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Abstract. Let X be alocally compact separable metric space and m a positive Radon
measure on X with full topological support. Let M = (Py, X;) be an m-symmetric Markov
process on X. Let (£, D(E)) be the Dirichlet form on L2(X ;m) generated by M. Let u
be a positive Radon measure in the Green-tight Kato class and A;‘ the positive continuous
additive functional in the Revuz correspondence to . Under certain conditions, we establish
the large deviation principle for positive continuous additive functionals AfL of symmetric
Markov processes.

Introduction. Let X be a locally compact separable metric space and m a positive
Radon measure on X with full topological support. Let M = (Py, X;) be an irreducible, con-
servative, m-symmetric Markov process on X with the doubly Feller property. Let (£, D(£))
be the Dirichlet form on L2(X; m) generated by M. We assume that (£, D(£)) is regular
and transient. Let i be a positive Radon measure in the Green-tight Kato class (in notation
w € Koo) and A¥ the positive continuous additive functional in the Revuz correspondence to
M.

We define

1) y(0) = inf{é‘(u, u) 1 u € DE), 9/ wldp = 1}, 0 eR'.
X
Let 6y be a unique value such that y (6p) = 1. We define the functions C(6) and C () by
CO) = —inf{é’(u, u) —9/ uldu :u € Co(X) ND(E), f udm = 1} ,
X X

and

cwo, 6=6

C(Q):{o, 0 <6.

Here Co(X) is the space of continuous functions on X with compact support.

Let () (resp. T (1)) be the Legendre transform of C(6) (resp. c 0)):

1(A) = sup {A0 — C(6)} (resp. T(A) = sup {A0 — 6(9)}) , LeR'.
feR! feR!
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In [7], [9], a large deviation principle was proved for additive functionals of Brownian
motion corresponding to Kato measures. In [12], it was extended to the case of symmetric
a-stable process. A main objective of this paper is to extend these results in [7], [9] and [12]
to more general symmetric Markov processes:

THEOREM 0.1. Suppose M satisfies (I), (DF), (C) and (LU) below. Let n € Keo.
Then

(i) For any open set G C R!,

" Al .
liminf—logP, | — € G ) > —inf I(X).
t—oo f t reG

(ii) For any closed set K C R},

limsupllong <A—;L € K) < — inf T(A).
t—oo I t rekK
We can show that / equals Ton [C'(Bo+), 00), where C’(0p+) = limg_.g C'(Bg+¢) fore > 0.
As a corollary of Theorem 0.1, for A C [C"(60+), 00) with infyc 40 I(1) = inf, _35 I (1),
.1 <Af ) :

lim —logP, | — € A)=—inf I(X).

t—oo t t LEA
In particular, if C = c , that is, C(0) = 0 for & < 6y, then the large deviation principle for
AY /t holds.

In [9], [12], they showed that C equals C for the Brownian motion or «a-stable process.
In general, C does not equals C when C(0) < 0([10, Theorem 3.1 (ii)]).

In the proof of the large deviation principle for the positive continuous additive func-
tional A} in the Revuz correspondence with u, we use the Girtner-Ellis Theorem. The func-
tion C (0) is regarded as the logarithmic moment generating function of AL In the Girtner-
Ellis theorem, the differentiability of logarithmic moment generating functions is a sufficient
condition for obtaining the lower bound. Needless to say, it is impossible to show the differen-
tiability for continuous additive functionals of general symmetric Markov processes. Indeed,
if 8p > 0 and C(0) < 0, then the right derivative of Catf = 0 is positive because it is equal
to C'(8p) and C (0) is convex, but the left derivative is 0. Therefore, the logarithmic moment
generating function c (0) is not differentiable at 6.

