+), (+ · · ·+)) = 0. Let c = (+ 1 + · · ·+) consists of n symbols and have
μα1 (c, (+ · · ·+)) � 0. By Lemma 4.6,

μα1 ((+ 1 + · · · 2), (+ · · · 1)) � 0 .(4.21)

Applying an appropriate sequence of operators Ti,i−1 to the clans in displayed equation (4.21)
and arguing as in the proof of Proposition 4.13, we conclude that

μα1
(
(�+ �1 + 2 + · · ·+), (�+ �1 + · · ·+)

)
� 0 ,

a contradiction to our inductive hypothesis.
We conclude that μα1 ((+1 + · · ·+), (+ · · ·+)) vanishes when for n > 2. In or-

der to complete the proof of this proposition we need to show, for n even, that
μα1 ((+1 2 + · · ·+), (+ · · ·+)) � 0. The argument is identical to that used in the proof of
Proposition 4.11. �

4.4.

NOTATION 4.22. A sequence of consecutive integers (or a sequence of consecutive +
signs) in a clan is called a block. If the i-th block in a clan consists of + signs, we denote by
ri the number of symbols in the i-th block. If the i-th block of a clan consists of integers, we
write ti for the size of the i-th block. We refer to the sequence [r1, t1, . . . , rs, ts] as the size-type
of the clan.

LEMMA 4.23. Let A ∈ N and let c = (A + c′) be a clan consisting of n symbols and
of size-type [1, r, t, . . . ]. Let d = (+ d ′) be a clan consisting of n symbols and of size-type [r +
1, s, . . . ]. Assume α is a simple root with α � τ(c′). If μα (c, d) � 0, then either

(1) r = s = t; or
(2) r = t < s; or
(3) s = t < r .

PROOF. First observe that α � εr+1− εr+2. Indeed, this is the content Lemma 4.14, (2).
We consider thirteen possibilities, i.e.,

Case 1: r < s < t , Case 2: r < t < s , Case 3: s < r < t , Case 4: s < t < r

Case 5: t < r < s , Case 6: t < s < r , Case 7: s < r = t , Case 8: s = t < r

Case 9: t = r < s , Case 10: r < s = t , Case 11: s = r < t , Case 12: t = r = s

Case 13: t < r = s .

The goal is to show that all cases other than Cases 8, 9, and 12 contradict our results in
Subsection 4.3. We argue that Cases 1, 3, 6 can not hold. Other possibilities are excluded by
similar arguments.

Assume μα (c, d) � 0 and r < s < t. By Lemma 4.5, we have

μα
(
T2,1 · · ·Tr+1,r c,T2,1 · · ·Tr+1,r d

)
= μα (c, d) � 0 .
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That is,

μα
(
(+1 A + · · ·�+ �1 2 · · · t + · · · ), (+1 + · · ·�+ �1 2 · · · s + · · · )

)
� 0 .

Moreover, Lemma 4.4 gives clans with n − 2 symbols with

μα
(
(A + · · ·�+ �1 2 · · · t + · · · ), (+ · · ·�+ �1 2 · · · s + · · · )

)
� 0 .

Repeating the argument, we get

μα (A 1 · · · (t − r) + · · · ), (+1 2 · · · (s − r) + · · · )) � 0 .(4.24)

Note that the block A 1 · · · (t − r) consists of at least two integers. Also note that α1 = ε1 − ε2
is perpendicular to α , α1 ∈ τ ((A 1 · · · (t − r) + · · · )) and α1 � τ ((+ 1 · · · (s − r) + · · · )) .
Thus, equation (4.24) contradicts both (4) of Theorem 4.1 and Lemma 4.14. We conclude that
Case 1 can not hold.

Assume μα (c, d) � 0 and s < r < t. After applying an appropriate sequence of operators
Ti,i−1 to both c and d, Lemma 4.4 yield

0 � μα (c, d)(4.25)
= μα ((A + · · · + cr−s+2 = 1 2 · · · (t − s) + · · · ), (+ · · · + d� = 1 · · · )) ,

where 
 ≥ r − s + 3. Since cr−s+2 = 1, equation (4.25) contradicts Proposition 4.13. Hence,
Case 3 can not hold.

Next, we consider the case μα (c, d) � 0 and t < s < r . Once again, after applying an
appropriate sequence of operators Ti,i−1 to both c and d, Lemma 4.4 yield

μα
(
ĉ, d̂

)
= μα ((A + · · · + cr−t+2 = + · · · ), (+ · · · + dr=t+2 = 1 · · · )) � 0 .(4.26)

Note that α � εr−t+2−εr−t+3. Otherwise, equation (4.26) would imply that d̂ = Tr−t+2,r−t+1 ĉ.
This is not possible as the clan d̂ starts with + while ĉ starts with an integer. Then, εr−t+2 −
εr−t+3 ∈ τ(ĉ) but not in τ(d̂). This is a contradiction to (4) of Theorem 4.1. We conclude that
Case 6 can not hold. �

PROPOSITION 4.27. Let A ∈ N and let c = (A+ c′) be a clan consisting of n symbols
and of size-type [1, r1, t1, r2, t2, . . . ]. Let d = (+ d ′) be a clan consisting of n symbols and of
size-type [r1 + 1, s1, . . . ]. Assume α is a simple root with α � τ(c). If μα (c, d) � 0, then either
r1 = t1 or there exists and index j so that t j =

∑j−1
1 (rk − tk ) + r j .

PROOF. By Lemma 4.23, either r1 = t1 or r1 > t1 = s1.

Assume r1 > t1 = s1. We claim that clan d has its entry dr1+r2+t1+2 ∈ N. In particular,α �
ε1+r1+t1+r2 − ε2+r1+t1+r2 . We prove the claim arguing by contradiction. Assume dr1+r2+t1+2 =

+. Let ĉ be the clan obtained from c by deleting its third block and t1 signs from its second
block. Write d̂ for the clan obtained from d by deleting its second block and t1 signs from its
first block. Lemma 4.5 and Lemma 4.4 give

μα (c, d) = μα (ĉ, d̂)

= μα ((A + · · · c1+r1−t1+r2 = 1 · · · ), (+ · · · c1+r1−t1+r2 = + · · · )) � 0 ,
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contradicting part (2) of Lemma 4.14. Hence, the size-type of c is [1, r1, t1, r2, t2, . . . ] and the
size-type of d is [r1 + 1, t1, r2, s2, . . . ]. Moreover,

μα (c, d)(4.28)
= μα ((A + · · · c1+r1−t1+r2 = 1 · · · t2 + · · · ), (+ · · · c1+r1−t1+r2 = 1 · · · s2 + · · · )) .

