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RATIONAL ORBITS OF PRIMITIVE TRIVECTORS
IN DIMENSION SIX
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Abstract. Let G = GL(1) × GSp(6) and V be the irreducible representation of G
of dimension 14 over a field of characteristic not equal to 2, 3. This is an irreducible pre-
homogeneous vector space. We determine generic rational orbits and their stabilizers of this
prehomogeneous vector space.

1. Introduction. Let k be a field of characteristic not equal to 2, 3. We denote the
separable closure and the algebraic closure of k by ksep, k respectively. If σ, τ ∈ Gal(ksep/k),
we define (στ)(x) = τ(σ(x)) for x ∈ ksep and so Gal(ksep/k) acts on ksep from the right. If
σ ∈ Gal(ksep/k) and x ∈ ksep, we use the notation xσ for the action of σ. If G is an algebraic
group over k, and R is a k-algebra, GR is the group of R-rational points of G. For algebraic
groups, we only consider representations which are algebraic. If G is an algebraic group, we
use the notation G◦ for its identity component. If V is a representation of G over k and x ∈ V ,
we denote the G-orbit of x by G · x to avoid confusion with the stabilizer Gx. We use similar
notations for the Gk-orbit, etc. We denote the group of n× n invertible matrices by GL(n). We
use the notation M(n) for the space of all n × n matrices. M(n)R for a k-algebra R is defined
similarly as above. We denote the n × n unit matrix by In.

Let W = k6 and W1 = ∧3W. These are irreducible representations of GL(6). Let
e1, . . . , e6 be the coordinate vectors of W. If 1 ≤ i1, . . . , it ≤ 6 are distinct, we use the no-
tation ei1···it = ei1 ∧ · · · ∧ eit . For x, y ∈ W1, we define B(x, y) = x ∧ y ∈ ∧6W � k. This is a
non-degenerate alternating bilinear form on W1. It is easy to see that B(gx, gy) = det g B(x, y)
for g ∈ GL(6). Let ω = e14 + e25 + e36. We put

(1.1)
Sp(6) = {g ∈ GL(6) | gω = ω} ,

GSp(6) = {g ∈ GL(6) | ∃c(g) ∈ GL(1), gω = c(g)ω} .
These are connected algebraic subgroups of GL(6). It is well-known that Sp(6) is a simple
group, GSp(6) is a reductive group and c(g) is a rational character of GSp(6) with kernel
Sp(6).

Let G = GL(1) ×GSp(6). We define an action of GL(1) on W1 assuming that α ∈ GL(1)
acts by multiplication by α. This makes W1 a representation of G. The subspace U = {v ∧ ω |
v ∈ W} ⊂ W1 is invariant by the action of G. So V = W1/U is a representation of G defined
over k. The reason why we use this G instead of a group like GSp(6) or GL(1)×Sp(6) is that it
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avoids unessential complications regarding rational orbits (the reader should see the comment
after (4.1)).

Let U⊥ be the orthogonal complement of U with respect to B, i.e.,

U⊥ = {v ∈ W1 | v ∧ w = 0 ∀w ∈ U} .

Since U is G-invariant, U⊥ is also G-invariant. Since B(x, y) is non-degenerate, the map
U⊥ → V induced by the inclusion map U⊥ → W1 is an isomorphism as representations of G.
It is known that V is an irreducible representation of G (without the assumption ch k � 2, 3).
We briefly review the irreducibility of V at the end of Section 2.

Obviously, dimV = 14. We use the same notation ei1···it for its image in V by abuse of
notation. We put

(1.2) w = e123 + e456 ∈ V .

Note that w ∈ U⊥.
The pair (G,V) is an example of what we call a prehomogeneous vector space. We review

the definition of prehomogeneous vector spaces as follows.

DEFINITION 1.3. Let G be a connected reductive group, V a representation and χ a
non-trivial primitive character of G, all defined over k. Then (G,V, χ) is called a prehomoge-
neous vector space if it satisfies the following properties.

(1) There exists a Zariski open orbit.
(2) There exists a non-constant polynomial Δ(x) ∈ k[V] such that Δ(gx) = χ(g)aΔ(x) for

a positive integer a.

The polynomial Δ is called a relative invariant polynomial.

In [6, p.35, DEFINITION 1], the definition of prehomogeneous vector spaces does not
include the reductiveness of G nor the the existence of a relative invariant polynomial. How-
ever, we included these assumptions because we only consider those satisfying these condi-
tions.

If V is irreducible, the above χ is unique and if Δ(x) is a relative invariant polynomial of
the lowest degree, any relative invariant polynomial is a constant times a power of Δ(x). Since
we only consider irreducible prehomogeneous vector spaces in this paper, we use the notation
(G,V) instead of (G,V, χ). Let Vss = {x ∈ V | Δ(x) � 0}. Points in Vss are called semi-stable
points.

We shall show in Section 3 that (G,V) in the present paper is an irreducible regular
prehomogeneous vector space in the following sense. We only consider irreducible prehomo-
geneous vector spaces for simplicity.

DEFINITION 1.4. Suppose that (G,V) is an irreducible prehomogeneous vector space.
If there exists w ∈ V such that G · w ⊂ V is Zariski open and the scheme-theoretic stabilizer
Gw is smooth and reductive, (G,V) is said to be regular.
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Note that this notion of regularity coincides with that in [6, pp.60,61, DEFINITION
7] if k = C. Also if k = C, (G,V) in this paper is known to be regular (see [6, p.108,
PROPOSITION 22]).