We prove first the lower bound for the absorbing symmetric Markov process MY on a
relatively compact open set G C X. For 6 € R!, let

cY%®) = —inf{é")“’G(u, u):ue D(EG),/ uldm = 1} ,
G

where D(EC) = {u € D(€) : u = 0q.e. on X\ G}. Here £7%C is the Schrédinger form on G
defined in (7). Combining the local ultra-contractivity with the analytic perturbation theory,
we can obtain that CY(6) is an analytic function in 6. Applying the Girtner-Ellis theorem,
we can show that the lower bound for absorbing symmetric Markov process M®. Then by
approximating of X by G,,, where {G,} is an increasing sequence of relatively compact open
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sets with (72 | G, = X, we obtain the lower bound for the Markov process M on the whole
space X.

On the other hand, to show the upper bound, we use two facts, L?”-independence of
spectral bounds of Keynman-Kac semigroups and gaugeability for Schrodinger type operator.
We show by the L?-indepencence that for 8 > 6y the logarithmic moment generating function
of A" exists and equals C,and by the gaugeability that for 6 < 6 it equals 0. Hence, applying
Girtner-Ellis theorem, we have the upper bound.

Finally, we treat the 1-dimensional Brownian motion (P}, B;) with a positive drift k as
an example. At this time, (P}", B;) satisfies the assumptions in Theorem 0.1 . We can choose
the Dirac measure g at 0 as a positive Radon measure in the Green-tight Kato class. Then
the local time /; of the Brownian motion (P}", B;) at the origin is the continuous additive
functional in the Revuz correspondence to &o. Let £ = ;-5 + k7- ‘1 be the infinitesimal
generator of (P, B;). Then L% :=L+8isa self-adjoint operator on L2(R e2k*dx). Since
C(0) is equal to the bottom of spectrum of L%, C0) is negatlve on 6 < k. Therefore we can
see that C(0) # C(Q) on 6 < k, and hence I (A) # I(A) on 0 < A < k. In particular, for
A C [k, 00) with infyc 4o I (A) = inf, _ ; I (1), we have

1 w (lt ) .
lim —logP"|—€A)=—infI(}).
t—o0 t t LEA

This paper is organized as follow. After giving preliminaries in Section 1, we shall prove
that a large deviation principle for the positive continuous additive functional A in the Revuz
correspondence with u in the Green-tight Kato class in Section 2. Finally, We shall give an
example for our theorem to the 1-dimensional Brownian motion with a positive drift k in
Section 3.

1. Preliminaries. Let X be alocally compact separable metric space and m a positive
Radon measure on X with full topological support. Let (£, D(€)) be an m-symmetric regular
irreducible Dirichlet form on L?(X; m). It is known that a regular Dirichlet form £ has the
Beurling-Deny decomposition ([5, Theorem 3.2.1]) : for u € D(E)

1
2) Ew,u) = E/ dufu) +//X i (u(x) — u(y))zJ(dxdy)+/Xu2dk.
X iag

Here M , J and k are the energy measure of the strongly local part, the jumping measure and
the k1111ng measure with respect to (£, D(£)), respectively.

We assume that (£, D(E)) is transient, that is, there exists a strictly positive, bounded
function g € LY(X; m) such that for u € D(E)

/ lulgdm < /E(u, u)
X

(cf. [5, p.40]).

We denote by u € Dy, (€) if for any relatively compact open set D there exists a function
v € D(E) such that u = v m-a.e. on D. We denote by D, () the family of m-measurable
functions u on X such that |u| < oo m-a.e. and there exists an £-Cauchy sequence {u,} of
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functions in D(E) such that lim,— oo u, = u m-a.e. We call D,(E) the extended Dirichlet
space of (£, D(E)).