By Lemma 4.23, for (4.28) to hold either t2 = (r1 − t1) + r2, or (r1 − t1) + r2 > t2 = s2. If
t2 = (r1 − t1) + r2, the proposition holds. If (r1 − t1) + r2 > t2 = s2, we repeat the above
argument to conclude that either t3 =

∑2
1(rk − tk ) + r3 or

∑2
1(rk − tk ) + r3 > t3 = s3. Using

the description of τ-invariants in Lemma 1.10, we gather that if α � αn, then for some index
j we must have t j =

∑j−1
1 (rk − tk ) + r j .

In order to complete the proof of the proposition we assume that α = αn is the only simple
root with α � τ(c) but α ∈ τ(d).Assume that the size-type of c is [1, r1, t1, r2, . . . , t�−1, r�] and
the size-type of d is [1+r1, t1, r2, . . . , t�−1+r�]. If t�−1 <

∑�−2
1 (rk − tk )+r�−1, then μα (c, d) =

μαn ((A+ · · ·+ · · ·+), (+ · · ·+1 · · · r� )). This is a contradiction to part (4) of Theorem 4.1. �

COROLLARY 4.29. Let c = (1 + c′) be a clan consisting of n symbols. Assume that
μ(T ∗c′ ) = On−2

n−2 . If α is a simple root with α � τ(c), then μα ((1 + c′), (+ + d ′)) = 0 for all
clans (+ + d ′).

PROOF. We use the algorithm that computes moment map images in [21] to conclude
that if c′ has μ(T ∗c′ ) = On−2

n−2 then c′ is of the form (+ · · · + c′�+1 = 1 · · · t1 + · · · ) with 
 >
t1.Write the type-size of c as [1, r1 = 
 + 1, t1, r2, . . . ]. Assume that for some clan (+ + d ′),
μα ((1+ c′), (++ d ′)) � 0. As 
 + 1 > t1, Proposition 4.27 implies that for some index j, t j =∑j−1

1 (rk − tk ) = r j and rk ≥ tk for all k = 1, . . . , j − 1. It is easy to see, using the algorithm in
[21], that no clan c′ of size-type [
, t1, r2, t2 · · ·∑ j−1

1 (rk − tk ) + r j · · · ] has μ(T ∗c′ ) = On−2
n−2 . �

COROLLARY 4.30. Let c = (+ 1 + c′) be a clan consisting of n symbols. Assume that
μ(T ∗c′ ) = On−3

n−3 . If α is a simple root with α � τ(c), then μα1 ((+1 + c′), (+ + + d ′)) = 0 for
all clans (+ + + d ′).

PROOF. The are two cases. Either α1 is the only simple root not in the τ-invariant of
c, or there exists a simple root α j � α1 not in τ(c). Assume S − τ(c) = {α1} and further
assume that μα1 ((+1 + c′), (+ + + d ′)) � 0. By Theorem 4.1, (+ + d ′) = (+ · · ·+). This is
a contradiction to Proposition 4.18. Hence, we must have α j � α1 in S − τ(c). As μ(T ∗c′ ) =
On−3
n−3 , the clan c′ starts with a + sign and α j � ε3 − ε4. The examples §3 show that the

Corollary holds for n = 4. We proceed by induction on n to arrive to a contradiction. Let n >
4. Assume that μα1 ((+1 + c′), (+ + + d ′)) � 0. If α j � τ((+ + d ′)), using an appropriate
sequence of operators Ti,i−1, Lemma 4.4 produces smaller clans with n − 2 symbols ĉ =
(+1 + · · ·�+����cj+1 = 1 · · · ) and d̂ = (+ + + · · ·�+����cj+1 = 1 · · · ) with μα1 (ĉ, d̂) � 0. This is a
contradiction to our induction hypothesis. Thus, we have α j � α1, α j � τ(c), and α j ∈ τ(d).
If μα1 ((+1+c′), (+++ d ′)) � 0, then μαj ((+1+c′), (+++ d ′)) � 0. By Lemma 4.4, μαj ((1+
c′), (+ + + d ′)) � 0. This is a contradiction to Corollary 4.29. �
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COROLLARY 4.31. If μα ((1 + c′), (+ + d ′)) � 0, then μ(T ∗
d′ ) � μ(T

∗
c′ ).

If μα1 ((+1 + c′), (+ + + d ′)) � 0, then μ(T ∗
d′ ) � μ(T

∗
c′ ).

PROOF. We prove the first statement of the Corollary. The proof of the second statement
is similar. Write the size type of (1 + c′) as [1, r1, t1, r2, . . . , r j, t j, . . . ]. Similarly, let [r1 +

1, s1, . . . ] be the size type of (+ + d ′). If r1 = t1 and s1 > t1, then we must have s1 = t1 +

1. Indeed, by Lemma 4.5 and Lemma 4.4, μα ((1 + c′), (+ + d ′)) = μα
(
ĉ, d̂

)
� 0, where ĉ

is the clan obtained from (1 + c′) by deleting the second and third block and d̂ is the clan
obtained from (++ d ′) by deleting the first r1 numerical entries and r1 signs at the beginning
of the clan. The clan ĉ is of the form (1 + · · · ) and d̂ is of the form (+1 · · · ). Hence, ĉ and
d̂ are related by an operator of the form Tα2,α1 . The claim s1 = t1 + 1 follows. The algorithm
that computes moment map images proves the Corollary in this case.

When r1 � t1, Proposition 4.27 and Proposition 4.11 guarantee that for some index j,
s j > t j =

∑j−1
1 (rk − tk ) + r j . We argue that s j = t j + 1. Indeed, μα ((1 + c′), (+ + d ′)) =

μα
(̃
c, d̃

)
� 0, where c̃ is obtained from (1+ c′) by deleting the second through the j-th blocks

and d̃ is obtained from (+ + d ′) by deleting the second through the
∑j

1(ri + ti )-th entries.
Note that c̃ is of the form (1+ · · · ) and d̃ is of the form (+ 1 · · · ). Since μα

(̃
c, d̃

)
� 0, we must

have c̃ = Tε1−ε2,ε2−ε3 · d̃. In particular, s j = t j + 1. Moreover, the size-type of clan (1 + c′)
is [1, r1, t1, . . . , t j, r j+1, . . . , rk, tk, . . . ] and the type-size of (+ + d ′) is [1 + r1, t1, . . . , t j +
1, r j+1−1, . . . , rk, tk, . . . ]. A careful implementation of the algorithm that computes moment
map images settles the corollary. �

5. The conormal variety. In this section we compute the action of simple reflections
on conormal bundles T ∗

Q
when Q is the support of a highest weight (g,K ) module.