The reason why we consider the notion of regularity is that in the situation of Defini-
tion 1.4, Vss

ksep = Gksep · w (see [8] or [3, Corollary 2.4]). If x ∈ Vss
k and x = gxw where

gx ∈ Gksep , {g−1
x g
σ
x }σ∈Gal(ksep/k) determines an element, say cx, of the first Galois cohomology

set H1(k,Gw) (we shall review the definition of the first Galois cohomology set in Section 3).
This enables us to start a cohomological consideration of orbits because of the following
well-known theorem (see [2, pp.268,269] for example).

THEOREM 1.5. If (G,V) is as in Definition 1.4, the map

(1.6) Gk\Vss
k � x �→ cx ∈ Ker(H1(k,Gw)→ H1(k,G))

is well-defined and bijective.

Note that it is assumed in [2] that ch k = 0. However, the proof of the above theorem
works as long as Vss

ksep is a single Gksep -orbit.
Let Ex(2) be the set of isomorphism classes of extensions of k of degree up to two. Note

that since we are assuming ch k � 2, 3, any quadratic extension of k is a separable extension
of k. If k1/k is a quadratic extension (which is Galois of course), let σ(k1) ∈ Gal(k1/k) be the
non-trivial element. If A is a square matrix with entries in k1, we define A∗ = tAσ(k1) where
Aσ(k1) is the matrix obtained by applying σ(k1) to all entries. If Q = (qi j) is a 3 × 3 matrix
with entries in k1, Q is said to be Hermitian if Q∗ = Q. Let H3(k1) be the k-vector space of
3 × 3 Hermitian matrices with entries in k1 and H3,ns(k1) the subset of H3(k1) consisting of
non-singular matrices. Let

SH3(k1) = {Q ∈ H3,ns(k1) | det Q = 1} .
If Q ∈ H3,ns(k1), we define the unitary group U(k1,Q) and the special unitary group

SU(k1,Q) as follows:

(1.7)
U(k1,Q) = {g ∈ GL(3)k1 | gQg∗ = Q} ,

SU(k1,Q) = {g ∈ U(k1,Q) | det g = 1} .
We shall define these groups as algebraic groups over k in Section 2. Let

(1.8) Q1 = I3, Q2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

If Q = Q1,Q2, we use the notation U(k1, 3), SU(k1, 3) and U(k1, 1, 2), SU(k1, 1, 2) for
U(k1,Q), SU(k1,Q) respectively. The group GL(3)k1 acts on H3(k1) by

GL(3)k1 × H3(k1) � (g,Q) �→ gQg∗ ∈ H3(k1) .

The action of GL(3)k1 (resp. SL(3)k1) on H3(k1) leaves H3,ns(k1) (resp. SH3(k1)) stable. Also
Z/2Z acts on SH3(k1) by Q �→ tQ−1.
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Let

(1.9) ν =

(
0 I3

I3 0

)
.

Z/2Z acts on SL(3) by assuming that the action of the non-trivial element of Z/2Z is g �→
tg−1. This action of Z/2Z on SL(3) defines a semi-direct product structure SL(3)k1 � (Z/2Z).
For the rest of this paper, SL(3)k1 � (Z/2Z) means the semi-direct product in this sense.

The following theorem is the main result of this paper.

THEOREM 1.10. There is a map γV : Gk\Vss
k → Ex(2) with the following properties

(1)–(4).

(1) γ−1
V (k) = Gk · w.

(2) G◦w � GL(1) × SL(3) and Gw/G◦w � Z/2Z. Also Gw/G◦w is represented by (1, ν).
(3) If k1 is a quadratic extension of k,γ−1

V (k1) is in bijective correspondence with (SL(3)k1

� (Z/2Z))\SH3(k1).
(4) If G · x ∈ γ−1

V (k1) corresponds to the orbit of Q ∈ SH3(k1), G◦x � GL(1) × SU(k1,Q).
Also Gx/G◦x is represented by an element of Gx k of order two.

We describe γV and the correspondence in Theorem 1.10(3) in details in Section 4 (see
Theorem 4.11).

The case in the present paper is one of several irreducible prehomogeneous vector spaces
where the interpretation of rational orbits is unknown. Rational orbits of prehomogeneous
vector spaces sometimes have interesting arithmetic interpretations, especially when they are
related to field extensions. One possible outcome arising from the interpretation of rational
orbits of the present case is the expected density theorem if one can carry out necessary
global and local zeta function theories. If k = Q, one can expect to obtain the density of
the “unnormalized Tamagawa numbers” of SU(F, 3), SU(F, 1, 2) of all quadratic fields F. The
rank of the group Sp(6) is three and so the expected amount of labor necessary for the zeta
function theories is fairly large, but probably not impossible.

We review the first Galois cohomology set and the irreducibility of the representation V
in Section 2. In Section 3, we determine Gw for the element w in (1.2). We prove the main
theorem in Section 4. In Section 5, we specialize to the case of number fields and describe
the set of rational orbits more precisely. In particular, we describe representatives of rational
orbits explicitly when k = Q.

The author would like to thank Tamotsu Ikeda for helpful discussions. The author also
would like to thank the referee for pointing out various mistakes in the manuscript and sug-
gesting the title of the paper.

2. Preliminaries. In this section we review the definition of the first Galois coho-
mology set and describe H1(k, SU(k1, 3)) (see (1.7)). Also we review the irreducibility of the
representation V .

