
Tohoku Math. J.
70 (2018), 633–648

LARGE DEVIATIONS FOR CONTINUOUS ADDITIVE FUNCTIONALS
OF SYMMETRIC MARKOV PROCESSES

SEUNGHWAN YANG

(Received April 13, 2016, revised August 1, 2016)

Abstract. Let X be a locally compact separable metric space and m a positive Radon
measure on X with full topological support. Let M = (Px,Xt ) be an m-symmetric Markov
process on X. Let (E,D(E)) be the Dirichlet form on L2(X;m) generated by M. Let μ
be a positive Radon measure in the Green-tight Kato class and Aμt the positive continuous
additive functional in the Revuz correspondence to μ. Under certain conditions, we establish
the large deviation principle for positive continuous additive functionals Aμt of symmetric
Markov processes.

Introduction. Let X be a locally compact separable metric space and m a positive
Radon measure on X with full topological support. Let M = (Px,Xt ) be an irreducible, con-
servative, m-symmetric Markov process on X with the doubly Feller property. Let (E,D(E))
be the Dirichlet form on L2(X;m) generated by M. We assume that (E,D(E)) is regular
and transient. Let μ be a positive Radon measure in the Green-tight Kato class (in notation
μ ∈ K∞) and Aμt the positive continuous additive functional in the Revuz correspondence to
μ.

We define

(1) γ (θ) := inf

{
E(u, u) : u ∈ D(E), θ

∫
X

u2dμ = 1

}
, θ ∈ R

1 .

Let θ0 be a unique value such that γ (θ0) = 1. We define the functions C(θ) and C̃(θ) by

C(θ) = − inf

{
E(u, u)− θ

∫
X

u2dμ : u ∈ C0(X) ∩ D(E),
∫
X

u2dm = 1

}
,

and

C̃(θ) =
{
C(θ), θ ≥ θ0

0, θ < θ0 .

Here C0(X) is the space of continuous functions on X with compact support.
Let I (λ) (resp. Ĩ (λ)) be the Legendre transform of C(θ) (resp. C̃(θ)):

I (λ) = sup
θ∈R1

{λθ − C(θ)}
(

resp. Ĩ (λ) = sup
θ∈R1

{λθ − C̃(θ)}
)
, λ ∈ R

1 .
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In [7], [9], a large deviation principle was proved for additive functionals of Brownian
motion corresponding to Kato measures. In [12], it was extended to the case of symmetric
α-stable process. A main objective of this paper is to extend these results in [7], [9] and [12]
to more general symmetric Markov processes:

THEOREM 0.1. Suppose M satisfies (I), (DF), (C) and (LU) below. Let μ ∈ K∞.
Then

(i) For any open set G ⊂ R
1,

lim inf
t→∞

1

t
logPx

(
A
μ
t

t
∈ G

)
≥ − inf

λ∈G I (λ) .

(ii) For any closed set K ⊂ R
1,

lim sup
t→∞

1

t
logPx

(
A
μ
t

t
∈ K

)
≤ − inf

λ∈K Ĩ(λ) .

We can show that I equals Ĩ on [C′(θ0+),∞), whereC′(θ0+) = limε→0 C
′(θ0+ε) for ε > 0.

As a corollary of Theorem 0.1, for A ⊂ [C′(θ0+),∞) with infλ∈A◦ I (λ) = infλ∈Ā I (λ),

lim
t→∞

1

t
logPx

(
A
μ
t

t
∈ A

)
= − inf

λ∈AI (λ) .

In particular, if C = C̃, that is, C(θ) = 0 for θ ≤ θ0, then the large deviation principle for
A
μ
t /t holds.

In [9], [12], they showed that C equals C̃ for the Brownian motion or α-stable process.
In general, C does not equals C̃ when C(0) < 0 ([10, Theorem 3.1 (ii)]).

In the proof of the large deviation principle for the positive continuous additive func-
tional Aμt in the Revuz correspondence with μ, we use the Gärtner-Ellis Theorem. The func-
tion C̃(θ) is regarded as the logarithmic moment generating function of Aμt . In the Gärtner-
Ellis theorem, the differentiability of logarithmic moment generating functions is a sufficient
condition for obtaining the lower bound. Needless to say, it is impossible to show the differen-
tiability for continuous additive functionals of general symmetric Markov processes. Indeed,
if θ0 > 0 and C(0) < 0, then the right derivative of C̃ at θ = θ0 is positive because it is equal
to C′(θ0) and C̃(θ) is convex, but the left derivative is 0. Therefore, the logarithmic moment
generating function C̃(θ) is not differentiable at θ0.