5.1. We summarize known results on the action of the Weyl group W on the conormal
variety T ∗KB.We begin by proving a refined version of Theorem 1.19.

PROPOSITION 5.1. Let Q be a K-orbit in B. Assume that Q is the support of a highest
weight (g,K )-module, X (Q). If α � τweak (Q), then

sα · T ∗Q = T ∗Q + T ∗sα◦Q +
∑

Q j ⊂Q, α∈τweak (Q j )
μ(T ∗

Q j
)=μ(T ∗

Q
)

mα (Q,Qj ) T ∗Q j
.

Moreover, if γ ∈ τweak(Q) is perpendicular to α, then γ ∈ τweak (Qj ) for each Qj with
mα (Q,Qj ) � 0.

PROOF. The first statement is Theorem 1.19. We need to show that for each j,
τweak (Q) ∩ {α}⊥ ⊂ τweak (Qj ). By [3], we have

CC(X (Q)) = T ∗Q +
∑

Q� ⊂Q ,
τweak (Q)⊂τweak (Q� )

T ∗Q�
.

W -equivariance of the characteristic cycle functor implies

sα · T ∗Q = CC(sα · X (Q)) −
∑

sα · T ∗Q�
,
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where

sα · T ∗Q�
=

⎧⎪⎪⎨⎪⎪⎩
− T ∗

Q�
if α ∈ τweak (Q�)∑

t n�,t T ∗
Q�t

if α � τweak (Q�) ,

for some positive integers n�,t .
Thus,

sα · T ∗Q = CC(sαX (Q)) +
∑

Q� :α∈τweak (Q� )

T ∗Q�
−

∑
(�,t ):α�τweak (Q� )

n�,t T ∗Q�t
.

Theorem 1.19, asserts that sα · TQ is a positive integer combination of conormal bundles.
Hence,

∑
(�,t ):α�τweak (Q� ) n�,t T ∗

Q�t
is cancelled out by CC(sα · X (Q)).

Let γ ∈ τweak(Q) ∩ {α}⊥. The inclusion τweak (Q) ⊂ τweak (Q� ) implies that γ ∈
τweak (Q� ) for each 
. On the other hand, since in our context τ(X (Q)) = τweak (Q), Theo-
rem 4.1 gives

sα · X (Q) = X (Q) + X (sα ◦ Q) +
∑
Qi ⊂Q

α,γ∈τ (X(Qi ))

μα (Q,Qi ) X (Qi ) .(5.2)

It follows form identity (5.2) and [3] that the conormal bundles contributing to the
characteristic cycles of the modules on the right hand side of (5.2) contain γ in their weak
τ-invariant. The proposition follows. �

THEOREM 5.3. Let X (Q′) be a highest weight (G′,K ′) module. Write c′ for the clan
that parametrizes Q′. Let α ∈ Δ(g′, h′) be simple with α � τ(c′). Assume

sα · T ∗c′ =
∑
i

mα (c′, ci) T ∗ci .

Then α � τ((+ c′)) and

sα · T ∗+ c′ =
∑
i

mα (c′, ci) T ∗+ ci .

PROOF. By Corollary 2.4, there exist integers n� so that

T ∗c′ =
∑
�

n� CC
(
X (c′� )

)

T ∗+ c′ =
∑
�

n� CC
(
X (+ c′�)

)
,

where X (c′� ) and X (+ c′� ) are highest weight Harish-Chandra modules. The W -equivariance
of the characteristic cycle functor yields;

sα · T ∗c′ =
∑
�

n� CC
(
sα · X (c′�)

)
=

∑
i

mα (c′, ci ) T ∗ci(5.4)

sα · T ∗+ c′ =
∑
�

n� CC
(
sα · X (+ c′�)

)
.
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When α � τ(c′� ), by Theorem 4.1 and Lemma 4.4, we have

sα · X (c′� ) = X (c′� ) +
∑
t

μα (c′�, c
′
t ) X (c′t ) ,

sα · X (+ c′� ) = X (+ c′� ) +
∑
t

μα (c′�, c
′
t ) X (+ c′t ) .(5.5)

Thus,

sα · T ∗c′ =
∑
i

mα (c′, ci) T ∗ci

= −
∑
�

α∈τ (c′� )

n� CC
(
X (c′� )

)
+

∑
(�,t )

α�τ (c′� )

n� μ
α (c′�, c

′
t ) CC

(
X (c′t )

)
.

sα · T ∗+ c′

= −
∑
�

α∈τ (c′� )

n� CC
(
X (+ c′� )

)
+

∑
(�,t )

α�τ (c′� )

n� μ
α (c′�, c

′
t ) CC

(
X (+ c′t )

)
.

Since for each conormal bundle T ∗
d

that contributes to CC(X (c′t )), T ∗(+ d) contributes to
CC

(
X (+ c′t )

)
, the theorem follows from (5.4), (5.5), and part (1) of Theorem 2.3. �

THEOREM 5.6. Let X (Q′) be a highest weight (G′,K ′) module. Write c′ for the clan
that parametrizes Q′. Let α ∈ Δ(g′, h′) be simple with α � τ(c′). Assume

sα · T ∗c′ =
∑
i

mα (c′, ci) T ∗ci .

Then α � τ((1 c′)) and each conormal bundle T ∗1 ci
occurs in sα · T ∗1 c′ . Moreover, the

coefficient mα((1 c′), (1 ci)) of T ∗1 ci
in sα · T ∗1 c′ equals mα (c′, ci).

PROOF. The argument is similar to the one used in the proof of Theorem 5.3. By
Corollary 2.4, there exist integers n� so that

T ∗c′ =
∑
�

n� CC
(
X (c′� )

)
(5.7)

T ∗1 c′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
� n� CC

(
X (1 c′�)

)
if (1 c′) ∈ Cg(k), k < n − 1 ,∑

� n� CC
(
X (1 c′�)

)
if (1 c′) ∈ Cg(n − 1), n odd ,∑

� n� [CC
(
X (1 c′� )

) − CC
(
X (+ c′�)

)
] if (1 c′) ∈ Cg(n − 1), n even;

where for each 
, X (+ c′�) and X (1 c′�) are highest weight (g,K ) modules. Since the charac-
teristic cycle functor is W -equivariant, we have

sα · T ∗c′ =
∑
�

n� CC
(
sα · X (c′� )

)
=

∑
i

m(c′, ci) T ∗ci(5.8)

sα · T ∗1 c′ =
⎧⎪⎨⎪⎩
∑

� n� CC
(
sα · X (1 c′� )

)
or ,∑

� n�
[
CC

(
sα · X (1 c′� )

) − CC
(
sα · X (+ c′�)

) ]
.
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When α � τ(c′�), the coherent continuation formulae in Theorem 4.1, Lemma 4.4 and Propo-
sition 4.13 imply

sα · X (c′�) = X (c′�) +
∑
t�

μα (c′�, ct� ) X (ct� ) ,

sα · X (1 c′�) = X (1 c′�) +
∑
t�

μα ((�1 c′�), (�1 ct� )) X (1 ct� )

+ μα ((1 c′� ), (+ cr� )) X (+ cr� ) ,

sα · X (+ c′�) = X (+ c′�) +
∑
t�

μα (c′�, ct� ) X (+ ct� ) .