LetM = (2, .7, {Z%t}1>0, { Px)xex, {Xt}t>0, ¢) be the m-symmetric Hunt process gen-
erated by (£, D(£)), where {.Z;};>0 is the augmented filtration and ¢ is the lifetime of M.
Denote by {p;}:>0 and {G4}e>0 the semigroup and resolvent of M:

o0
P = Ex(F(XD).  Gaf(x) = / ¢~ py f(x)dt
0
We assume that M satisfies the next conditions:

Irreducibility (I). If a Borel set A is p;-invariant, i.e., p;(14 f)(x) = Lop; f(x) m-a.e.
for any f € L?(X:;m) N A,(X) and t > 0, then A satisfies either m(A) = 0 or
m(X \ A) = 0. Here %, (X) is the space of bounded Borel functions on X.

Conservativeness (C). P,(¢ = oo) = 1 foreach x € X.

Doubly Feller Property (DF). Foreacht > 0, p;(Coo(X)) C Coo(X), limy_q || pr f —
flloo = O for any f € Coo(X) and p;(%p(X)) C Cp(X), where Coo(X) (resp.
Cp(X)) is the space of continuous functions on X vanishing at infinity (resp. the
space of bounded continuous functions on X).

Local Ultra-contractivity (LU). Let {pC} be the semigroup defined by pC f(x) =
E.(f(Xy);t < 1) for any f € %Bp(X), where 1 is the first exit time from G.
Then for any relatively compact open set G, the semigroup { p,G} is ultra-contractive,
128 flloo < C@|f 1, where C(¢) is the operator norm of p¢ from L' (G;m) to

L*®(G;m) .
REMARK 1.1. C(¢) is non-increasing. Indeed, for ¢ > s
12t flloo = 15 - Pr—s [lloo < IPsll1,00ll Pr—s flI1,1 < 11Psll1,00ll Pr—slin 1l £l
and || pr—sll1,1 <1, wehave |[prll1,00 < IPsll1,00-

We remark that (DF) implies

Absolute Continuity Condition (AC). The transition probability of M is absolutely
continuous with respect to m, p(t,x,dy) = p(t,x, y)m(dy) for each t > 0 and
x € X.

Under (AC), there exists a non-negative, jointly measurable «-resolvent kernel G (x, y)
on X x X:

Gof(x) = /XGa(x,y)f(y)m(dy), xeX, feBX).

Moreover, G, (x, y) is a-excessive in x and in y ([5, Lemma 4.2.4]). We simply write G(x, y)
for Go(x, y). For a measure 1, we define the a-potential of u by

Gou(x) = /X Go(x, y)u(dy) .



LARGE DEVIATIONS FOR CONTINUOUS ADDITIVE FUNCTIONALS 637

We define the (1-)capacity Cap associated with the Dirichlet form (£, D(E)) as follows:
for an open set O C X,

Cap(0) = inf{&1(u,u) : u € D(E),u > 1, m-a.e. on O},
where £1(u, u) = Ew, u) + (u, u),,, for a Borel set A C X,
Cap(A) = inf{Cap(O) : O isopen, O D A}.

A statement depending on x € X is said to hold q.e. on X if there exists a set N C X of
zero capacity such that the statement is true for every x € X \ N. The notation “q.e.” is an
abbreviation of “quasi-everywhere”. A real valued function u defined q.e. on X is said to be
quasi-continuous if for any ¢ > 0 there exists an open set G C X such that Cap(G) < ¢
and u|x\¢ is finite and continuous. Here, u|x\c denotes the restriction of u to X \ G. Itis
known that each function u in D,(£) admits a quasi-continuous version i, that is, u = u
m-a.e.([5, Theorem 2.1.7]). In the sequel, we always assume that every function u € D,(E)
is represented by its quasi-continuous version.

Let Sop be the set of positive Borel measures w such that u(X) < oo and Gipu is
bounded. We call a Borel measure i on X smooth if there exists a sequence {E,} of Borel
sets increasing to X such that 1g, - u € Spo for each n and

P.(lim ox\g, 2¢) =1, Vxe X.
n—00

Here ox\ g, is the hitting time of X \ E, by M, ox\g, = inf{t > 0: X, € X\ E,}. We denote
by S the set of positive smooth Borel measures. In [5], a measure in S is called a smooth
measure in the strict sense. Here we omit the adjective phrase “in the strict sense”.