We prove first the lower bound for the absorbing symmetric Markov process MG on a
relatively compact open set G ⊂ X. For θ ∈ R

1, let

CG(θ) = − inf

{
Eθμ,G(u, u) : u ∈ D(EG),

∫
G

u2dm = 1

}
,

where D(EG) = {u ∈ D(E) : u = 0 q.e. onX\G}. Here Eθμ,G is the Schrödinger form onG
defined in (7). Combining the local ultra-contractivity with the analytic perturbation theory,
we can obtain that CG(θ) is an analytic function in θ . Applying the Gärtner-Ellis theorem,
we can show that the lower bound for absorbing symmetric Markov process MG. Then by
approximating of X by Gn, where {Gn} is an increasing sequence of relatively compact open
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sets with
⋃∞
n=1Gn = X, we obtain the lower bound for the Markov process M on the whole

space X.
On the other hand, to show the upper bound, we use two facts, Lp-independence of

spectral bounds of Keynman-Kac semigroups and gaugeability for Schrödinger type operator.
We show by theLp-indepencence that for θ ≥ θ0 the logarithmic moment generating function
ofAμ exists and equals C̃, and by the gaugeability that for θ ≤ θ0 it equals 0. Hence, applying
Gärtner-Ellis theorem, we have the upper bound.

Finally, we treat the 1-dimensional Brownian motion (Pwx , Bt ) with a positive drift k as
an example. At this time, (Pwx , Bt ) satisfies the assumptions in Theorem 0.1 . We can choose
the Dirac measure δ0 at 0 as a positive Radon measure in the Green-tight Kato class. Then
the local time lt of the Brownian motion (Pwx , Bt ) at the origin is the continuous additive

functional in the Revuz correspondence to δ0. Let L = 1
2
d2

dx2 + k d
dx

be the infinitesimal

generator of (Pwx , Bt ). Then Lδ0 := L+ δ0 is a self-adjoint operator on L2(R, e2kxdx). Since
C(θ) is equal to the bottom of spectrum of Lδ0 , C(θ) is negative on θ < k. Therefore we can
see that C(θ) �= C̃(θ) on θ < k, and hence I (λ) �= Ĩ (λ) on 0 ≤ λ < k. In particular, for
A ⊂ [k,∞) with infλ∈A◦ I (λ) = infλ∈Ā I (λ), we have

lim
t→∞

1

t
logPwx

(
lt

t
∈ A

)
= − inf

λ∈AI (λ) .

This paper is organized as follow. After giving preliminaries in Section 1, we shall prove
that a large deviation principle for the positive continuous additive functionalAμt in the Revuz
correspondence with μ in the Green-tight Kato class in Section 2. Finally, We shall give an
example for our theorem to the 1-dimensional Brownian motion with a positive drift k in
Section 3.

1. Preliminaries. LetX be a locally compact separable metric space andm a positive
Radon measure on X with full topological support. Let (E,D(E)) be an m-symmetric regular
irreducible Dirichlet form on L2(X;m). It is known that a regular Dirichlet form E has the
Beurling-Deny decomposition ([5, Theorem 3.2.1]) : for u ∈ D(E)

(2) E(u, u) = 1

2

∫
X

dμc〈u〉 +
∫∫

X×X\diag
(u(x)− u(y))2J (dxdy)+

∫
X

u2dk .

Here μc〈u〉, J and k are the energy measure of the strongly local part, the jumping measure and
the killing measure with respect to (E,D(E)), respectively.

We assume that (E,D(E)) is transient, that is, there exists a strictly positive, bounded
function g ∈ L1(X;m) such that for u ∈ D(E)∫

X

|u|gdm ≤ √
E(u, u)

(cf. [5, p.40]).
We denote by u ∈ Dloc(E) if for any relatively compact open setD there exists a function

v ∈ D(E) such that u = v m-a.e. on D. We denote by De(E) the family of m-measurable
functions u on X such that |u| < ∞ m-a.e. and there exists an E-Cauchy sequence {un} of
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functions in D(E) such that limn→∞ un = u m-a.e. We call De(E) the extended Dirichlet
space of (E,D(E)).

Let M = (Ω,F , {Ft }t≥0, {Px}x∈X, {Xt }t≥0, ζ ) be the m-symmetric Hunt process gen-
erated by (E,D(E)), where {Ft }t≥0 is the augmented filtration and ζ is the lifetime of M.
Denote by {pt }t≥0 and {Gα}α≥0 the semigroup and resolvent of M:

ptf (x) = Ex(f (Xt)), Gαf (x) =
∫ ∞

0
e−αtptf (x)dt .

We assume that M satisfies the next conditions:

Irreducibility (I). If a Borel set A is pt -invariant, i.e., pt(1Af )(x) = 1Aptf (x) m-a.e.
for any f ∈ L2(X;m) ∩ Bb(X) and t > 0, then A satisfies either m(A) = 0 or
m(X \A) = 0. Here Bb(X) is the space of bounded Borel functions on X.