In particular, X (1 ct� ) contributes to sα · X (1 c′� ) if and only if X (ct� ) occurs in sα ·
X (c′� ) and μα ((1 c′�), (1 ct� )) = μα (c′�, ct� ) = μα ((+ c′�), (+ ct� )).

On the other hand, it is important to observe that the conormal bundles contributing to
CC

(
X (+ cr� )

)
or CC

(
X (+ ct� )

)
are parametrized by clans that start with + sign. Moreover,

by Theorem 2.3, a conormal bundle T ∗(1 d) contributes to CC
(
X (1 ct� )

)
if and only if T ∗

d

contributes to CC
(
X (ct� )

)
and their multiplicity are both equal to one. The theorem follows.

�

REMARK 5.9. Theorem 5.6 does not provide a formula for sα · T ∗1 c′ . Our example
in §3.4 shows that conormal bundles of the form T ∗

+ + d′ might contribute to sα · T ∗1 c′ . Such
occurrence is not accounted for in Theorem 5.6.

5.2. In this section we determine the action of simple reflections on conormal bundles
of the form T ∗1 c′ . Some of the proofs require the study of various subcases. In occasions, and
due to space considerations, we have included complete arguments for some subcases and gave
enough information for the reader to produce the argument that settle the left easier cases.

THEOREM 5.10. Let c = (1+ c′) be a clan consisting of n symbols and so that μ(T ∗c′ ) =
On−2
n−2 . Let α ∈ Δ(g′, k ′) be a simple root so that α � τ (c′) . If

sα · T ∗(+ c′) =
∑
i

mα ((+ c′), ci) T ∗ci ,

then
sα · T ∗(1 + c′) =

∑
i

mα((+ c′), ci) T ∗(1 ci ) .

PROOF. Write

T ∗(+ c′) =
∑
�

n� CC (X (+ d�)) with n� ∈ Z ,

as prescribed by Corollary 2.4. By Theorem 2.3, CC (X (c′)) = LTC (X (c′)) . It follows that,
for each 
, μ

(
T ∗
d�

)
= On−2

n−2 . Thus, each clan d� has a + as its first symbol and μ
(
T ∗(+ d� )

)
=

On−1
n−1 . Corollary 2.4 gives

T ∗(1+ c′) =
⎧⎪⎨⎪⎩
∑

� n� CC (X (1 + d�)) when n is odd∑
� n� [CC (X (1 + d�)) − CC (X (+ + d�))] when n is even.
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As the characteristic cycle functor is W equivariant, in order to compute sα · T ∗(1+ c′) it is
necessary to understand the coherent continuation action of sα on X (1+d�) and X (++ d�).On
the one hand we know, by Corollary 4.29, that every irreducible module occurring in sα ·X (1+
d�) is parametrized by a clan that starts with 1. On the other hand, the shape of the clans d� and
(2) of Theorem 4.1 imply that the irreducible summands of sα · X (1 + d�) are parametrized
by clans of the form (1 + · · · ). Moreover, by Lemma 4.4, μα ((1 + d�), (1 + d)) � 0 if and
only if μα ((+ d�), (+ d)) � 0.When this is the case, we have

μα ((1 + d�), (1 + d)) = μα ((+ d�), (+d)) = μα (d�, d)(5.11)
= μα ((+ + d� ), (+ + d)) .

In particular, we know that X (1 + d) contributes to sα · X (1 + d� ) if and only if X (d)
contributes to sα · X (d�), if and only if X (+ + d) contributes to sα · X (+ + d�), if and only
if X (+ d) contributes to sα · X (+ d�).

In view of Theorem 2.3, in order to compare the characteristic cycles of the relevant
modules we must keep track of μ

(
T ∗(+ d)

)
. By (1) of Theorem 4.1, we have

μ
(
T ∗(+ d)

) ⊆ AV (X (+ d)) ⊆ AV (X (+ d�)) = On−1
n−1 .

When d = sα ◦ d�, by Lemma 1.18, μ
(
T ∗
d

) ∈ On−2
n−2 ∪ On−2

n−3 . Hence , in this case we have
μ
(
T ∗(+ d)

)
= On−1

n−1 . When d � sα ◦ d�, the orbit closure inclusion Qd ⊂ Qd� implies On−2
n−2 ⊂

μ
(
T ∗
d

)
, see [3, Prop 38]. Hence, for each such clan, On−1

n−1 = μ
(
T ∗(+ d)

)
.

The theorem follows form (5.11) and the computation of characteristic cycles in Theo-
rem 2.3. �

PROPOSITION 5.12. Let c = (1 2 · · · r + c′) be a clan consisting of n symbols where
r ≥ 2. Assume α ∈ Δ(g′, h′) is simple and α � τ ((2 · · · r + c′)) . If

sα · T ∗(2· · ·r+ c′) =
∑
i

mα ((2 · · · r + c′), ci ) T ∗ci ,

then

sα · T ∗(1 2· · ·r+ c′) =
∑
i

mα ((2 · · · r + c′), ci) T ∗(1 ci ) .

By Theorem 5.6, each conormal bundle T ∗(1 ci ) occurs in sα ·T ∗(1 2· · ·r+ c′) with multiplicity
mα ((2 · · · r + c′), ci). The content of Proposition 5.12 is that no other conormal bundle
contributes to sα · T ∗(1 2· · ·r+ c′) .

PROOF. We prove the proposition when r = 2, n is odd and (+ c′) ∈ Csp(2(n−2)) (n− 2).
Other cases are easier to handle by similar techniques.

Assume r = 2, n is odd and μ
(
T ∗(+ c′)

)
= On−2

n−2 . We start the proof with an argument
similar to the one used in the proof of Theorem 5.10. In particular, we observe that under our
assumptions, Theorem 2.3, Corollary 2.4 and W -equivariance of CC give,
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sα · T ∗2 + c′ =
∑
�

n�
[
CC

(
sα · X (2 + c′�)

) − CC
(
sα · X (+ + c′�)

) ]
(5.13)

sα · T ∗1 2+ c′ =
∑
�

n�
[
CC

(
sα · X (1 2 + c′� )

) − CC
(
sα · X (1 + + c′� )

)]
,

where for each 
, n� ∈ Z and (+ c′� ) ∈ Csp(2(n−2)) (n−2). Observe that (2+ c′�) ∈ Csp(2(n−1)) (n−
2).