If G is an algebraic group over k, a 1-cocycle with coefficients in G is a continuous map
h : Gal(ksep/k) � σ �→ hσ ∈ Gksep , where Gksep ,Gal(ksep/k) are equipped with the discrete
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topology and the Krull topology respectively, such that hστ = hστ hσ for all σ, τ ∈ Gal(ksep/k).
We use the notation {hσ}σ∈Gal(ksep/k) or {hσ}σ for this 1-cocycle. Two 1-cocycles {hσ}σ, {h′σ}σ
are equivalent if there exists g ∈ Gksep such that h′σ = g−1hσgσ for all σ ∈ Gal(ksep/k). This is
an equivalence relation and we denote the quotient set by H1(k,G). This set H1(k,G) is called
the first Galois cohomology set. If L/k is a finite Galois extension, one can define 1-cocycles
h : Gal(L/k) � σ �→ hσ ∈ GL similarly and define the first Galois cohomology set H1(L/k,G).
It is easy to see that

H1(k,G) = lim−→
L

H1(L/k,G)

where the inductive limit on the right hand side is with respect to all finite Galois extensions
L of k.

Note that if {hσ} is a 1-cocycle, h1 = 1G (1, 1G are the unit elements of Gal(ksep/k), Gk

respectively). If hσ = 1G for all σ ∈ Gal(ksep/k), {hσ}σ is a 1-cocycle. We call the cohomology
class in H1(k,G) determined by this 1-cocycle, the trivial class and use the notation 1. It is
well-known (see [7, p.122, Lemma 1]) that

H1(k,GL(n)), H1(k, SL(n))

are trivial for all n (consider the exact sequence 1 → SL(n) → GL(n) → GL(1)→ 1 and use
the surjectivity of det : GL(n)k → k× for H1(k, SL(n))). We only need the case n = 3 in this
paper.

It is well-known (see [7, p.123, Proposition 3]) that H1(k, Sp(2n)) is trivial for all n. One
can define GSp(2n) similarly as in the case GSp(6) and there is an exact sequence

1→ Sp(2n)→ GSp(2n)→ GL(1)→ 1 .

So there is an exact sequence

H1(k, Sp(2n))→ H1(k,GSp(2n))→ H1(k,GL(1))

(meaning that the inverse image of 1 ∈ H1(k,GL(1)) coincides with the image of H1(k,
Sp(2n))). So H1(k,GSp(2n)) is also trivial. We only need the case n = 3 in this paper.

If k1/k is a quadratic extension, and G is an algebraic group over k1, the restriction of
scalar Rk1/kG is the algebraic group over k such that if L/k is a Galois extension containing k1,
(Rk1/kG)L = {(g1, g2) | g1, g2 ∈ GL} and the action of σ ∈ Gal(L/k) on (g1, g2) is (gσ1 , g

σ
2 ) (resp.

(gσ2 , g
σ
1 )) if the restriction of σ to k1 is trivial (resp. non-trivial). Let σ(k1) be the non-trivial

element of Gal(k1/k) as in Introduction.
If Q ∈ H3,ns(k1), U(k1,Q) (resp. SU(k1,Q)) is the algebraic subgroup of Rk1/kGL(3)

(resp. Rk1/kSL(3)) such that if L/k is a Galois extension containing k1,

(2.1)
U(k1,Q)L = {(g, tQ tg−1 tQ−1) | g ∈ GL(3)L} ,

SU(k1,Q)L = {(g, tQ tg−1 tQ−1) | g ∈ SL(3)L} .
The set of k-rational points of U(k1,Q) is

{(g, gσ(k1)) | g ∈ GL(3)k1 , g
σ(k1) = tQ tg−1 tQ−1}
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= {(g, gσ(k1)) | g ∈ GL(3)k1 , gQg
∗ = Q} ,

which coincides with (1.7). The set of rational points of SU(k1,Q) is similar. It is well-known
that U(k1,Q), SU(k1,Q) are k-forms of GL(3), SL(3) respectively. So U(k1,Q), SU(k1,Q) are
smooth reductive groups over k.

The following proposition is proved conceptually in [5, p.403]. However, we need an
explicit description of cohomology classes and so we give a relatively computational proof
here.

PROPOSITION 2.2. There is a bijective correspondence between

H1(k, SU(k1, 3)), H1(k1/k, SU(k1, 3)), SL(3)k1\SH3(k1) .

Moreover, if Q ∈ SH3(k1), the corresponding cohomology class in H1(k1/k, SU(k1, 3)) is de-
termined by the 1-cocycle (hσ,1, th−1

σ,1) such that h1,1 = 1, hσ(k1),1 = Q.

PROOF. Suppose that {hσ}σ is a 1-cocycle with coefficients in SU(k1, 3). Then hσ is in
the form (hσ,1, th−1

σ,1) where hσ,1 ∈ SL(3)ksep (see (2.1)). If σ, τ ∈ Gal(ksep/k1), then hστ,1 =
hστ,1hσ,1. So {hσ,1}σ∈Gal(ksep/k1) is a 1-cocycle with coefficients in SL(3). Therefore, there exists
g ∈ SL(3)ksep such that hσ,1 = g−1gσ for all σ ∈ Gal(ksep/k1). Replacing hσ with ghσ(g−1)σ,
we may assume that hσ = 1 for all σ ∈ Gal(ksep/k1).

We extend σ(k1) to ksep (which is not canonical). If τ ∈ Gal(ksep/k1),

hσ(k1)τ,1 = hσ(k1)
τ,1 hσ(k1),1 = hσ(k1),1 .

So, if σ � Gal(ksep/k1), hσ,1 = hσ(k1),1. Therefore, h is determined by hσ(k1),1. Then

hσ(k1),1 = hτσ(k1),1 = hτσ(k1),1hτ,1 = hτσ(k1),1 .

Therefore, hσ(k1),1 ∈ SL(3)k1 . This implies that

H1(k, SU(k1, 3)) = H1(k1/k, SU(k1, 3)) .

Suppose that {(hσ,1, th−1
σ,1)}σ∈Gal(k1/k) is a 1-cocycle with coefficients in SU(k1, 3). Then

(hσ,1, th−1
σ,1)σ(k1) = ((h∗σ,1)−1, hσ(k1)

σ,1 ) .