A stochastic process {A;};>0 is said to be an additive functional (AF in abbreviation) if
the following conditions hold:

(i) A;(") is .#,-measurable for all ¢ > 0.

(ii) There exists aset A € Foo = 0 (Uz>0 ﬁ}) such that P,(A) = 1, forall x € X,
6;A C Aforallt > 0, and for each w € A, A.(w) is right continuous and has the left limit
on [0, ¢(w)), Ap(w) = 0, |[Ay(w)| < oo fort < {(w), Ar(w) = A (w) fort > ¢, and
Arts(@) = Ay(w) + Ay (bro) for s, 1 > 0.

If an AF {A;};>0 is positive and continuous with respect to ¢ for each w € A, the AF
is called a positive continuous additive functional (PCAF in abbreviation). The set of all
PCAF’s is denoted by AT. The family S and A} are in one-to-one correspondence (Revuz
correspondence) as follows: for each smooth measure p, there exists a unique PCAF {A;};>0
such that for any f € 7 (X) and y-excessive function £,

l t
3) lim - Ep ( / f(xs)dAs) _ / FEORGR(x)
t—0t 0 X

([5, Theorem 5.1.7]). Here, Ep.py(-) = fx E.(-)h(x)m(dx). We denote the PCAF Al by
AY to emphasize the correspondence between y and {A;};>0.
We define some classes of smooth measures.
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DEFINITION 1.2. Suppose that ;& € S is a positive Radon measure.
(1) A measure p is said to be in the Kato class of M (K in abbreviation) if

lim [[Gaptlloo =0.
a—>00

A measure p is said to be in the local Kato class of M (Kj,c in abbreviation) if 1x - u €
for any relatively compact open set K. Here 1 is the indicator function of K.

(2) A measure p is said to be in the class K, if 4 € K and for any ¢ > 0, there exists a
compact set K = K (¢)

SUP/C G(x,y)udy) <e.

xeX

A measure u in K is called Green-tight.

We note that every measure treated in this paper is supposed to be Radon. Thus we see
from [1, Theorem 3.9] that u € K if and only if

) lim sup E, (A} )_hmsup/ /p(s x, yyu(dy)ds = 0.

130 xex 0 xex

Chen [2] defined the Green-tight class in slightly different way, however two definitions are
equivalent under the strong Feller property ([6, Lemma 4.1]). We see from [8] that for @ > 0
and u €

(5) / uldp < |Gafilloo - Ex(u, u) foranyu € D).
X

Let u € K. We define the Schrodinger form by

EM(u,u) =Ew,u) — / uldu
X
DEM) = DE).

(6)

We denote by £ = L + p the self-adjoint operator associated with the closed symmetric
form (E#, D(EM)), that is, (—LPu, v), = E*(u, v) for any u, v € D(E).
We define the Feynman-Kac semigroup {p}'};>0 by

P f(x) = Ex(exp(A") f(X), x € X, feBprX).

THEOREM 1.3 ([12]). Let u € K. For any ¢ > 0 there exists M(¢) > 0 such that for
anyu € D(E)

/uzd,ufeé'(u,u)—i—M(s)/ udm
X X

THEOREM 1.4 ([12]). Let u € K. Then for any u € D(E)

/ W2di < |G itlloo - £, 1) .
X
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2. Large deviation principle. Let G C X be a relatively compact open set. We set
DEY={ueDE) : u=0qe.onX\G}.

Here £ is the part of the Dirichlet form £ on G. D(£9) is a closed subspace of the Hilbert
space (D(E), &1). (E¢,D(EY)) is a regular Dirichlet form on L?(G; m). Let MC be the
associated the Markov process of (£¢, D(£9)), namely, the part process of M on G ([5,
A.2]). Indeed, MY is an absorbing Markov process on G with an m-symmetric transition
function p© on (G, B(G)) defined by pC (x, B) = P,(X; € B; t < 1), where ¢ is the first
exit time of G.