The formulas for coherent continuation in Theorem 4.1, Lemma 4.4 and Lemma 4.14 (a)
imply that

sα · X (1 2 + c′�) = X (1 2 + c′�) +
∑
j

μα
(
(2 + c′�), d�j

)
X (1 d�j ) ,(5.14)

when α � τ
(
(2 + c′�)

)
. In particular, X (1 d�j ) contributes to sα · X (1 2 + c′� ) if and only if

X (d�j ) contributes to sα · X (2 + c′� ). Hence, μ
(
T ∗
d� j

) ⊆ AV
(
X (2 + c′�)

)
= On−1

n−1 .

Similarly, Theorem 4.1, Lemma 4.4 and Corollary 4.29 yield

sα · X (1 + + c′� ) = X (1 + + c′�) +
∑
j

μα
(
(+ + c′�), r�j

)
X (1 r�j ) ,(5.15)

with μ
(
T ∗r� j

) ⊆ On−1
n−1 . Note that every irreducible module in the right hand side of equation

(5.15) is parametrized by a clan that starts with 1. This statement is proved in Corollary 4.29,
as μ

(
T ∗(+ c′� )

)
= On−2

n−2 .

Combining (5.13), (5.14) and (5.15) we obtain,

sα · T ∗(2 + c′) =
∑
i

mα ((2 + c′), ci) T ∗ci

(5.16)

= −
∑
�

α∈τ ((+ c′� ))

n�CC
(
X (2 + c′� )

)
+

∑
(�, j)

α�τ ((+ c′� ))

n� μ
α (

(2 + c′�), d�j

)
CC

(
X (d�j )

)

+
∑
�

α∈τ ((+ c′
�

))

n� CC
(
X (+ + c′�)

) − ∑
(�, j)

α�τ ((+ c′� ))

n� μ
α (

(+ + c′�), r�j
)
CC

(
X (r�j )

)
.

Similarly,

sα · T ∗1 2+ c′

(5.17)

= −
∑
�

α∈τ ((+ c′� ))

n�CC
(
X (1 2 + c′�)

)
+

∑
(�, j)

α�τ ((+ c′
�

))

n�μ
α (

(2 + c′�), d�j

)
CC

(
X (1 d�j )

)

+
∑
�

α∈τ ((+ c′
�

))

n�CC
(
X (1 + +c′�)

) − ∑
(�, j)

α�τ ((+ c′� ))

n�μ
α (

(+ + c′�), r�j
)
CC

(
X (1 r�j )

)
.
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It is important to observe that

μ
(
T ∗(++ c′

�
)
)
= On−1

n−1 where n − 1 is even

μ
(
T ∗d� j

)
, μ

(
T ∗r� j

)
=
⎧⎪⎨⎪⎩
On−1
k

for some k < n − 1, or
On−1
n−1 where n − 1 is even,

as by Theorem 2.3 (b) and (c) T ∗
d

contributes to CC(X (1 d�j )) (CC(X (1 r�j ))) if and only if d
is of the form (1 d ′) and T ∗

d′ occurs in CC(X (d�j )) (CC(X (r�j ))), resp. Now, the proposition
follows from (5.16), (5.17) and Theorem 2.3. �

In the following theorem we view G′ � Sp(2(n−1)) and Gi � Sp(2(n−2)) as subgroups
of G = Sp(2n) as in Section 1. The group Ĝi � Sp(2(n − 3)) is embedded into G so that the
Cartan subalgebra is ĥ = {H ∈ h : ε1(H ) = εi (H ) = εi+1(H ) = 0}, and Δ(ĝi, ĥi ) = {α ∈ Δ :
〈α, ε1〉 = 〈α, εi〉 = 〈α, εi+1〉 = 0}.

It is useful to observe that:

Simple roots in Δ(g, h) = {ε1 − ε2, ε2 − ε3, . . . , 2εn} ,
Simple roots in Δ(g′, h′) = {ε2 − ε3, ε3 − ε4, . . . , 2εn} ,
Simple roots in Δ(gi, hi ) = {ε1 − ε2, . . . , εi−2 − εi−1, εi−1 − εi+2, εi+2 − εi+3, . . . , 2εn} ,
Simple roots in Δ(ĝi,ĥi ) = {ε2 − ε3, . . . , εi−2 − εi−1, εi−1 − εi+2, εi+2 − εi+3, . . . , 2εn} .

In particular, each root α = ε j − ε j+1 with j ≥ i+2 is simple for Δ+(g, h),Δ+(g′, h′), Δ+ (gi, hi)
and Δ+(ĝi,ĥi ).

THEOREM 5.18. Let c = (1 + d) be a clan consisting of n symbols. Assume μ(T ∗
d

) =
On−2
k

with k ≤ (n − 3). Write c = (1 + d) = (1 + (+ · · · + ci+1 = 2 c′)) where i ≥ 2. Let α =
ε j − ε j+1 for some j ≥ i + 2 with α � τ(c′). Then,

α � τ(c) ∪ τ ((+ d)) ∪ τ (
(1 + (+ · · ·�+��ci+1 c′))

)
.

Moreover, the following statements hold.
(1) A conormal bundle of the form T ∗(1 ω) contributes to sα · T ∗(1+ d) if and only if T ∗ω

contributes to sα · T ∗(+ d) . When this is the cases, we have

mα ((1 + d), (1 ω)) = mα ((+ d), (ω)) .

(2) A conormal bundle of the form T ∗(+ ω) contributes to sα ·T ∗(1+ d) if and only if (+ ω) =
(+ · · · + wi+1 = 1 ω′) and the conormal bundle T ∗

(+· · ·�+��wi+1 ω′)
contributes to sα ·

T ∗(
1+(+· · ·�+��wi+1 c′)

) . When this is the cases

mα ((1 + d), (+ ω)) = mα (
(1 + + · · ·�+��ci+1 c′), (+ · · ·�+���wi+1 ω

′)
)
.

Statement (1) of Theorem 5.18 is Theorem 5.6. When proving statement (2), in order to
simplify the exposition, we will assume that i = 2. An identical argument settles the theorem
when i > 2. Hence, we take c = (1 + 2 c′) and consider two cases.

CASE I. μ(T ∗c′ ) = On−3
k

with k < (n − 3).
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CASE II. μ(T ∗c′ ) = On−3
k

with k = (n − 3).
The remainder of this section is devoted to the proof of this theorem.