So the cocycle condition becomes h1,1 = 1 and (h∗σ(k1),1)−1hσ(k1),1 = 1. This implies that

hσ(k1),1 ∈ SH3(k1). If (g, tg−1) ∈ SU(k1, 3)k1 ,

(g, tg−1)−1(hσ(k1),1,
th−1
σ(k1),1)(g, tg−1)σ(k1)

= (g−1hσ(k1),1(g−1)∗, tg th−1
σ(k1),1g

σ(k1))

= (g−1hσ(k1),1(g−1)∗, t(g−1hσ(k1),1(g−1)∗)−1) .

So if we associate Q = hσ(k1),1 ∈ SH3(k1) to the cohomology class in H1(k1/k, SU(k1, 3)) de-
termined by the 1-cocycle {(hσ,1, th−1

σ,1)}σ∈Gal(k1/k), equivalent 1-cocyles correspond to elements
of the orbit of Q by the action of SL(3)k1 . �
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Note that Proposition 2.2 can easily be extended to a statement on SU(k1, n) but we only
need the case n = 3 in this paper.

We now briefly explain why V is an irreducible representation of G. It is enough to show
that V is an irreducible representation of Sp(6).

If G is a group scheme, we denote the tangent space T(G)e at the unit element e by
Lie(G).

It is known that Sp(6) is a smooth simple group. Let X be the subspace of Lie(Sp(6))
spanned by matrices of the forms

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 u1 u2 0 0 0
0 0 u3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −u1 0 0
0 0 0 −u2 −u3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(
0 S
0 0

)

where u1, u2, u3 ∈ k and S runs through 3 × 3 symmetric matrices. Then X is the Lie algebra
of the unipotent radical of the standard Borel subgroup of Sp(6). Let Y be the subspace of
Lie(Sp(6)) consisting of transposes of matrices in X.

It is easy to see that Xe123 = {0} and so e123 is a highest weight vector (see [1, pp.190–
193, 31.3,31.4] for the highest weight theory over an arbitrary field). Also straightforward
computations show that Ye123 spans V . So if V is not irreducible, there is a highest weight
vector other than e123 in V . The 14 standard weight vectors in V have distinct weights and so
they are the only weight vectors. Therefore, it is enough to verify that Xei1i2 i3 � {0} unless
(i1, i2, i3) = (1, 2, 3). Straightforward computations show that this is the case and V turns out
to be an irreducible representation without the assumption ch k � 2, 3. We do not carry out
these computations here.

3. Stabilizer. In this section we determine the stabilizer of the element w in (1.2).
We put

H =

{(
t−3, t

(
A 0
0 tA−1

))
t ∈ GL(1), A ∈ SL(3)

}
� GL(1) × SL(3) .

Then clearly, H ⊂ Gw and H is connected. So H ⊂ G◦w.

PROPOSITION 3.1. (1) G◦w = H � GL(1) × SL(3).
(2) (G,V) is an irreducible regular prehomogeneous vector space.

PROOF. The statement (2) is known if k = C.
We first prove that Lie(Gw) = Lie(H). Our computation is essentially the same as that

in [6, pp.107,108], except that our group is slightly different and k is arbitrary as long as
ch k � 2, 3. We identify Lie(Gw) with k[ε]/(ε2)-valued points in Gw which reduce to 1G.
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Suppose that (t, X) ∈ Lie(Gw). Since H ⊂ Gw and

Lie(H) =

{(
−3a,

(
aI3 + A 0

0 aI3 − tA

))
A ∈ M(3),Tr(A) = 0

}
,

subtracting an element of Lie(H) from X, we may assume that X is in the form:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 b11 b12 b13

0 a 0 b12 b22 b23

0 0 a b13 b23 b33

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We consider ((1, I3) + ε(t, X))w modulo U. Modulo U,

(3.2)
e125 + e136 = 0, e124 − e236 = 0, e134 + e235 = 0 ,

e245 + e346 = 0, e145 − e356 = 0, e146 + e256 = 0 .

By direct computation, (t, X) ∈ Lie(Gw) if and only if

(ae1 + c11e4 + c12e5 + c13e6) ∧ e23 − (ae2 + c12e4 + c22e5 + c23e6) ∧ e13

+ (ae3 + c13e4 + c23e5 + c33e6) ∧ e12 + (b11e1 + b12e2 + b13e3) ∧ e56

− (b12e1 + b22e2 + b23e3) ∧ e46 + (b13e1 + b23e2 + b33e3) ∧ e45

+ t(e123 + e456) ∈ U .
Expanding terms, this is equivalent to

ae123 + c11e234 + c12e235 + c13e236 + ae123 − c12e134 − c22e135 − c23e136

+ ae123 + c13e124 + c23e125 + c33e126 + b11e156 + b12e256 + b13e356

− b12e146 − b22e246 − b23e346 + b13e145 + b23e245 + b33e345

+ t(e123 + e456) ∈ U .
Using the relations (3.2), this is equivalent to

(3a + t)e123 + te456 + 2c13e124 + 2c23e125 + c33e126 − 2c12e134 − c22e135

+ 2b13e145 − 2b12e146 + b11e156 + c11e234 + 2b23e245 − b22e246 + b33e345 ∈ U .
Since all terms are linearly independent modulo U,

t = a = bi j = ci j = 0 .

Note that 2, 3 � 0 by assumption. So Lie(Gw) = Lie(H).
Since

dimGw ≤ dim Lie(Gw) = dim Lie(H) = dimH ≤ dimGw .

dimGw = dim Lie(Gw) = dimH. Therefore, Gw is smooth and G◦w = H.
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It is easy to see that dim GSp(6) = 22, dimG = 23, dimH = 9. So,

14 = dimG − dimGw = dimG · w ≤ dimV = 14 .