Conservativeness (C). Px(ζ = ∞) = 1 for each x ∈ X.
Doubly Feller Property (DF). For each t > 0, pt(C∞(X)) ⊂ C∞(X), limt→0 ‖ptf −
f ‖∞ = 0 for any f ∈ C∞(X) and pt (Bb(X)) ⊂ Cb(X), where C∞(X) (resp.
Cb(X)) is the space of continuous functions on X vanishing at infinity (resp. the
space of bounded continuous functions on X).

Local Ultra-contractivity (LU). Let {pGt } be the semigroup defined by pGt f (x) =
Ex(f (Xt); t < τG) for any f ∈ Bb(X), where τG is the first exit time from G.
Then for any relatively compact open set G, the semigroup {pGt } is ultra-contractive,
‖pGt f ‖∞ ≤ C(t)‖f ‖1, where C(t) is the operator norm of pGt from L1(G;m) to
L∞(G;m) .

REMARK 1.1. C(t) is non-increasing. Indeed, for t > s

‖ptf ‖∞ = ‖ps · pt−sf ‖∞ ≤ ‖ps‖1,∞‖pt−sf ‖1,1 ≤ ‖ps‖1,∞‖pt−s‖1,1‖f ‖1

and ‖pt−s‖1,1 ≤ 1, we have ‖pt‖1,∞ ≤ ‖ps‖1,∞.

We remark that (DF) implies

Absolute Continuity Condition (AC). The transition probability of M is absolutely
continuous with respect to m, p(t, x, dy) = p(t, x, y)m(dy) for each t > 0 and
x ∈ X.

Under (AC), there exists a non-negative, jointly measurable α-resolvent kernelGα(x, y)
on X ×X:

Gαf (x) =
∫
X

Gα(x, y)f (y)m(dy), x ∈ X, f ∈ Bb(X) .

Moreover,Gα(x, y) is α-excessive in x and in y ([5, Lemma 4.2.4]). We simply writeG(x, y)
for G0(x, y). For a measure μ, we define the α-potential of μ by

Gαμ(x) =
∫
X

Gα(x, y)μ(dy) .
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We define the (1-)capacity Cap associated with the Dirichlet form (E,D(E)) as follows:
for an open set O ⊂ X,

Cap(O) = inf{E1(u, u) : u ∈ D(E), u ≥ 1, m-a.e. onO} ,
where E1(u, u) = E(u, u)+ (u, u)m, for a Borel set A ⊂ X,

Cap(A) = inf{Cap(O) : O is open,O ⊃ A} .
A statement depending on x ∈ X is said to hold q.e. on X if there exists a set N ⊂ X of
zero capacity such that the statement is true for every x ∈ X \ N . The notation “q.e.” is an
abbreviation of “quasi-everywhere”. A real valued function u defined q.e. on X is said to be
quasi-continuous if for any ε > 0 there exists an open set G ⊂ X such that Cap(G) < ε

and u|X\G is finite and continuous. Here, u|X\G denotes the restriction of u to X \ G. It is
known that each function u in De(E) admits a quasi-continuous version ũ, that is, u = ũ

m-a.e.([5, Theorem 2.1.7]). In the sequel, we always assume that every function u ∈ De(E)
is represented by its quasi-continuous version.

Let S00 be the set of positive Borel measures μ such that μ(X) < ∞ and G1μ is
bounded. We call a Borel measure μ on X smooth if there exists a sequence {En} of Borel
sets increasing to X such that 1En · μ ∈ S00 for each n and

Px( lim
n→∞ σX\En ≥ ζ ) = 1, ∀x ∈ X .

Here σX\En is the hitting time ofX \En by M, σX\En = inf{t > 0 : Xt ∈ X \En}. We denote
by S the set of positive smooth Borel measures. In [5], a measure in S is called a smooth
measure in the strict sense. Here we omit the adjective phrase “in the strict sense”.

A stochastic process {At}t≥0 is said to be an additive functional (AF in abbreviation) if
the following conditions hold:

(i) At(·) is Ft -measurable for all t ≥ 0.
(ii) There exists a set Λ ∈ F∞ = σ

(⋃
t≥0 Ft

)
such that Px(Λ) = 1, for all x ∈ X,

θtΛ ⊂ Λ for all t > 0, and for each ω ∈ Λ, A·(ω) is right continuous and has the left limit
on [0, ζ(ω)), A0(ω) = 0, |At(ω)| < ∞ for t < ζ(ω), At(ω) = Aζ(ω)(ω) for t ≥ ζ , and
At+s(ω) = At(ω)+ As(θtω) for s, t ≥ 0.