PROPOSITION 5.19. Let c = (1+ 2 c′) be a clan consisting of n symbols. Assume that
μ(T ∗c′ ) = On−3

k
with k < (n − 3). Let α = ε j − ε j+1 for some j ≥ 4 with α � τ(c′). Then, α �

τ ((1 + 2 c′)) ∪ τ((1�+ �2 c′)). Moreover, a conormal bundle of the form T ∗(+ ω) contributes
to sα · T ∗(1+ 2 c′) if and only if (+ ω) = (+ + 1 ω′) and T ∗

(+�+ �1 ω′)
contributes to sα · T ∗

(1�+ �2 c′)
.

When this is the cases

mα (
(1 + 2 c′), (+ + 1 ω)

)
= mα (

(1�+ �2 c′), (+�+ �1 ω′)
)
.

PROOF. The description of characteristic cycles of highest weight (g.K ) modules given
in Theorem 2.3 and its Corollary 2.4 allows us to find integers n� such that

T ∗c′ =
∑
�

n� CC(Xd� ), where μ
(
T ∗d�

)
=
⎧⎪⎨⎪⎩
On−3
k

when k is even,
On−3
k
, or On−3

k+1 when k is odd.

It is then easy to show that Theorem 2.3 yield,

T ∗(1 c′) =
∑
�

n� CC (X (1 d�))

T ∗(1+ 2 c′) =
∑
�

n� CC (X (1 + 2 d�)) ,

where

μ
(
T ∗(1 d� )

)
=
⎧⎪⎨⎪⎩
On−2
k

when k is even,
On−2
k
, or On−2

k+1 when k is odd;
(5.20)

μ
(
T ∗(1+ 2 d� )

)
=
⎧⎪⎨⎪⎩
On
k+2 when k is even,
On
k+2, or On

k+3 when k is odd.

Thus,

sα · T ∗(1+ 2 c′) =
∑
�

n� CC (sα · X (1 + 2 d�)) .

When α � τ(d�), by Theorem 4.1 and Lemma 4.4 , CC(sα · X(1+ 2 d� ) ) equals

CC
(
X(1+ 2 d� )

)
+

∑
j

μα
(
(+ 2 d�), (+ d�j )

)
CC

(
X (1 + d�j )

)

+ μα
(
(1�+ �2 d�), (+�+ �1 c�r )

)
CC

(
X (+ + 1 c�r )

)
.

In particular, X (1 + d�j ) contributes to sα · X (1 + 2 d�) if and only if X (+ d�j )
contributes to sα · X (+ 2 d�). By (1) of Theorem 4.1,

μ
(
T ∗(+ d� j )

) ⊆ AV
(
X (+ 2 d�j )

) ⊆ AV
(
X (+ 2 d�)

)
=
⎧⎪⎨⎪⎩
On−1
k+2 when k is even,
On−1
k+3 when k is odd.

(5.21)
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Inclusion (5.21) and Theorem 2.3 imply that each conormal bundle that occurs in
CC(X (1 + d�j )) is parametrized by a clan of the form (1 · · · ). Similarly, the module X (+ +
1 c�r ) occurs in sα · X (1 + 2 d�) if and only if X (+ c�r ) occurs in sα · X (1 d�). Hence,

μ
(
T ∗(+ c�r )

) ⊆ AV
(
X (+ c�r )

) ⊆ AV (X (1 d�)) =
⎧⎪⎨⎪⎩
On−2
k

when k is even,
On−2
k+1 when k is odd.

(5.22)

Since k + 1 < n − 2, inclusion (5.22) and Theorem 2.3 imply that each conormal bundle
that occurs in CC

(
(X (+ + 1 c�r )

)
is parametrized by a clan of the form (+ + 1 ω′). This

settles the first statement of the proposition.
It is important to note that T ∗(++ 1 ω′) contributes to sα · T ∗(1+ 2 c′) if and only if it occurs in

∑
�r

α�τ (d� )

n� μ
α (

(1�+ �2 d�), (+�+ �1 c�r )
)

CC
(
X (+ + 1 c�r )

)
.(5.23)

In order to prove the second statement of the proposition we need to compare sα ·T ∗(1+ 2 c′)
to sα · T ∗(1 c′) =

∑
� n� CC (sα · X (1 d�)) . When α � τ(d�), by Lemma 4.5 and Lemma 4.4,

we have

CC (sα · X (1 d�)) = X (1 d�)+
∑
i

μα ((1 d� ), (1 ri )) CC (X (1 ri ))

+ μα
(
(1�+ �2 d�), (+�+ �1 c�r )

)
CC

(
X (+�+ �1 c�r )

)
.

We observe that μ
(
T ∗(1 ri )

) ⊂ AV (X (1 d�)). It follows from (5.20) and Theorem 2.3 that
each conormal bundle that contributes to CC (X (1 ri )) is parametrized by a clan of the form
(1 · · · ). Moreover, a conormal bundle of the form T ∗(+· · · ) occurs in sα · T ∗(1 c′) if and only if it
contributes to

∑
�r

α�τ (d� )

n� μ
α (

(1�+ �2 d� ), (+�+ �1 c�r )
)

CC
(
X (+ c�r )

)
.(5.24)

By Theorem 2.3 and (5.22), T ∗(++ 1 ω′) contributes to CC
(
X (+ + 1 c�r )

)
if and only if

T ∗(+ ω′) contributes to CC
(
X (+ c�r )

)
.Now the proposition follows from (5.23) and (5.24). �

PROOF OF THEOREM 5.18. Let c = (1+ 2 c′) and assume that μ(T ∗c′ ) = On−3
n−3 .When

n is odd, the argument used in the proof of Proposition 5.19 settles the theorem. Assume n is
even. Write

T ∗c′ =
∑
�

n� CC(Xd� ), where μ(T ∗d� ) = On−3
n−3 .
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By Corollary 2.4 we have

T ∗(1 c′) =
∑
�

n� [CC (X (1 d�)) − CC (X (+ d�))] ,

T ∗(1+ 2 c′) =
∑
�

n� [CC (X (1 + 2 d�)) − CC (X (+ + 1 d�))]

−
∑
�

n� [CC (X (1 + + d�)) − CC (X (+ + + d�))] .

If α � τ(d�), then Theorem 4.1 and Corollary 4.29 imply that

sα · X (1 + + d�) = X (1 + + d�) +
∑
i

μα
(
(1 + + d�), (1 + d�i )

)
X (1 + d�i ) .

On the other hand, by Lemma 4.5 and Lemma 4.4, we have

μα
(
(1 + + d�), (1 + d�i )

)
= μα

(
(+ + + d�), (+ + d�i )

)
.