Therefore, dimG · w = 14. Since G · w is irreducible and is a constructible set, it is open in
G. Since Gw is smooth and reductive, (G,V) is an irreducible regular prehomogeneous vector
space (see Definition 1.4). �

By Proposition 3.1 Vksep = Gksep · w.
Let ν be the element in (1.9). Then (1, ν) ∈ Gw k and it induces an outer automorphism

on SL(3) ⊂ G◦w by conjugation.

PROPOSITION 3.3. Gw/G◦w � Z/2Z and the non-trivial element of Gw/G◦w is repre-
sented by (1, ν). Therefore, the action of Gal(ksep/k) on Gw/G◦w is trivial.

PROOF. Since Gw is smooth and Gw/G◦w is finite, it is enough to prove Gw/G◦w � Z/2Z
set-theoretically assuming k = k.

Suppose that (t, g) ∈ Gw. There is an exact sequence

1→ Inn(SL(3))→ Aut(SL(3))→ Z/2Z→ 1

where Inn(SL(3)) is the inner automorphism group. Since the conjugation by ν (see (1.9))
induces an outer automorphism on SL(3), by multiplying (1, ν) if necessary, we may assume
that g induces an inner automorphism on SL(3) ⊂ G◦w. Multiplying an element of SL(3), we
may assume that g commutes with all elements of G◦w. Note that the GL(1)-factor of G◦w is
contained in the center of G.

Let W = k6 (resp. W2 = k3) be the standard representation of GL(6) (resp. SL(3)). Since
W � W2 ⊕ W∗2 (W∗2 is the dual space) and W2,W∗2 are not equivalent as representations of
SL(3), g leaves W2,W∗2 stable. By Schur’s lemma, g must be in the form

g =

(
a I3 0
0 b I3

)

where a, b ∈ k×. Multiplying an element of the GL(1)-factor of G◦w, we may assume that
b = 1. Then (t, g)w = ta3e123 + te456 = e123 + e456. So a3 = t = 1. This implies that

(t, g) =

(
1,

(
aI3 0
0 I3

))
=

(
a3, a−1

(
a2I3 0

0 aI3

))
.

Since a = (a2)−1, g ∈ G◦w. So Gw/G◦w � Z/2Z. �

4. Rational orbits. In this section, we prove the main result of this paper.
Since H1(k,G) = {1},

Gk\Vss
k � H1(k,Gw) .

If Gal(ksep/k) acts trivially on Z/2Z and {hσ}σ is a 1-cocycle with coefficients in Z/2Z, hστ =
hτhσ = hσhτ (Z/2Z is commutative). So Gal(ksep/k) � σ �→ hσ is a homomorphism. The
kernel of this homomorphism is an open normal subgroup of Gal(ksep/k) of index up to two,
which corresponds to an extension of k of degree up to two. By associating this extension to
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{hσ}σ, we obtain a bijection from H1(k,Z/2Z) to Ex(2). If x ∈ Vss
k , let cx ∈ H1(k,Gw) be the

corresponding element. Since Gw/G◦w � Z/2Z, the image of cx in H1(k,Z/2Z) determines an
element of Ex(2). We denote this element by γV (x) or γV (Gk · x).

Obviously, γV (w) is the trivial extension k of k. Since ch k � 2, any quadratic extension
is in the form k(

√
d) where d ∈ k× \ (k×)2. We choose an element of γ−1

V (k(
√
d)) for any such

d in the following.
We put k1 = k(

√
d). Let

(4.1)

gd,1 =

( √
d I3

√
d I3

(1 +
√
d) I3 (−1 +

√
d) I3

)
,

gd =

(
1

2
√
d
, gd,1

)
.

Then gd ∈ Gk1 and gσ(k1)
d = gd(−1,−ν). Note that c(gd,1) = −2

√
d (see (1.1)). It does not seem

possible to choose an element of Sp(6)k1 which satisfies a similar property as that of gd and
this is the reason why we chose GL(1)×GSp(6) rather than GL(1)×Sp(6) as the group. Since
(−1,−ν) ∈ Gw, if we put

(4.2) wd = gdw ,

wd ∈ Vss
k . Explicitly,

(4.3) wd = de123 + (1 + d)(e156 − e246 + e345) + d(e126 − e135 + e234) + (3 + d)e456 .

PROPOSITION 4.4. γV (wd) = k1 = k(
√
d).

PROOF. The cohomology class corresponding to wd is determined by the 1-cocycle
{hσ}σ such that

hσ(k1) = g
−1
d g
σ(k1)
d = (−1,−ν) .

Since (−1,−I3) belongs to the GL(1)-part of G◦w, (−1,−ν) maps to the non-trivial element of
Gw/G◦w. Therefore, γV (wd) = k1. �

Next we determine the stabilizer of wd. Let k1 = k(
√
d) as above.

PROPOSITION 4.5. (1) G◦wd � GL(1) × SU(3, k1).
(2) Gwd/G

◦
wd
� Z/2Z. Moreover, the non-trivial element of Gwd/G

◦
wd

is represented by
gd(1, ν)g−1

d ∈ Gwd k.
PROOF. (1) Since gd ∈ Gk1 ,

Gwd k1 = gdGw k1g
−1
d =

{
gd

(
t−3, t

(
A 0
0 tA−1

))
g−1
d

∣∣∣∣∣∣t ∈ k×1 , A ∈ SL(3)k1

}
.