For 6 € R! let

7 EMO (u,u) = E%u, u) —9/ udu, u e DE%)
X
and
8) cé®v) = —inf{f:@ﬂ-G(u, u):ue D(EG),/ u*dm = 1} )
G

Let /¢ be the Legendre transform of CY:

1°0) = sup {Ae - CG(G)}, AeR!
feR!

LEMMA 2.1. Foruy, up € D) and0 < a < 1, u := \Jau} + (1 — a)u3 € D(E)

and
Eu,u) <alui,ur) + (1 —a)é(uz, uz).
PROOF. First, we consider the energy measure of the strongly local part of (2).
By Theorem 5.6.2 in [5], forany @ € C'(R?Y) and vy, ..., vg € D(E)p := D(E)NL®(X; m),
the composite function @ (v) = @ (vy, ..., vg) with @(0) = 0is in D(E), and
d
du?'(p(v)’w) = Z‘pxi (v)d,ufvi’w), for any w € D(E)y,

i=1

where @,; is the partial derivative of @ with respect to x;.

By applying the formula above to v = (u1, u2) and @ (v) = ,/au% + (1 — a)u%, we

have
2.2 2.2
oa“u a(l —a)ujuy (1 —a)‘u
d c 1 d c c + 2 c .
Hw au% + (1 - a)u% Fn) au% + (1 - a)u% ) au% + (1 - O!)l/l% Hua)
Since

/ oa(l —a)uiuy duc
Xotu%—i—(l—a)u% Hunuz)

1/2 1/2
a(l —a)u% c / a(l —a)u% c /
= / 2 5y / 2 54y
x auy + (1 —a)u; x auy + (1 —a)u;
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a(l — a)u2 , a(l — a)u2 ,
= / 2 2 Zdlj’?ul) +/ 2 : zduiuz)’
x auy + (1 —a)uj x aui + (1 —a)uj

by Lemma 5.6.1 in [5], we have

/ s </ a(au% +( —a)u%)duc +/ (1 —Ol)(Olu%—i— (1 —a)u%)d'uc
x W=y au% + (- O!)l/l% fur) X au% + 1 - a)u% fu2)

= O‘/Xd“?un +d _a)'/xdﬂztz)‘

Moreover, noting

u@u(y) = Jaurd () + (1 = ud()yad () + (1 — ()
> au()u1(y) + (1 — yuz(X)uz(y),
we have
W(x) —u(y)* < i) —u1 () + (1 — )2 (x) — uz(y))>

and thus &7 (u, u) < a&’ (uy, uy) + (1 — )&’ (uz, uz). The proof of this lemma is completed.
O

Define
JCM) = inf{SG(u,u):u e D(EY), / uldp = A, / u’dm = 1}, reR!
G G

and

JCO) =1lim inf JOWM).
e—>0 |V —Al<e

JG is the lower semi-continuous modification of J&. From Lemma 2.1, we have
LEMMA 2.2. The function JG is convex: forO <a <landri, A € R!
JCarm+ T =) <aJO)+ 0 =-a)J%0).

PROOF. Forany ui,u; € D(EC) such that

/ul-zduz)»i,/uizdmzl, i=1,2,
G G

letu := ,/au% + (1 — a)u%, 0 <« < 1. Then u belongs to D(EG),

/ uzdu =ai; + (I —a)ry and / wrdm=1.
G G

We see by the definition of JG (1) and Lemma 2.1 that for any u1,uy € D(E G) satisfying
above conditions,
TG (@i + (1 —a)ra) < E@u, u)
<alup,ur) + (1 —a)éua, uz).
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Therefore, we have the lemma. O
LEMMA 2.3. The function J© is convex.
PROOF. Let A1, A2 € R'. For A’ and " with [\ — A1| < e and [\ — A3 < &,

inf JO) < J% @) + (1 —a)r)
[A—(xr+(1—a)rr)|<e

<aJON+A—-a)JC0)
by Lemma 2.2, and thus

inf JCW) <« 1nf iG M)+ (1 —a) inf JOO).
[A—(ar+(1—a)rp)|<e A —Aq] eI YIRS
The proof is completed by letting ¢ — 0. O

LEMMA 2.4. The function CC is the Legendre conjugate of J©,

CY©) = sup{or — JO (L)} .
reR!