Thus,

sα · X (+ + + d�) = X (+ + + d�) +
∑
i

μα
(
(1 + + d� ), (1 + d�i )

)
X (+ + d�i ) .

It follows that

CC (sα · X (1 + + d�) − sα · X (+ + + d�))(5.25)
= CC (X (1 + + d� ) − X (+ + + d� ))

+
∑
i

(1+ d�i )�sα◦(1++d� )

μα
(
(1 + + d�), (1 + d�i )

)
[CC

(
X (1 + d�i ) − X (+ + d�i )

)
]

+ [CC (X (sα ◦ (1 + + d�)) − X (sα ◦ (+ + + d�)))] .

We claim that all the conormal bundles that contribute to (5.25) are parametrized by clans
of the form (1 · · · ). Indeed, part (1) of Theorem 4.1 gives the inclusion AV

(
X (1 + d�j )

) ⊆
AV (X (1 + + d�)) = On

n . On the other hand, [3, Proposition 16] gives μ
(
T ∗(1+ + d� )

) ⊂
μ
(
T ∗(1+ d�i )

)
; as Q(1+ d�i ) ⊂ Q(1 ++ d� ) . Hence, On

n−1 ⊆ μ
(
T ∗(1+ d�i )

) ⊆ On
n . The description of

the set Cg(n) in Lemma 1.6 allow us to conclude that μ
(
T ∗(1+ d�i )

)
= On

n−1 and μ
(
T ∗(+ d�i )

)
=

On−1
n−1 . Part (3) of Theorem 2.3, then implies that each conormal bundle contributing to the first

two summands of equation (5.25) are parametrized by clans of the form (1 · · · ).
The clan sα ◦ (1 + + d�) = (1 + + sα ◦ d�). By Lemma 1.18, μ(T ∗

sα◦d� ) = On−3
n−3 ∪

On−3
n−4 . In either case, by Theorem 2.3, the third summand in equation (5.25) is a combination

of conormal bundles parametrized by clans of the form (1 · · · ).
Similarly, when α � τ(d�), we have

sα · X (1 + 2 d�) = X (1 + 2 d�) +
∑
j

μα
(
(1 + 2 d�), (1 + d�j )

)
X (1 + d�j )

+ μα
(
(1�+ �2 d�), (+�+ �1 c�t )

)
X (+ + 1 c�t ) .
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Observe that μα ((1 + 2 d�), (1 + d�j )) � 0 if and only if

μα
(
(1 + 2 d�), (1 + d�j )

)
= μα

(
(+ 2 d�), (+ d�j )

)
= μα

(
(2 d�), d�j

)
= μα

(
(+ + 1 d�), (+ + d�j )

)
� 0 .

Thus,

sα · X (+ + 1 d�) = X (+ + 1 d�) +
∑
j

μα
(
(+ 1 d�), (+ d�j )

)
X (+ + d�j ) .

Combining the above information we conclude that

CC (sα · X (1 + 2 d�) − sα · X (+ + 1 d�)) = CC (X (1 + 2 d�) − X (+ + 1 d�))

+
∑
j

(1+ d� j )�sα◦c

μα
(
(1 + 2 d�), (1 + d�j )

) [
CC

(
X (1 + d�j ) − X (+ + d�j )

)]

+ [CC (X (sα ◦ (1 + 2 d�) − X (sα ◦ (+ + 1 d�))]

+
∑
�t

μα
(
(1�+ �2 d�), (+�+ �1 c�t )

)
CC

(
X (+ + 1 c�t )

)
.

(5.26)

Once again, the first two summands in equation (5.26) are linear combinations of conormal
bundles parametrized by clans of the form (1 · · · ). So is the third term when μ(T ∗

sα◦d� ) = On−3
n−3 .

We conclude that T ∗(++ 1 ω′) contributes to sα · T ∗(1+ 2 c′) if and only if it occurs in
∑
�t

α�τ (d� )

n� μ
α (

(1�+ �2 d�), (+�+ �1 c�t )
)

CC
(
X (+ + 1 c�t )

)

−
∑
�

μ(T ∗
sα◦d� )=On−3

n−4

n� CC (X (sα ◦ (+ + 1 d�)) .(5.27)

In order to prove the theorem we need to show that a conormal bundleT∗(++ 1 ω′) contributes
to sα · T ∗(1+ 2 c′) if and only if T ∗(+ ω′) contributes to sα · T ∗(1 c′) . We compute sα · T ∗(1 c′) =∑

� n� [CC(sα · X(1 d� ) − CC(sα · X(+ d� )].When α � τ(c′) we have,

CC (sα · X (1 d�) − sα · X (+ d�)) =
[
CC

(
X (1 d�) − X (+ d�)

) ]
+

∑
j

(1 s� j )�sα◦(1 d� )

μα
(
(1 d�), (1 s�j )

) [
CC

(
X (1 s�j ) − X (+ s�j )

)]

+ [CC (X (sα ◦ (1 d�) − X (sα ◦ (+ d� ))]

+
∑
�t

μα
(
(1�+ �2 d�), (+�+ �1 c�t )

)
CC

(
X (+ c�t )

)
.(5.28)

As before, the first two summands of equation (5.28) are linear combinations of conormal
bundles parametrized by clans of the form (1 · · · ). So is the third term when μ(T ∗

sα◦d� ) =
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On−3
n−3 . Now, it is important to note that a conormal bundle of the form T ∗(+· · · ) contributes to

sα · T ∗(1 c′) if and only if it occurs in

∑
�t

α�τ (d� )

n� μ
α (

(1�+ �2 d� ), (+�+ �1 c�t )
)

CC
(
X (+ c�t )

)

−
∑
�

μ(T ∗
sα◦d� )=On−3

n−4

n� CC
(
X (sα ◦ (+ d�))

)
.(5.29)

We compare the characteristic cycles of the modules that occur in (5.27) and (5.29) to
complete the argument. This is done by using Theorem 2.3. �

PROPOSITION 5.30. Let c = (1 c′) be a clan consisting of n symbols. Assume c is of
the form c = (1 + (+ · · · + ci+1 = 2 c′)). Let αi = εi − εi+1. If T ∗

d
occurs in sα ·T ∗c , then either

(1) d = (1 d ′), or
(2) i = 2 and T ∗

d
contributes to CC

(
X (T2,1 · c)

)
.

Moreover, the multiplicity mαi (c, (1 d ′)) = mαi−1 (d ′, c′).