Suppose that t ∈ k×1 , A ∈ GL(3)k1 and that

gd

(
t−3, t

(
A 0
0 tA−1

))
g−1
d ∈ Gwd k .
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Since

(
gd

(
t−3, t

(
A 0
0 tA−1

))
g−1
d

)σ(k1)

= gd(−1,−ν)
(
(tσ(k1))−3, tσ(k1)

(
Aσ(k1) 0

0 (A∗)−1

))
(−1,−ν)g−1

d

= gd

(
(tσ(k1))−3, tσ(k1)

(
(A∗)−1 0

0 Aσ(k1)

))
g−1
d ,

we have

t3 ∈ k×, tA = tσ(k1)(A∗)−1, ttA−1 = tσ(k1)Aσ(k1) .

Taking the product of the second equation and the transpose of the third equation, t2 ∈ k×.
Since, t3 ∈ k× also, we have t ∈ k×. This implies that AA∗ = I3. Therefore,

Gwd k =

{
gd

(
t−3, t

(
A 0
0 tA−1

))
g−1
d

∣∣∣∣∣∣t ∈ k×, A ∈ SL(3)k1 , AA
∗ = I3

}

� k× × SU(3, k1) .

We only considered k-rational points ofGwd , but a similar consideration for any k-algebra
R works and we obtain the statement (1) of the proposition.

(2) Since Gw/G◦w � Z/2Z, Gwd/G
◦
wd
� Z/2Z. The only issue here is the action of

Gal(k1/k). It is easy to see that Gwd/G
◦
wd

is represented by gd(1, ν)g−1
d . Since

(gd(1, ν)g−1
d )σ(k1) = gd(−1,−ν)(1, ν)(−1,−ν)g−1

d = gd(1, ν)g−1
d ,

gd(1, ν)g−1
d ∈ Gwd k \G◦wd k. �

The following lemma is discussed in [9, p.120, LEMMA (1.8)]. Note that H1(k,G) is
trivial in our situation.

LEMMA 4.6. (1) If x ∈ Vss
k , γ

−1
V (γV(Gkx)) � (Gx/G◦x)k\H1(k,G◦x).

(2) By this correspondence, the cohomology class {g−1gσ} ∈ H1(k,G◦x) corresponds to
the orbit of Gkgx.

So to determine the set of rational orbits Gk\Vss
k , it is enough to apply Lemma 4.6 to

x = w and x = wd for all d.
For

(4.7) Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
q1

q2

q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where q1, q2, q3 ∈ k×, q1q2q3 = 1 (which implies that Q ∈ SH3(k1)), we put

(4.8)

A(Q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1+q1

2q1
1+q2

2q2
1+q3

2q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B(Q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−q1

2
1−q2

2
1−q3

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

C(Q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−q1

2q1
1−q2

2q2
1−q3

2q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , D(Q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1+q1

2
1+q2

2
1+q3

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

m(Q) =

(
A(Q) B(Q)
C(Q) D(Q)

)
.

LEMMA 4.9. (1) gd,1m(Q)g−1
d,1 ∈ Sp(6)k1 .

(2) (gd,1m(Q)g−1
d,1)−1(gd,1m(Q)g−1

d,1)σ(k1) = gd,1

(
Q 0
0 tQ−1

)
g−1
d,1.

PROOF. (1) Since A(Q)tB(Q),C(Q)tD(Q) are diagonal matrices, they are symmetric.
By direct computation,

A(Q)tD(Q) − B(Q)tC(Q) = I3 .

Therefore, (
A(Q) B(Q)
C(Q) D(Q)

)
∈ Sp(6)k .

Since gd,1 ∈ GSp(6)k1 , gd,1m(Q)g−1
d,1 ∈ GSp(6)k1 . Since c : GSp(6) → GL(1) is a character,

c(gd,1m(Q)g−1
d,1) = c(gd,1)c(m(Q))c(gd,1)−1 = 1. So gd,1m(Q)g−1

d,1 ∈ Sp(6)k1 .
(2) We show that

(4.10) m(Q)−1νm(Q)ν =

(
Q 0
0 tQ−1

)
.

This is equivalent to

νm(Q)ν = m(Q)

(
Q 0
0 tQ−1

)

⇐⇒
(
D(Q) C(Q)
B(Q) A(Q)

)
=

(
A(Q)Q B(Q)Q−1

C(Q)Q D(Q)Q−1

)

⇐⇒ A(Q)Q = D(Q), C(Q)Q = B(Q) .

The last condition is clearly satisfied and so (4.10) is satisfied.
This implies that

(gd,1m(Q)g−1
d,1)−1(gd,1m(Q)g−1

d,1)σ(k1)

= gd,1m(Q)−1g−1
d,1gd,1νm(Q)−1νg−1

d,1

= gd,1m(Q)−1νm(Q)νg−1
d,1
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= gd,1

(
Q 0
0 tQ−1

)
g−1
d,1 .

�

Now we are ready to state the main theorem.

THEOREM 4.11. Let γV : Gk\Vss
k → Ex(2) be the map defined at the beginning of this

section. Then the following (1)–(5) hold.

(1) γ−1
V (k) = Gk · w.

(2) G◦w � GL(1) × SL(3) and Gw/G◦w � Z/2Z. Also Gw/G◦w is represented by (1, ν).
(3) If k1 is a quadratic extension of k,γ−1

V (k1) is in bijective correspondence with (SL(3)k1

� (Z/2Z))\SH3(k1), where the action of the non-trivial element of Z/2Z on SH3(k1)
is given by Q �→ tQ−1.

(4) If G · x ∈ γ−1
V (k1) corresponds to the orbit of Q ∈ SH3(k1), G◦x � GL(1) × SU(k1,Q).

Also Gx/G◦x is represented by an element of Gx k of order two.
(5) If k1 is a quadratic extension of k and Q ∈ SH3(k1) is diagonal as in (4.7), the

corresponding orbit in (3) is Gkgd(1,m(Q))w.