PROOF. Let
A= {u e DEY) :/ u*dm = l}
G

sz{ueD(é'G):/uzdu:A,/uzdmzl}, reR'.
G G

For any ¢ > 0, set

Aie = {u eD(€G):A—8</ uwldp < A +e, / uzdmzl} )
G G
Then
mf EMCGu,u)y < inf E%Cw,u) <lim inf E%Cu,u) < mf MG (u, u)
ueA; ¢ e=>0uc A ¢
and thus

1nf EMG (y u) < 1nf llr% IB\f EMG (y,u) < 1nf 1nf EMC (u,u) = 1nf EMC (u, uy.
e—=>VueA) e

Hence we have

C%@©®) = —inflim inf E%%C(u,u)

A e—>0ucA; .

= —inflim inf inf %6 (u, u)
A e—=0|3—xl<e \ueAy

_inflim inf (JG()J) —9)\’) .
A e—=>0NM—Al<e
Noting
lim inf (iG(x’) - 9)\’) =J%0) —

e—=>0 N —Al<e
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we have

céo) =- ir)\lf{]G(A) —0A} = sup{Or — JO(1)}.
A

As a result, we see that
LEMMA 2.5.
1¢ =79,

PROOF. The function J¢ is lower semi-continuous, convex and not identically infinite.
Hence, it follows from Lemma 2.4 and [4, Theorem 2.2.15] that J¢ = JC. O

We use the notations J (resp. J ) for J¢ (resp. J Gy when G = X.

LEMMA 2.6. Let {G,} be an increasing sequence of relatively compact open sets with
U, Gn = X. Then for an open set O C R!

inf J(A) = inf inf JO"(}).
224 7 () = b g, J7 ()
PROOF. By the regularity of the Dirichlet form (£, D(E)),

inf J(L) = inf{é‘(u, w):ue D(E),/ udu € 0,/ uldm = 1}
re0 X X

= inf{é’(u, u) :u € DE)N CO(X),/ uldp € 0,/ u*dm = 1}
X X

infinf{g(u, u) :u €DE)N Co(Gn),/ uldp € 0,/ udm = 1}
n X X
= inf inf JO"(1).
n re0
Noting that infyco JC (1) = infyeo J (1) for any open set O C R!, we have the lemma. O

Let u € Ky Let G be a relatively compact open set of X. Denote by {Gg}azo the
resolvent of the part process M® of M on G. Then the part process M is right in the sense
that for any ¢ > 0, there exists a compact set K C G such that

sup G?ch(x) <e.
xeG

Here 1k-c is the indicator function of G \ K. In fact, note that for x € G,

[e'e) $ 00
G?l,«(x):/ e_tptGler(x)dtzf e_tptGch(x)dt—l—/ e " pClge(x)dt .
0 0 $

We see from (LU) and Remark 1.1 that the right hand side is dominated by

e¢]

§ 00
/ e_’dt~|—/ e IpClh.com(G \ K)dt <1 —e—5+/ e~ 'C(&)m(G \ K)dt
0 ) $

<l—eb+e?CEmG\K).
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For any & > 0, we choose § > log(1 — %) and a compact set K C G satisfying m(G \ K) <

8 . .
2ec—(§) , and obtain the tightness of M.