PROOF. The statement about multiplicities is Theorem 5.6. The argument needed to
prove the proposition is identical to the one used in the proof of Theorem 5.10. The necessary
bookkeeping of the coherent continuation action is included in Lemma 4.14, Proposition 4.11,
Corollary 4.29 and Corollary 4.31. �

5.3. We compute the action of the reflection sα1 on conormal bundles of the form
T ∗(+ 1· · · ) .

PROPOSITION 5.31. Assume j ≥ 1 and let c = (+1 2 · · · j + · · ·+). Then,

sα1 · T ∗(+ 1 +· · ·+) = T ∗(+ 1 +· · ·+) + T ∗(1 + +· · ·+) + T ∗(+ + 1 +· · ·+) + 2 T ∗(+ + +· · ·+)

sα1 · T ∗(+ 1 2· · · j +· · ·+) = T ∗(+ 1 2· · · j +· · ·+) + T ∗(1 + 2· · · j +· · ·+) .

PROOF. Write

T ∗(+ 1 + +· · ·+) =
⎧⎪⎨⎪⎩

CC (X (+ 1 + + · · ·+)) if n − 2 is even
CC (X (+ 1 + + · · ·+)) − T ∗(+ + +· · ·+) if n − 2 is odd.

When j > 1, write

T ∗(+ 1 2· · · j +· · ·+) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CC (X (+ 1 2 · · · j + · · ·+))

if n − ( j + 1) is even
CC (X (+ 1 2 · · · j + · · ·+)) − T ∗(+ 1 2· · · j−1 +· · ·+)

if n − ( j + 1) is odd.
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The coherent continuation action of sα1 on the relevant modules is computed by using
Theorem 4.1, Proposition 4.11, Corollary 4.30, and Proposition 4.18. We obtain

sα1 · T ∗(+ 1 2· · · j +· · ·+)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CC (X (+ 1 2 · · · j + · · ·+) + X (1 + 2 · · · j + · · ·+))

if n − ( j + 1) is even ,
CC (X (+ 1 2 · · · j + · · ·+) + X (1 + 2 · · · j + · · ·+))

−sα1 · T ∗(+ 1 2· · · j−1 +· · ·+) if n − ( j + 1) is odd, j � 2 ,
CC (X (+ 1 2 + · · ·+) + X (1 + 2 + · · ·+) + X (+ · · ·+))

−sα1 · T ∗(+ 1 + +· · ·+) if n − 3 is odd, j = 2.

(5.32)

sα1 · T ∗(+ 1 +· · ·+)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CC (X (+ 1 + · · ·+) + X (1 + · · ·+) + X (+ + 1 + · · ·+))

if n − 2 is even, n � 2 ,
CC (X (+ 1) + X (1 +) + X (+ +))

if n = 2 ,
CC (X (+ 1 + · · ·+) + X (1 + · · ·+) + X (+ + 1 · · ·+)) + T ∗(+ + +· · ·+)

if n − 2 is odd, n � 2.

We apply Theorem 2.3 to complete the computation of sα1 ·T ∗(+ 1 +· · ·+). The general case
follows from (5.32) by induction on j. �

THEOREM 5.33. Let c = (+ 1 + c′) be a clan consisting of n symbols. If μ(T ∗c′ ) =
On−3
n−3 , then

sα1 · T ∗(+ 1 + c′) = T ∗(+ 1 + c′) + T ∗(1 + +c′) + T ∗(+ + 1 c′) + 2 T ∗(+ + +c′) .

PROOF. The computation is identical to the computation of sα1 · T ∗(+ 1 +· · ·+) in Proposi-
tion 5.31. �

THEOREM 5.34. Let c = (+ 1 + c′) be a clan consisting of n symbols. Write c =
(+ 1 + (+ · · · + ci = 2 c′′)) with i ≥ 4. Assume μ(T ∗c′ ) = On−3

k
with k < n − 3. Then,

sα1 · T ∗(+ 1 + c′) = T ∗(+ 1 + c′) + T ∗(1 + + c′) + T ∗(+ + 1 c′)+∑
�

mε1−ε2 (
(
+ 1 + (+ · · ·�+�ci = 2 c′′)

)
, (+ + · · ·�+ ��di = 1 d ′�)) T ∗(+ +· · ·+ di=1 d′

�
) .

PROOF. First, we write T ∗(+ 1 + c′) in the form

T ∗(+ 1 + c′) =
∑
�

n� CC (X (d�)) , with n� ∈ Z .
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Second, we use W -equivariance of the characteristic cycle functor to write

sα1 · T ∗(+ 1 + c′) =
∑
�

n� CC
(
sα1 · X (d�)

)
.(5.35)

The explicit computation of the right hand side of (5.35) depends on the parity of n
and on μ

(
T ∗c′

)
. It is necessary to consider various cases. It is not difficult to verify, using

Proposition 4.16 and Theorem 2.3, that sα1 · T ∗(+ 1 + c′) is of the following form:∑
�

n� μ
ε1−ε2

(
(+ 1 + (+ · · ·�+�ci c′′)

)
, (+ · · ·�+ ��di d ′�))CC

(
X (+ · · · + di = 1 d ′�)

)

+ T ∗(+ 1 + c′) + T ∗(1 ++ c′) + T ∗(++ 1 c′) + 2 T ∗(+++ c′) ,

when n is odd and μ
(
T ∗c′

)
= On−3

n−4 ;∑
�

n� μ
ε1−ε2

(
(+ 1 + (+ · · ·�+�ci c′′)

)
, (+ · · ·�+ ��di d ′�))CC

(
X (+ · · · + di = 1 d ′�)

)

+ T ∗(+ 1 + c′) + T ∗(1 ++ c′) + T ∗(++ 1 c′) + T ∗(+++ c′) ,

when n is even and μ(T ∗c′ ) = On−3
n−4 ∪ On−3

n−5 ; and∑
�

n� μ
ε1−ε2

(
(+ 1 + (+ · · ·�+�ci c′′)), (+ · · ·�+ ��di d ′�)

)
CC

(
X (+ · · · + di = 1 d ′�)

)

+ T ∗(+ 1 + c′) + T ∗(1 ++ c′) + T ∗(++ 1 c′) ,

either when μ(T ∗c′ ) = On−3
j with j < n − 5 or when n is odd and μ(T ∗c′ ) = On−3

n−5 .
By Corollary 4.31, μ(T ∗

d′
�
) � μ(T ∗c′′ ). It follows that a conormal bundle T ∗(+· · ·+1 r ) con-

tributes to CC(X (+ · · · + 1 d ′
�
)) if and only if CC(X (+ · · ·�+ �1 d ′

�
)) has T ∗

(+· · ·�+ �1r )
as a

summand. When this is the case, the multiplicities agree.
The action of the single reflection sε1−ε2 on T ∗

(+ 1 +(+· · ·�+�ci c′′))
is analogous. The theorem

follows from a careful comparison of the resulting formulae. �
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