PROOF. (1) Since G◦w � GL(1)×SL(3) and H1(k,GL(1)×SL(3)) is trivial, (1) follows.
(2) is proved in Propositions 3.1, 3.3.

(3) By Propositions 2.2, 4.5 and Lemma 4.6, we obtain (3) except for the action of
Z/2Z. If Q ∈ SH3(k1), the corresponding cohomology class in

H1(k1/k,G
◦
wd

) � H1(k1/k,GL(1) × SU(k1, 3)) � H1(k1/k, SU(k1, 3))

is determined by the 1-cocycle {hσ}σ∈Gal(k1/k) such that

hσ(k1) = gd

(
1,

(
Q 0
0 tQ−1

))
g−1
d .

Since (Gwd/G
◦
wd

)k is represented by gd(1, ν)g−1
d , the conjugation by this element is

(gd(1, ν)g−1
d )gd

(
1,

(
Q 0
0 tQ−1

))
g−1
d (gd(1, ν)g−1

d )−1

= gd

(
1,

(
0 I3

I3 0

) (
Q 0
0 tQ−1

) (
0 I3

I3 0

))
g−1
d

= gd

(
1,

(
tQ−1 0

0 Q

))
g−1
d .

Therefore, the action of Z/2Z on SL(3)k1\SH3(k1) can be regarded as Q �→ tQ−1.
(4) Since H1(k,G) is trivial, there exists (r, h) ∈ k×1 × GSp(6)k1 such that

gd

(
1,

(
Q 0
0 tQ−1

))
g−1
d = (gd(r, h)g−1

d )−1(gd(r, h)g−1
d )σ(k1)

= gd(r−1, h−1)(−1,−ν)(rσ(k1), hσ(k1))(−1,−ν)g−1
d

= gd(r−1rσ(k1), h−1νhσ(k1)ν)g−1
d .
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Then Q corresponds to the orbit of x = gd(r, h)g−1
d wd = gd(r, h)w. The above condition is

equivalent to

(4.12) r ∈ k×,
(
Q 0
0 tQ−1

)
= h−1νhσ(k1)ν .

This condition is satisfied even if r is replaced by 1. So we assume that r = 1.
Obviously,

Gxk1 =

{
gd(1, h)

(
t−3, t

(
A 0
0 tA−1

))
(gd(1, h))−1

∣∣∣∣∣∣t ∈ k×1 , A ∈ SL(3)k1

}
.

We use the notation such as h for hσ(k1) here. Since(
gd(1, h)

(
t−3, t

(
A 0
0 tA−1

))
(gd(1, h))−1

)σ(k1)

= gd(−1,−ν)(1, h)

(
t −3, t

(
A 0
0 (A∗)−1

))
(1, h −1))(−1,−ν)g−1

d

= gd

(
t −3, νh t

(
A 0
0 (A∗)−1

)
h −1ν

)
g−1
d ,

the condition

gd(1, h)

(
t−3, t

(
A 0
0 tA−1

))
(gd(1, h))−1 ∈ Gxk

is satisfied if and only if t3 ∈ k× and

νh t

(
A 0
0 (A∗)−1

)
h −1ν = ht

(
A 0
0 tA−1

)
h−1 .

By (4.12), this is equivalent to

h t

(
Q 0
0 tQ−1

) (
(A∗)−1 0

0 A

) (
Q−1 0

0 tQ

)
h−1 = ht

(
A 0
0 tA−1

)
h−1 .

Simplifying, we obtain the condition,

tQ(A∗)−1Q−1 = tA, ttQ−1AtQ = ttA−1 .

Taking the product of the first equation and the transpose of the second equation, t2 ∈ k×.
Since t3 ∈ k× also, this implies that t ∈ k× and that

Q(A∗)−1Q−1 = A ,

which is equivalent to

AQA∗ = Q .

SoGxk = k××SU(k1,Q)k. We only considered k-rational points, but by considering k-algebras
R, we obtain an isomorphism of algebraic groups G◦x � GL(1) × SU(k1,Q).
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(5) By Lemma 4.9, we can choose (1,m(Q)) as (r, h) in the proof of (4). Therefore, the
corresponding orbit is Gkgd(1,m(Q))w. �

Note that any element of SH3(k1) can be diagonalized and so Theorem 4.11 (5) makes it
possible in principle to find the orbit corresponding to any element of SH3(k1).

Let W be the standard representation of GL(6) as in Introduction. We now describe the
map γV by constructing an equivariant map from V to Hom(W,W).

We define a map D : ∧3W → W ⊗ ∧2W by

D(v1 ∧ v2 ∧ v3) = v1 ⊗ (v2 ∧ v3) − v2 ⊗ (v1 ∧ v3) + v3 ⊗ (v1 ∧ v2) .

This is well-defined and GL(6)-equivariant. Let

φ(x) = x ∧ D(x) ∈ W ⊗ ∧5W � W ⊗W∗ � Hom(W,W)

for x ∈ ∧3W.
Let w,U,U⊥ be as in Introduction. It is easy to see that w ∧ ω = 0 and so w ∧ x = 0

for all x ∈ U. Therefore, w ∈ U⊥. The composition V � U⊥ → ∧3W → Hom(W,W) is
G-equivariant. We denote this map by Φ. It is known (see [6, pp.79–81]) that

Φ(w) =
3∑
i=1

ei ⊗ e∗i −
6∑
i=4

ei ⊗ e∗i .