If an AF {At }t≥0 is positive and continuous with respect to t for each ω ∈ Λ, the AF
is called a positive continuous additive functional (PCAF in abbreviation). The set of all
PCAF’s is denoted by A+

c . The family S and A+
c are in one-to-one correspondence (Revuz

correspondence) as follows: for each smooth measure μ, there exists a unique PCAF {At }t≥0

such that for any f ∈ B+(X) and γ -excessive function h,

(3) lim
t→0

1

t
Eh·m

(∫ t

0
f (Xs)dAs

)
=
∫
X

f (x)h(x)μ(dx)

([5, Theorem 5.1.7]). Here, Eh·m( · ) = ∫
X
Ex( · )h(x)m(dx). We denote the PCAF Aμt by

A
μ
t to emphasize the correspondence between μ and {At }t≥0.

We define some classes of smooth measures.
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DEFINITION 1.2. Suppose that μ ∈ S is a positive Radon measure.
(1) A measure μ is said to be in the Kato class of M (K in abbreviation) if

lim
α→∞ ‖Gαμ‖∞ = 0 .

A measure μ is said to be in the local Kato class of M (Kloc in abbreviation) if 1K · μ ∈ K
for any relatively compact open set K . Here 1K is the indicator function of K .

(2) A measure μ is said to be in the class K∞ if μ ∈ K and for any ε > 0, there exists a
compact set K = K(ε)

sup
x∈X

∫
Kc

G(x, y)μ(dy) < ε .

A measure μ in K∞ is called Green-tight.

We note that every measure treated in this paper is supposed to be Radon. Thus we see
from [1, Theorem 3.9] that μ ∈ K if and only if

(4) lim
t↓0

sup
x∈X

Ex(A
μ
t ) = lim

t↓0
sup
x∈X

∫ t

0

∫
X

p(s, x, y)μ(dy)ds = 0.

Chen [2] defined the Green-tight class in slightly different way, however two definitions are
equivalent under the strong Feller property ([6, Lemma 4.1]). We see from [8] that for α ≥ 0
and μ ∈ K

(5)
∫
X

u2dμ ≤ ‖Gαμ‖∞ · Eα(u, u) for any u ∈ D(E) .

Let μ ∈ K. We define the Schrödinger form by

(6)

⎧⎨⎩ Eμ(u, u) = E(u, u)−
∫
X

u2dμ

D(Eμ) = D(E) .
We denote by Lμ = L + μ the self-adjoint operator associated with the closed symmetric
form (Eμ,D(Eμ)), that is, (−Lμu, v)m = Eμ(u, v) for any u, v ∈ D(E).

We define the Feynman-Kac semigroup {pμt }t≥0 by

p
μ
t f (x) = Ex(exp(Aμt )f (Xt )), x ∈ X, f ∈ Bb(X) .

THEOREM 1.3 ([12]). Let μ ∈ K. For any ε > 0 there exists M(ε) > 0 such that for
any u ∈ D(E) ∫

X

u2dμ ≤ εE(u, u)+M(ε)

∫
X

u2dm .

THEOREM 1.4 ([12]). Let μ ∈ K∞. Then for any u ∈ D(E)∫
X

u2dμ ≤ ‖Gμ‖∞ · E(u, u) .
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2. Large deviation principle. Let G ⊂ X be a relatively compact open set. We set

D(EG) = {u ∈ D(E) : u = 0 q.e. on X \G} .
Here EG is the part of the Dirichlet form E on G. D(EG) is a closed subspace of the Hilbert
space (D(E), E1). (EG,D(EG)) is a regular Dirichlet form on L2(G;m). Let MG be the
associated the Markov process of (EG,D(EG)), namely, the part process of M on G ([5,
A.2]). Indeed, MG is an absorbing Markov process on G with an m-symmetric transition
function pGt on (G,B(G)) defined by pGt (x, B) = Px(Xt ∈ B; t < τG), where τG is the first
exit time of G.

For θ ∈ R
1 let

(7) Eθμ,G(u, u) = EG(u, u)− θ

∫
X

u2dμ, u ∈ D(EG)

and

(8) CG(θ) = − inf

{
Eθμ,G(u, u) : u ∈ D(EG),

∫
G

u2dm = 1

}
.

Let IG be the Legendre transform of CG:

IG(λ) = sup
θ∈R1

{
λθ − CG(θ)

}
, λ ∈ R

1 .

LEMMA 2.1. For u1, u2 ∈ D(E) and 0 ≤ α ≤ 1, u :=
√
αu2

1 + (1 − α)u2
2 ∈ D(E)

and

E(u, u) ≤ αE(u1, u1)+ (1 − α)E(u2, u2) .

PROOF. First, we consider the energy measure of the strongly local part of (2).
By Theorem 5.6.2 in [5], for anyΦ ∈ C1(Rd) and v1, . . . , vd ∈ D(E)b := D(E)∩L∞(X;m),
the composite functionΦ(v) = Φ(v1, . . . , vd) with Φ(0) = 0 is in D(E)b and

dμc〈Φ(v),w〉 =
d∑
i=1

Φxi (v)dμ
c〈vi ,w〉, for any ω ∈ D(E)b ,

where Φxi is the partial derivative of Φ with respect to xi .