Let {p/**“},-0 be the semigroup defined by
PO ) = Ec (X f(X0i 1 < 76) for f € £4(G).
Define the LP-spectral bounds of {p!* ’G}t>0 by
AG G0 = = lim ~log % llpp 1= p <00,
t—oo f

where ||p;"G||p,p is the operator norm of p*% from L?(G; m) to L?(G; m). We omit ‘G’
from Ag(u) when G = X.

The LP-independence of the spectral bounds of {p/* ’G},>o means that
Ay () =25 (W), 1= p<oco.

As mentioned above, the Markov process MY is tight, so Ag (A ) is independent of p by
[11, Theorem 4.1]. We easily see the following inequality

35 N AL, - 1 AL,
7 (@p) <liminf —log E, (""" ;1 < 7g ) < limsup —logsup E, (""" ;1 < 15
t—o00 t t—o0 I xeG

1
= lim sup — log sup p/"*“1(x)

t—oo I xeG
) 1 o, G
= limsup — log [ p; """ lloo
t—oo I
G

By combining the L?”-independence of the spectral bounds of { p?“ ’G},>o and the variational
formula for Ag ©éw)),

1 L
) lim - log Ey (e“5 < rG) —c%).
t—>oo t

By using (LU), the transition function p?“ ’G(x, y) of ptg” *“ is bounded for each ¢ > 0 and
x,y € X, and thus p?“ U is a Hilbert-Schmidt integral operator, in particular, a compact
operator. Hence, we see that C(6) is an analytic function in 6 because it is nothing but the
eigenvalue of £#. Then, combining (9) with the Gértner-Ellis theorem ([3, Section 2.3]), we
obtain the next lower estimate: For any open set O C R!,

o] Af . G
(10) liminf—log P, | — € O;t <16 ) > — inf I7(Q),

t—oo t t re0

where 19 is the Legendre transform of C©.
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THEOREM 2.7. Let i € Kjpe. Then, for any open set O C R!
| At .
liminf—log Py ( — € O | > — inf I(A).
t—o0 t t re0
PROOF. Let {G,} be a sequence of relatively compact open sets such that G, 1 X and
simply write 1" for 1%, Then we have from (10) that

1 A}
liminf — log P, (T’ € 0)

t—oo t

v

o1 Al
supliminf—log P, | — € O; ¢t < 13,
n [—>00 f t

> —inf inf I"()).
n re0
Since
inf inf I"(A) = inf I(}),
n re0 re0
we obtain the theorem. O
Define
(11) y(O) = inf{g(u,u) ‘u € DE), ef uldp = 1}, 0eR'.
X
LEMMA 2.8.
12) y(©) <1 <:>inf{59“(u,u) :/ uldm = 1} <0.
X

PROOF. We can prove this lemma by the same argument as in [12, Lemma 2.2]. Assume
that y(0) < 1. Then there exists a ¢y € Co(X) with 6 fX gogdu = 1 such that E(¢o, @o) < 1.
Hence we see

E(@o, 90) < 9/X<p§du-

Letting
©®o0
uw = ——m,
V Jx ‘/’(Z)dm
we have

E%(ug, up) < 0.
On the other hand, we assume that inf{50“ (u,u): fX udm = 1} < 0. Then there exists a

Yo € Co(X) with [y y3dm = 1 such that E% (g, ¥o) < 0. Letting
Yo

Jo fwtdn

upg =
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we have
E(uo, up) < 1.
O

Let 6p > 0 be a unique value such that y(6p) = 1. Suppose that u € K. Under the
assumptions (C) and (DF), if A2(u) < 0, A,(w) is independent of p by [10, Theorem 3.1].
By combining Lemma 2.8, we can derive the following in a similar way of (9): for 6 > 6y

1 .
C©O) = lim - log Ex (e9A¢ ) :
t—oo t
On the other hand, by Lemma 2.8 and [2, Theorem 5.1] on the Schrddinger type operator,
we see that y(6) > 1 is equivalent to
sup E, (eeAgc) < 00.
xeX
Since A" is positive, for 6 < 6
1 1 .
lim - log Ey (e“?‘ ) < lim - log Ex (e“’oo) —0.
t—00 t t—o00 t

Hence we have

THEOREM 2.9. Let u € Koo. Then

1 -
lim - log Ey (e“?‘) =),

t—o0 t

where C (0) is the function defined by

C©), 6=6,

C(Q)z{o, 6 <6.