Therefore, eigenvalues of Φ(w) are ±1 and Φ(w) ◦Φ(w) = I6.
It is easy to see that if t ∈ GL(1), g ∈ GSp(6) and x ∈ V ,

(4.13) Φ((t, g)x) = t2(det g)gΦ(x)

where gΦ(x)(v) = g(Φ(x)(g−1v)) for v ∈ W. So

Φ((t, g)x) ◦Φ((t, g)x)GL(6)) = t4(det g)2(gΦ(x)) ◦ (gΦ(x))

= t4(det g)2g(Φ(x) ◦Φ(x)).

Since Gw ⊂ V is Zariski open, andΦ(w)◦Φ(w) = I6, there is a polynomial Δ(x) of x ∈ V such
that

Φ(x) ◦Φ(x) = Δ(x) I6 .

Moreover, by the above consideration,

Δ((t, g)x) = t4(det g)2Δ(x) ,

i.e., Δ(x) is a relative invariant polynomial.
If x = (t, g)w, eigenvalues of Φ(x) are ±t2(det g) by (4.13). Since

Δ(x) = t4(det g)2Δ(w) = t4(det g)2 ,

eigenvalues of Φ(x) are ±√Δ(x). Therefore, we obtain the following proposition.

PROPOSITION 4.14. If x ∈ Vss
k , γV (x) is the quadratic field generated over k by eigen-

values of Φ(x) (which are ±√Δ(x)).
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5. The case of number fields. In this section we consider the case where k is a num-
ber field. Throughout this section, we assume that k is a number field.

Suppose that k1/k is a quadratic extension. Then γ−1
V (k1) is in bijective correspondence

with H1(k1/k, SU(k1, 3)) � (SL(3)k1 � Z/2Z)\SH3(k1). Let M, M∞, Mf, MR, MC be the set
of all places, all infinite places and all finite places, all real places and all imaginary places
respectively. If v ∈ M, we denote the completion of k at v by kv.

The following proposition is well-known (see [4]). Note that SU(k1, 3) is simply con-
nected.

PROPOSITION 5.1. (1) If g ∈Mf, H1(kv, SU(k1, 3)) = {1}.
(2) H1(k, SU(k1, 3)) �

∏
v∈M∞ H1(kv, SU(k1, 3)).

LetM(k1) be the set of v ∈ MR such that k1 �⊂ kv. If k1 = k(
√
d) and v ∈ M, v ∈ M(k1) if

and only if v ∈MR and the image of d in kv is negative.
If v ∈ MC, H1(kv, SU(k1, 3)) = {1} of course. If k1 ⊂ kv, SU(k1, 3) � SL(3) over kv.

Therefore, H1(kv, SU(k1, 3)) = {1} also. Let v ∈M(k1). Then k1 · kv = C. So

H1(kv, SU(k1, 3)) = H1(C/R, SU(C, 3)) .

Let Q1,Q2 be the matrices in (1.8).

LEMMA 5.2. The set (SL(3)C � Z/2Z)\SH3(C) consists of two elements and one can
choose Q1,Q2 as their representatives.

PROOF. Any Hermitian matrix can be diagonalized by elements of SL(3)C. If Q ∈
SH3(C) is diagonal (consequently diagonal entries are real), applying elements of the forms⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t
t−1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

t
t−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

we may assume that Q is in the form

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
±1

±1
∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Since detQ = 1, Q is in the form

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
±1

±1
±1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Applying permutation matrices, Q becomes Q1 or Q2. Since the signature of a Hermitian
matrix does not change by the action of SL(3)C, Q1,Q2 are not equivalent. Moreover, both
Q1,Q2 are invariant by the action Q �→ tQ−1, Q1,Q2 are not equivalent by the action of
Z/2Z. �

These considerations show the following proposition
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PROPOSITION 5.3. |H1(k, SU(k1, 3))| = 2|M(k1)|.

Suppose that k = Q. Quadratic extensions are in bijective correspondence with square-
free integers d � 1. Let d � 1 be a square-free integer and k1 = Q(

√
d). Then if d > 0,

M(k1) = ∅. If d < 0,M(k1) consists of the infinite place of Q.
Since entries of Q1,Q2 belong to Q, We can choose {Q1,Q2} as a set of representatives

of (SL(3)Q � Z/2Z)\SH3(k1). By computations,

m(Q2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1

0 1
0 1
−1 0

−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

LEMMA 5.4. gdm(Q2)w is the following element.

d(e123 + e126 − e135 + e234) + (d − 1)(−e246 + e345 + e456) + (d + 1)e156 .

PROOF. By m(Q2), e1, . . . , e6 map to

e1, −e5, −e6, e4, e2, e3

respectively. So md(Q2)w = e156 + e234. This implies that gdm(Q2)w is equal to

1

2
√
d

(
√
de1 + (1 +

√
d)e4) ∧ (

√
de2 + (−1 +

√
d)e5) ∧ (

√
de3 + (−1 +

√
d)e6)

+
1

2
√
d

(
√
de2 + (1 +

√
d)e5) ∧ (

√
de3 + (1 +

√
d)e6) ∧ (

√
de1 + (−1 +

√
d)e4).

Straightforward computations show that this is equal to the element in the statement of the
lemma. �

By these considerations, we obtain the following theorem in the case k = Q.

THEOREM 5.5. (1) GQ\Vss
Q has the following representatives x.

(i) x = w.
(ii) x is the element given in (4.3) where d in (4.3) runs through all square-free

integers not equal to 1.
(iii) x is the element given in Lemma 5.4 where d < 0 runs through all square-free

integers.
(2) The stabilizer for elements in (1)(i)–(iii) are as follows.

(i) G◦x � GL(1) × SL(3).
(ii) G◦x � GL(1) × SU(Q(

√
d), 3).

(iii) G◦x � GL(1) × SU(Q(
√
d), 1, 2).
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