By applying the formula above to v = (u1, u2) and Φ(v) =
√
αu2

1 + (1 − α)u2
2, we

have

dμc〈u〉 =
α2u2

1

αu2
1 + (1 − α)u2

2

dμc〈u1〉 + 2
α(1 − α)u1u2

αu2
1 + (1 − α)u2

2

dμc〈u1,u2〉 + (1 − α)2u2
2

αu2
1 + (1 − α)u2

2

dμc〈u2〉 .

Since ∫
X

α(1 − α)u1u2

αu2
1 + (1 − α)u2

2

dμc〈u1,u2〉

≤
(∫

X

α(1 − α)u2
2

αu2
1 + (1 − α)u2

2

dμc〈u1〉

)1/2 (∫
X

α(1 − α)u2
1

αu2
1 + (1 − α)u2

2

dμc〈u2〉

)1/2
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≤
∫
X

α(1 − α)u2
2

αu2
1 + (1 − α)u2

2

dμc〈u1〉 +
∫
X

α(1 − α)u2
1

αu2
1 + (1 − α)u2

2

dμc〈u2〉 ,

by Lemma 5.6.1 in [5], we have∫
X

dμc〈u〉 ≤
∫
X

α(αu2
1 + (1 − α)u2

2)

αu2
1 + (1 − α)u2

2

dμc〈u1〉 +
∫
X

(1 − α)(αu2
1 + (1 − α)u2

2)

αu2
1 + (1 − α)u2

2

dμc〈u2〉

≤ α

∫
X

dμc〈u1〉 + (1 − α)

∫
X

dμc〈u2〉 .

Moreover, noting

u(x)u(y) =
√
αu2

1(x)+ (1 − α)u2
2(x)

√
αu2

1(y)+ (1 − α)u2
2(y)

≥ αu1(x)u1(y)+ (1 − α)u2(x)u2(y) ,

we have

(u(x)− u(y))2 ≤ α(u1(x)− u1(y))
2 + (1 − α)(u2(x)− u2(y))

2

and thus Ej (u, u) ≤ αEj (u1, u1)+ (1 −α)Ej (u2, u2). The proof of this lemma is completed.
�

Define

J̃ G(λ) := inf

{
EG(u, u) : u ∈ D(EG),

∫
G

u2dμ = λ,

∫
G

u2dm = 1

}
, λ ∈ R

1

and

JG(λ) = lim
ε→0

inf
|λ′−λ|<ε

J̃G(λ′) .

JG is the lower semi-continuous modification of J̃ G. From Lemma 2.1, we have

LEMMA 2.2. The function J̃ G is convex: for 0 ≤ α ≤ 1 and λ1, λ2 ∈ R
1

J̃ G(αλ1 + (1 − α)λ2) ≤ αJ̃G(λ1)+ (1 − α)J̃G(λ2) .

PROOF. For any u1, u2 ∈ D(EG) such that∫
G

u2
i dμ = λi,

∫
G

u2
i dm = 1, i = 1, 2 ,

let u :=
√
αu2

1 + (1 − α)u2
2, 0 ≤ α ≤ 1. Then u belongs to D(EG),∫

G

u2dμ = αλ1 + (1 − α)λ2 and
∫
G

u2dm = 1 .

We see by the definition of J̃ G(λ) and Lemma 2.1 that for any u1, u2 ∈ D(EG) satisfying
above conditions,

J̃ G(αλ1 + (1 − α)λ2) ≤ E(u, u)
≤ αE(u1, u1)+ (1 − α)E(u2, u2) .
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Therefore, we have the lemma. �

LEMMA 2.3. The function JG is convex.

PROOF. Let λ1, λ2 ∈ R
1. For λ′ and λ′′ with |λ′ − λ1| < ε and |λ′′ − λ2| < ε,

inf|λ−(αλ1+(1−α)λ2)|<ε
J̃G(λ) ≤ J̃ G(αλ′ + (1 − α)λ′′)

≤ αJ̃G(λ′)+ (1 − α)J̃G(λ′′)

by Lemma 2.2, and thus

inf|λ−(αλ1+(1−α)λ2)|<ε
J̃G(λ) ≤ α inf

|λ′−λ1|<ε
J̃G(λ′)+ (1 − α) inf

|λ′′−λ2|<ε
J̃G(λ′′) .

The proof is completed by letting ε → 0. �

LEMMA 2.4. The function CG is the Legendre conjugate of JG,

CG(θ) = sup
λ∈R1

{θλ− JG(λ)} .

PROOF. Let

A =
{
u ∈ D(EG) :

∫
G

u2dm = 1

}
Aλ =

{
u ∈ D(EG) :

∫
G

u2dμ = λ,

∫
G

u2dm = 1

}
, λ ∈ R

1 .