Let I be the Legendre transform of c ),
Ty = sup (A0 — C(0)}.
feR!
Then, combining Theorem 2.9 with the Girtner-Ellis theorem ([3, Section 2.3]), we have the
upper bound:

THEOREM 2.10. Let it € Koo. Then for any closed set K C R/,
_ 1 Al o~
limsup—log Py | — € K | < —inf I(A).

t rek

t—>00 t
The Legendre transform of C(8) and c (0) are expressed as follows:
I(A) = sup{A8 — C(0)}

peR!
(13) AMCHTIo) = ceH o), A > C'(6p+)
=1 C(0), 0<Xx < C'(6p+)

00, A <O0.
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T(h) = sup (A0 — C(0)}

feR!
(14) MCHTI) —cehHt ), A= C'Bo+)
= 100, 0<X<C'(6y+)
00, A <0.

Hence, I equals T on [C'(Bp+), 00).

3. Example.

EXAMPLE 3.1. Let us consider the 1-dimensional Brownian motion (P}", B;) with a
positive drift k. Then the process (P;", B;) is transient and its infinitesimal generator L is
given by %j—; + k%. Let (£, D(£)) be the Dirichlet form on LZ(RI; ekadx) generated by
(PY, By), that is,

1 du dv
Eu,v) == — —e™dx, u, veDE
(@, v) 2 /Rl dx dx ©
D(E) = the closure of C3° (R") with respect to 511/2 .

By using integration by parts,
1 d*u du 2%k
8(14, U) = —5 \/l\{ (W + 2ka> ve"*dx
= (_Eu, U)ekadx .
Then (P}, B;) satisfies the assumptions (I), (DF), (C) and (LU).
Let p be the Dirac measure at the origin. i.e., u = 8g. Then u € K. Let [; be the local

time at 0. Then /; is the continuous additive functional corresponding to .
We define the functions C(6) and C(6) by

C®) = —inf{é‘(u, u) — 0u*(0) : u € CP(RY), / utedx = 1} :
R!

C®), 06=6

C(e):{o, 0 < 6.

The function C(#) is equal to the bottom of spectrum of the self-adjoint operator £% :=
L + 8y. We first consider C(0) for 6 > 0. Foru € C8° (RY), the boundary condition
u' (04) — u'(0—) = —26u(0)

must be satisfied. Since u € L2(R', ¢>**dx), the eigenfunction corresponding to an eigen-
value A forms

Ce—(k—i-\/ k2—2k)x’ x>0
ux) = -
( ) Ce—(k—\/kz—Z)\)x, Y < O,
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where C is a constant. From the boundary condition, we have

VK2 —2)0=96.

Hence,
k* — 62
A= —.
2
Since C(0) = C(0) for 6§ < 0, we have
6% k2
—_—— > ()
c®) = 2k2 2
-3 0 <0.
Moreover, 6y = k, we have
6% k?
Cor={ 77 9=k
0, 0 <k.

Let 1()) (resp. T (1)) be the Legendre transform of C(6) (resp. c @)):
I(}) = sup{A0 — C(0)}

feR!
A2 k2
—+ —, A>0
— ) + > =
00, A <0.

1) = sup (A0 — C(0)}

peR!
A2k
—+ —, A>k
_ SR =
Mk, 0<A<k
00, A <0.

Finally, for A C [k, 00) with infycao [ (A1) = inf, 5 1 (A),

t—0o0

.1 w1 .
lim ;long (?GA)__AIIelgI(A)'
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