For any ε > 0, set

Aλ,ε =
{
u ∈ D(EG) : λ− ε <

∫
G

u2dμ < λ+ ε,

∫
G

u2dm = 1

}
.

Then

inf
u∈A

Eθμ,G(u, u) ≤ inf
u∈Aλ,ε

Eθμ,G(u, u) ≤ lim
ε→0

inf
u∈Aλ,ε

Eθμ,G(u, u) ≤ inf
u∈Aλ

Eθμ,G(u, u)

and thus

inf
u∈A

Eθμ,G(u, u) ≤ inf
λ

lim
ε→0

inf
u∈Aλ,ε

Eθμ,G(u, u) ≤ inf
λ

inf
u∈Aλ

Eθμ,G(u, u) = inf
u∈A

Eθμ,G(u, u) .

Hence we have

CG(θ) = − inf
λ

lim
ε→0

inf
u∈Aλ,ε

Eθμ,G(u, u)

= − inf
λ

lim
ε→0

inf
|λ′−λ|<ε

(
inf
u∈Aλ′

Eθμ,G(u, u)
)

= − inf
λ

lim
ε→0

inf
|λ′−λ|<ε

(
J̃ G(λ′)− θλ′) .

Noting

lim
ε→0

inf
|λ′−λ|<ε

(
J̃ G(λ′)− θλ′) = JG(λ)− θλ ,
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we have

CG(θ) = − inf
λ

{JG(λ)− θλ} = sup
λ

{θλ− JG(λ)} .
�

As a result, we see that

LEMMA 2.5.

IG = JG .

PROOF. The function JG is lower semi-continuous, convex and not identically infinite.
Hence, it follows from Lemma 2.4 and [4, Theorem 2.2.15] that JG = IG. �

We use the notations J (resp. J̃ ) for JG (resp. J̃ G) whenG = X.

LEMMA 2.6. Let {Gn} be an increasing sequence of relatively compact open sets with⋃∞
n=1 Gn = X. Then for an open set O ⊂ R

1

inf
λ∈O J (λ) = inf

n
inf
λ∈O J

Gn(λ) .

PROOF. By the regularity of the Dirichlet form (E,D(E)),

inf
λ∈O J̃ (λ) = inf

{
E(u, u) : u ∈ D(E),

∫
X

u2dμ ∈ O,
∫
X

u2dm = 1

}
= inf

{
E(u, u) : u ∈ D(E) ∩ C0(X),

∫
X

u2dμ ∈ O,
∫
X

u2dm = 1

}
= inf

n
inf

{
E(u, u) : u ∈ D(E) ∩ C0(Gn),

∫
X

u2dμ ∈ O,
∫
X

u2dm = 1

}
= inf

n
inf
λ∈O J̃

Gn(λ) .

Noting that infλ∈O J̃G(λ) = infλ∈O JG(λ) for any open setO ⊂ R
1, we have the lemma. �

Let μ ∈ Kloc. Let G be a relatively compact open set of X. Denote by {GGα }α≥0 the
resolvent of the part process MG of M on G. Then the part process MG is tight in the sense
that for any ε > 0, there exists a compact set K ⊂ G such that

sup
x∈G

GG1 1Kc(x) ≤ ε .

Here 1Kc is the indicator function of G \K . In fact, note that for x ∈ G,

GG1 1Kc(x) =
∫ ∞

0
e−tpGt 1Kc(x)dt =

∫ δ

0
e−tpGt 1Kc(x)dt +

∫ ∞

δ

e−tpGt 1Kc(x)dt .

We see from (LU) and Remark 1.1 that the right hand side is dominated by∫ δ

0
e−t dt +

∫ ∞

δ

e−t‖pGt ‖1,∞m(G \K)dt ≤1 − e−δ +
∫ ∞

δ

e−tC(δ)m(G \K)dt
≤1 − e−δ + e−δC(δ)m(G \K) .
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For any ε > 0, we choose δ > log(1 − ε
2 ) and a compact set K ⊂ G satisfying m(G \K) <

eδε
2c(δ) , and obtain the tightness of MG.

Let {pμ,Gt }t>0 be the semigroup defined by

p
μ,G
t f (x) = Ex

(
eA

μ
t f (Xt ); t < τG

)
, for f ∈ Bb(G) .

Define the Lp-spectral bounds of {pμ,Gt }t>0 by

λGp (μ) = − lim
t→∞

1

t
log ‖pμ,Gt ‖p,p, 1 ≤ p ≤ ∞ ,

where ‖pμ,Gt ‖p,p is the operator norm of pμ,Gt from Lp(G;m) to Lp(G;m). We omit ‘G’
from λGp (μ) whenG = X.

The Lp-independence of the spectral bounds of {pμ,Gt }t>0 means that

λGp (μ) = λG2 (μ), 1 ≤ p ≤ ∞ .

As mentioned above, the Markov process MG is tight, so λGp (θμ) is independent of p by
[11, Theorem 4.1]. We easily see the following inequality

−λG2 (θμ) ≤ lim inf
t→∞

1

t
logEx

(
eθA

μ
t ; t < τG

)
≤ lim sup

t→∞
1

t
log sup

x∈G
Ex

(
eθA

μ
t ; t < τG

)
= lim sup

t→∞
1

t
log sup

x∈G
p
θμ,G
t 1(x)

= lim sup
t→∞

1

t
log ‖pθμ,Gt ‖∞

= −λG∞(θμ) .

By combining the Lp-independence of the spectral bounds of {pθμ,Gt }t>0 and the variational
formula for λG2 (θμ),

(9) lim
t→∞

1

t
logEx

(
eθA

μ
t ; t < τG

)
= CG(θ) .

By using (LU), the transition function pθμ,Gt (x, y) of pθμ,Gt is bounded for each t > 0 and
x, y ∈ X, and thus pθμ,Gt is a Hilbert-Schmidt integral operator, in particular, a compact
operator. Hence, we see that CG(θ) is an analytic function in θ because it is nothing but the
eigenvalue of Lμ. Then, combining (9) with the Gärtner-Ellis theorem ([3, Section 2.3]), we
obtain the next lower estimate: For any open set O ⊂ R

1,

lim inf
t→∞

1

t
logPx

(
A
μ
t

t
∈ O; t < τG

)
≥ − inf

λ∈O I
G(λ) ,(10)

where IG is the Legendre transform of CG.
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THEOREM 2.7. Let μ ∈ Kloc. Then, for any open set O ⊂ R
1

lim inf
t→∞

1

t
logPx

(
A
μ
t

t
∈ O

)
≥ − inf

λ∈O I (λ) .

PROOF. Let {Gn} be a sequence of relatively compact open sets such that Gn ↑ X and
simply write In for IGn . Then we have from (10) that

lim inf
t→∞

1

t
logPx

(
A
μ
t

t
∈ O

)
≥ sup

n
lim inf
t→∞

1

t
logPx

(
A
μ
t

t
∈ O; t < τGn

)
≥ − inf

n
inf
λ∈O I

n(λ) .

Since

inf
n

inf
λ∈O I

n(λ) = inf
λ∈O I (λ) ,

we obtain the theorem. �

Define

γ (θ) := inf

{
E(u, u) : u ∈ D(E), θ

∫
X

u2dμ = 1

}
, θ ∈ R

1 .(11)

LEMMA 2.8.

γ (θ) ≤ 1 ⇐⇒ inf

{
Eθμ(u, u) :

∫
X

u2dm = 1

}
≤ 0 .(12)

PROOF. We can prove this lemma by the same argument as in [12, Lemma 2.2]. Assume
that γ (θ) ≤ 1. Then there exists a ϕ0 ∈ C0(X) with θ

∫
X ϕ

2
0dμ = 1 such that E(ϕ0, ϕ0) ≤ 1.

Hence we see

E(ϕ0, ϕ0) ≤ θ

∫
X

ϕ2
0dμ .

Letting

u0 = ϕ0√∫
X ϕ

2
0dm

,

we have

Eθμ(u0, u0) ≤ 0 .

On the other hand, we assume that inf
{Eθμ(u, u) : ∫X u2dm = 1

} ≤ 0. Then there exists a
ψ0 ∈ C0(X) with

∫
X
ψ2

0dm = 1 such that Eθμ(ψ0, ψ0) ≤ 0. Letting

u0 = ψ0√
θ
∫
X
ψ0

2dμ

,
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we have

E(u0, u0) ≤ 1 .

�

Let θ0 > 0 be a unique value such that γ (θ0) = 1. Suppose that μ ∈ K∞. Under the
assumptions (C) and (DF), if λ2(μ) ≤ 0, λp(μ) is independent of p by [10, Theorem 3.1].
By combining Lemma 2.8, we can derive the following in a similar way of (9): for θ ≥ θ0

C(θ) = lim
t→∞

1

t
logEx

(
eθA

μ
t

)
.

On the other hand, by Lemma 2.8 and [2, Theorem 5.1] on the Schrödinger type operator,
we see that γ (θ) > 1 is equivalent to

sup
x∈X

Ex

(
eθA

μ∞
)
< ∞ .

Since Aμt is positive, for θ < θ0

lim
t→∞

1

t
logEx

(
eθA

μ
t

)
≤ lim
t→∞

1

t
logEx

(
eθA

μ∞
)

= 0 .

Hence we have

THEOREM 2.9. Let μ ∈ K∞. Then

lim
t→∞

1

t
logEx

(
eθA

μ
t

)
= C̃(θ) ,

where C̃(θ) is the function defined by

C̃(θ) =
{
C(θ), θ ≥ θ0 ,

0, θ < θ0 .

Let Ĩ be the Legendre transform of C̃(θ),

Ĩ (λ) = sup
θ∈R1

{λθ − C̃(θ)} .

Then, combining Theorem 2.9 with the Gärtner-Ellis theorem ([3, Section 2.3]), we have the
upper bound:

THEOREM 2.10. Let μ ∈ K∞. Then for any closed set K ⊂ R
1,

lim sup
t→∞

1

t
logPx

(
A
μ
t

t
∈ K

)
≤ − inf

λ∈K Ĩ(λ) .

The Legendre transform of C(θ) and C̃(θ) are expressed as follows:

I (λ) = sup
θ∈R1

{λθ − C(θ)}

=
⎧⎨⎩
λ(C′)−1(λ)− C((C′)−1(λ)), λ ≥ C′(θ0+)
C(0), 0 ≤ λ < C′(θ0+)
∞, λ < 0 .

(13)
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Ĩ (λ) = sup
θ∈R1

{λθ − C̃(θ)}

=
⎧⎨⎩
λ(C′)−1(λ)− C((C′)−1(λ)), λ ≥ C′(θ0+)
λθ0, 0 ≤ λ < C′(θ0+)
∞, λ < 0 .

(14)

Hence, I equals Ĩ on [C′(θ0+),∞).

3. Example.

EXAMPLE 3.1. Let us consider the 1-dimensional Brownian motion (Pwx , Bt ) with a
positive drift k. Then the process (Pwx , Bt ) is transient and its infinitesimal generator L is

given by 1
2
d2

dx2 + k d
dx

. Let (E,D(E)) be the Dirichlet form on L2(R1; e2kxdx) generated by
(Pwx , Bt ), that is, ⎧⎪⎨⎪⎩

E(u, v) = 1

2

∫
R1

du

dx

dv

dx
e2kxdx, u, v ∈ D(E)

D(E) = the closure of C∞
0 (R

1) with respect to E1/2
1 .

By using integration by parts,

E(u, v) = −1

2

∫
R

(
d2u

dx2
+ 2k

du

dx

)
ve2kxdx

= (−Lu, v)e2kxdx .

Then (Pwx , Bt ) satisfies the assumptions (I), (DF), (C) and (LU).
Let μ be the Dirac measure at the origin. i.e., μ = δ0. Then μ ∈ K∞. Let lt be the local

time at 0. Then lt is the continuous additive functional corresponding to μ.
We define the functions C(θ) and C̃(θ) by

C(θ) = − inf

{
E(u, u)− θu2(0) : u ∈ C∞

0 (R
1),

∫
R1
u2e2kxdx = 1

}
,

C̃(θ) =
{
C(θ), θ ≥ θ0

0, θ < θ0 .

The function C(θ) is equal to the bottom of spectrum of the self-adjoint operator Lδ0 :=
L + δ0. We first consider C(θ) for θ ≥ 0. For u ∈ C∞

0 (R
1), the boundary condition

u′(0+)− u′(0−) = −2θu(0)

must be satisfied. Since u ∈ L2(R1, e2kxdx), the eigenfunction corresponding to an eigen-
value λ forms

u(x) =
{
Ce−(k+

√
k2−2λ)x, x ≥ 0

Ce−(k−
√
k2−2λ)x, x < 0 ,



LARGE DEVIATIONS FOR CONTINUOUS ADDITIVE FUNCTIONALS 647

where C is a constant. From the boundary condition, we have√
k2 − 2λ = θ .

Hence,

λ = k2 − θ2

2
.

Since C(θ) = C(0) for θ < 0, we have

C(θ) =

⎧⎪⎪⎨⎪⎪⎩
θ2

2
− k2

2
, θ ≥ 0

−k
2

2
, θ < 0 .

Moreover, θ0 = k, we have

C̃(θ) =
⎧⎨⎩

θ2

2
− k2

2
, θ ≥ k

0, θ < k .

Let I (λ) (resp. Ĩ (λ)) be the Legendre transform of C(θ) (resp. C̃(θ)):

I (λ) = sup
θ∈R1

{λθ − C(θ)}

=
⎧⎨⎩ λ2

2
+ k2

2
, λ ≥ 0

∞, λ < 0 .

Ĩ (λ) = sup
θ∈R1

{λθ − C̃(θ)}

=

⎧⎪⎪⎨⎪⎪⎩
λ2

2
+ k2

2
, λ ≥ k

λk, 0 ≤ λ < k

∞, λ < 0 .

Finally, for A ⊂ [k,∞) with infλ∈A◦ I (λ) = infλ∈Ā I (λ),

lim
t→∞

1

t
logPwx

(
lt

t
∈ A

)
= − inf

λ∈AI (λ) .
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